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Abstract
Two-parameter motions and kinematics applications are studied and all

one parameter motions obtained from two-parameters motion on the Euclidean
plane, are investigated, [5]. Two-parameter motions in there dimensional
spaces are defined [1] and [6]. In this study, sliding velocity, pole lines, hodo-
graph and acceleration poles of two-parameter homothetic motions at ∀(λ, µ)
positions are obtained. By defining two-parameter homothetic motion along a
curve in Euclidean space E3, the theorems related to this motion and charac-
terizations of the trajectory surface are given.

Keywords: Two-parameter motion, Planar motion, Euclidean plane and
space.

1 Introduction

The determination of a point or a set of points such that its velocity nor van-
ishes or that is a minimum has always aroused interest among kinematicians.
The explanation of this is two-fold:points whose velocity, or acceleration, van-
ishes are important for they allow one to write simplified equations for the
velocity and acceleration of any other point of the rigid body; and a point or
a set of points with a minimum velocity norm locates the connecting place of
a kinematic pair, in general a helicoidal pair, that connects the rigid body to
the reference body. This connection produces a motion of the rigid body.
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Indeed, the search for points of a rigid body with a minimum velocity norm
has led to the description of the velocity of rigid body in terms of infinitesimal
screws, or helicoidal fields, and therefore to the definition of the instantaneous
screw axis.

Muller has introduced one- and two-parameters planar motions and ob-
tained the relations between absolute, relative, sliding velocity and pole curves
of these motions [7]. Moreover, two-parameter motions in three-dimensional
space are defined by [2] and [6]. In [5] all one-parameter motions obtained
from two-parameters motion on the Euclidean plane are investigated.

To investigate the geometry of the motion of a line or a point in the motion
of space is important in the study of space kinematics or spatial mechanisms
or in physics. The geometry of such a motion of a point or line has a number
of applications in geometric modeling and model-based manufacturing of me-
chanical products or in the design of robotic motions. These are specifically
used to generate geometric models of shell-type objects and thick surfaces
[4, 8, 3].

This paper is organised as follows. In this first part, basic concepts have
been given in Euclidean plane E2. Sliding velocity, pole lines, Hodograph and
acceleration poles of two-parameter homothetic motions at ∀(λ, µ) positions
are obtained. In the second part, by defining two-parameter homothetic mo-
tion space E3, the theorems related to this motion and characterizations of
the trajectory surface are given.

2 Two-Parameter Homothetic Motions in Eu-

clidean Plane

The homothetic motion is examined by

Y = hAX + C (1)

for h(λ, µ) 6= const. Also, there can be given some special results of (λ, µ) =
(0, 0) and h(λ, µ).

Definition 2.1 In a Euclidean plane, general two-parameter homothetic
motion is defined by[

y1
y2

]
= h (λ, µ)

[
cosθ (λ, µ) − sin θ (λ, µ)
sin θ (λ, µ) cosθ (λ, µ)

] [
x
y

]
+

[
a (λ, µ)
b (λ, µ)

]
, (2)

where (y1, y2) and (x, y) are coordinate functions of the fixed E ′2 plane and
moving E2 planes, respectively. If λ and µ in C∞ are given by the differential
functions of the time parameter t , then homothetic motion MI are obtained
and called homothetic motion MI obtained from MII homothetic motions.
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Here, at the initial time (λ, µ) = (0, 0) and θ (0, 0) = a (0, 0) = b (0, 0) =
(0, 0), the coordinate systems of the moving E2 and fixed E ′2 planes are con-
gruent.

Theorem 2.2 The equation of the pole points of homothetic motions MI

obtained from homothetic motions MII on a moving plane is(
hȧθ̇ cos θ + ḣȧ sin θ + hḃθ̇ sin θ − ḣḃ cos θ

)
xp

+
(
−hȧθ̇ sin θ + ḣȧ cos θ + hḃθ̇ cos θ + ḣḃ sin θ

)
yp = 0.

(3)

Proof. By differentiating equation (2) with respect to t and simplifying it, we
obtain

xp =
hȧθ̇ sin θ − ḣȧ cos θ − hḃθ̇ cos θ − ḣḃ sin θ

ḣ2 + h2θ̇2

yp =
hȧθ̇ cos θ + ḣȧ sin θ + hḃθ̇ sin θ − ḣḃ cos θ

ḣ2 + h2θ̇2
. (4)

After some routine calculations, the equation of the pole points (3) is obtained.
The pole points of homothetic motions MI obtained from homothetic motions
MII on a moving plane are given by

P (xp, yp) =

(
− hḃθ̇ + ḣȧ

ḣ2 + h2θ̇2
,
hȧθ̇ − ḣḃ
ḣ2 + h2θ̇2

)
(5)

at the position of (λ, µ) = (0, 0) and the equation of the pole points is(
hȧθ̇ − ḣḃ

)
xp +

(
hḃθ̇ + ḣȧ

)
yp = 0 (6)

The pole points of homothetic motions MI obtained from homothetic motions
MII on a moving plane at the position of (λ, µ) = (0, 0) give the following
results.

Corollary 2.3 If θ (λ, µ) = const, then the pole points lie on the line

(hµbλ − hλbµ)xp + (hλaµ − hµaλ) yp = aλbµ − aµbλ. (7)

Corollary 2.4 If h (λ, µ) 6= 0 is a constant, then the pole points lie on the
line

(aµθλ − aλθµ)xp + (bµθλ − bλθµ) yp =
1

h
(aλbµ − aµbλ) . (8)

Corollary 2.5 If h (λ, µ) = 1, then the pole points lie on the line

(aµθλ − aλθµ)xp + (bµθλ − bλθµ) yp = aλbµ − aµbλ [1] (9)
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Theorem 2.6 The equation of the pole points of homothetic motions MI

obtained from homothetic motions MII on a fixed plane is(
hȧθ̇ − ḣḃ

)
x̄p +

(
hḃθ̇ + ḣȧ

)
ȳp = a

(
ḣḃ− hȧθ̇

)
− b
(
ḣȧ+ hḃθ̇

)
. (10)

Proof. By taking P (xp, yp) in equation (1), we have the pole points

P̄ (x̄p, ȳp) =

(
−h

2ḃθ̇ + ḣhȧ

ḣ2 + h2θ̇2
+ a ,

h2ȧθ̇ − ḣhḃ
ḣ2 + h2θ̇2

+ b

)
(11)

and the equation of the pole points (10) is obtained. The pole points of ho-
mothetic motions MI obtained from homothetic motions MII on a fixed plane
at the position of (λ, µ) = (0, 0) give the following results.

Corollary 2.7 On the fixed plane θ (λ, µ) = const, the pole points lie on
the line are

(hµbλ − hλbµ) x̄p + (hλaµ − hµaλ) ȳp = h (aλbµ − aµbλ) . (12)

Corollary 2.8 As a special case in Corollary 4 if h (λ, µ) = 1, the pole
points of the fixed and moving planes are congurent.

Corollary 2.9 If h (λ, µ) 6= 0 is constant, the pole points of fixed planes lie
on the line equation (9) [5].

Corollary 2.10 As a special case in Corollary 2, if h (λ, µ) = 1, the pole
points of moving planes are congruent to pole lines of fixed plane in Corollary
6.

If the pole points of homothetic motions MI obtained from homothetic
motions MII are chosen y axis, then, xp = 0 at the position of λ = µ = 0.
Hence, we have

yp =
ȧ

hθ̇
.

Therefore, there is a relation between the pole lines of the fixed plane and the
pole lines of a moving plane as follows:

ȳp = hyp.

Now, we investigate the sliding velocity
−→
Vf = (ẏ1, ẏ2) of any B (x, y) points

at the position of λ = µ = 0. Equation (2) is derived with respect to t and
with the position of λ = µ = 0, we have

ẏ1 = ḣx− hθ̇y + ȧ,

ẏ2 = ḣy + hθ̇x+ ḃ.
(13)

Thus, the sliding velocity is obtained as follows:

−→
Vf =

(
ḣx− hθ̇y + ȧ , ḣy + hθ̇x+ ḃ

)
. (14)
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Theorem 2.11 In homothetic motions MI obtained from homothetic mo-
tions MII , let y-axis be the pole axis at the position of λ = µ = 0. Then, the
relation between the pole ray going from the pole point P (xp, yp) to the point

B (x, y) and the sliding velocity
−→
Vf of the point B (x, y) is〈−→

Vf ,
−−→
PB
〉

= ḣ
(
x2 + y2

)
+ 2ḃy − ȧḃ

hθ̇
. (15)

Proof. By reason of the fact that the pole axis is y-axis, we have (xp, yp) =(
0, ȧ

hθ̇

)
and

−−→
PB =

(
x, y − ȧ

hθ̇

)
from equation (5). Then it is seen that〈−→

Vf ,
−−→
PB
〉

=
〈(
ḣx− hθ̇y + ȧ , ḣy + hθ̇x+ ḃ

)
,
(
x , y − ȧ

hθ̇

)〉
= ḣ (x2 + y2) + 2ḃy − ȧḃ

hθ̇

Corollary 2.12 If h (λ, µ) is a constant never vanishing and the pole axis

is the y-axis, then the pole ray and the sliding velocity
−→
Vf are perpendicular [5].

Theorem 2.13 The length of the sliding velocity vector of homothetic mo-
tions MI obtained from homothetic motion MII is∥∥∥−→Vf∥∥∥ =

√
ḣ2 + h2θ̇2

∥∥∥−−→PB∥∥∥ (16)

at the position of each (λ, µ).

Proof. Substituting the differentiation of C given in equation (1) into
−→
Vf ,

we get

−→
Vf =

 (
ḣ cos θ − hθ̇ sin θ

)
(x− xp)−

(
ḣ sin θ + hθ̇ cos θ

)
(y − yp) ,(

ḣ sin θ + hθ̇ cos θ
)

(x− xp) +
(
ḣ cos θ − hθ̇ sin θ

)
(y − yp)


Then, the length of the sliding velocity vector

−→
Vf is obtained.

Corollary 2.14 If h (λ, µ) = 1, then we obtain
∥∥∥−→Vf∥∥∥ =

∣∣∣θ̇∣∣∣ ∥∥∥−−→PB∥∥∥ [5].

Theorem 2.15 For all homothetic motions MI obtained from homothetic
motions MII , let ψ be angle between the pole ray going from the pole point P
to the point B and the sliding velocity vector

−→
Vf . Then, we have the relation

cosψ (λ, µ) =
ḣ cos θ − hθ̇ sin θ√

ḣ2 + h2θ̇2
(17)

at the position of each (λ, µ).
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Proof. There is the following relation between the pole ray
−−→
PB = (x− xp, y − yp)

and sliding velocity vector
−→
Vf :〈−−→

PB,
−→
Vf

〉
= (ḣ cos θ − hθ̇ sin θ)

∥∥∥−−→PB∥∥∥2 .
On the other hand, it is know that〈−−→

PB,
−→
Vf

〉
=
∥∥∥−→Vf∥∥∥∥∥∥−−→PB∥∥∥ cosψ (λ, µ) .

From the equality of the last two equations, we obtain equation (17).

Corollary 2.16 If h (λ, µ) 6= 0 is constant, then we obtain

ψ (λ, µ) =
π

2
+ θ (λ, µ) , θ = 2kπ (k = 0, 1, ...) [1].

Definition 2.17 When the sliding velocity vectors of a fixed point are car-
ried to the initial point, without changing the directions, then the locus of the
end points of these vectors is a curve called a hodograph.

Now we investigate any (x, y) points of the locus of the hodographs in all
homothetic motions MI obtained from homothetic motion MII , according to
the position of λ̇ and µ̇. For this let λ̇2 + µ̇2 = 1. By taking the derivatives
with respect to t of the equation (2), we have

ẏ1 = (hλx cos θ − hλy sin θ − hθλx sin θ − hθλy cos θ + aλ) λ̇
+ (hµx cos θ − hµy sin θ − hθµx sin θ − hθµy cos θ + aµ) µ̇

ẏ2 = (hλx sin θ + hλy cos θ + hθλx cos θ − hθλy sin θ + bλ) λ̇
+ (hµx sin θ + hµy cos θ + hθµx cos θ − hθµy sin θ + bµ) µ̇ .

(18)

Let us investigate the solution of the last equation system by taking (λ, µ) =
(0, 0) for simplicity. From equation (18), we find

det ∆ = h(x2 + y2) (hλθµ − hµθλ) + hx (aλθµ − aµθλ) + hy (bλθµ − bµθλ)
+x (hλbµ − hµbλ)− y (hλaµ − hµaλ) + aλbµ − aµbλ ,

that is,[
h2x2

(
θ2λ + θ2µ

)
+ y2

(
h2λ + h2µ

)
+ 2hxy (hλθλ + hµθµ) + 2hx (bλθλ + bµθµ)

+2y (hλbλ + hµbµ) +
(
b2λ + b2µ

)]
ẏ21 +

[
x2
(
h2λ + h2µ

)
+ h2y2

(
θ2λ + θ2µ

)
−2hxy (hλθλ + hµθµ) + 2x (hλaλ + hµaµ)− 2hy (aλθλ + aµθµ) +

(
a2λ + a2µ

)]
ẏ22

−2
[
h (x2 − y2) (hλθλ + hµθµ) + xy

(
h2λ + h2µ − h2

(
θ2λ + θ2µ

))
+ hx (aλθλ + aµθµ)

−hy (bλθλ + bµθµ) + x (hλbλ + hµbµ) + y (hλaλ + hµaµ) +aλbλ + aµbµ] ẏ1ẏ2
= (det ∆)2 .

(19)
Finally, if we find the values of λ̇ and µ̇ and substitute these values into the
equation λ̇2 + µ̇2 = 1, and the following theorem is found.
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Theorem 2.18 In all homothetic motions MI obtained from homothetic
motions MII , the locus of the hodograph is a ellipse at the position of λ = µ = 0

Proof. Setting λ = µ = 0 in equation (19) and taking into consideration
the general conic form, we can say that

Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0

and

det

∣∣∣∣ A B
B C

∣∣∣∣ =

(
h(x2 + y2) (hλθµ − hµθλ) + hx (aλθµ − aµθλ) + hy (bλθµ − bµθλ)
+x (hλbµ − hµbλ)− y (hλaµ − hµaλ) + aλbµ − aµbλ

)2

> 0.

That is, the locus of the hodograph is a ellipse.

3 The Acceleration Pole of the Homothetic

Motions

Now we will investigate the locus of the points which have zero sliding accel-

eration. So, we need to solve the equation
(
ḧA+ hÄ+ 2ḣȦ

)
X + C̈ = 0. The

solution of this equation gives the coordinates of the acceleration pole points.
From this we get

xip =
ä(−ḧ cos θ+hθ̇2 cos θ+hθ̈ sin θ+2ḣθ̇ sin θ)−b̈(ḧ sin θ−hθ̇2 sin θ+hθ̈ cos θ+2ḣθ̇ cos θ)

(ḧ−hθ̇2)
2
+(2ḣθ̇+hθ̈)

2 ,

yip =
ä(ḧ sin θ−hθ̇2 sin θ+hθ̈ cos θ+2ḣθ̇ cos θ)+b̈(−ḧ cos θ+hθ̇2 cos θ+hθ̈ sin θ+2ḣθ̇ sin θ)

(ḧ−hθ̇2)
2
+(2ḣθ̇+hθ̈)

2 .
(20)

Thus, for λ = µ = 0, the acceleration pole points are given by

P (xip, yip) =

−ḧä− 2ḣb̈θ̇ + h
(
äθ̇2 − b̈θ̈

)
(
ḧ− hθ̇2

)2
+
(

2ḣθ̇ + hθ̈
)2 ,

−ḧb̈+ 2ḣäθ̇ + h
(
b̈θ̇2 + äθ̈

)
(
ḧ− hθ̇2

)2
+
(

2ḣθ̇ + hθ̈
)2
 .

(21)

Theorem 3.1 The equation of the acceleration poles of the homothetic mo-
tions MI obtained from homothetic motions MII on the moving plane is

(häθ̈ − ḧb̈)xip + (ḧä+ hb̈θ̈)yip = 0 (22)

at position λ = µ = λ̇ = µ̇ = 0.

Proof. Setting λ = µ = λ̇ = µ̇ = 0 in equation (1) gives us the desired equation.
Therefore, we can give following corollaries at the position of (λ, µ) = (0, 0).
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Corollary 3.2 The acceleration pole points on the moving plane lie on the
line given by equation (7) if θ (λ, µ) is constant.

Corollary 3.3 The acceleration pole points on the moving plane lie on the
line given by equation (8) if h (λ, µ) 6= 0 is constant.

Corollary 3.4 The acceleration pole points on the moving plane lie on the
line given by equation (9) if h (λ, µ) = 1 [5].

Corollary 3.5 If h (λ, µ) 6= 0 is constant, the pole line on the moving planes
obtained from Corollary 2 and the acceleration pole line on the moving planes
obtained from Corollary 12 are congruent [5].

Theorem 3.6 The equation of the acceleration pole points of the homo-
thetic motions MI obtained from homothetic motions MII on the fixed plane
is

(häθ̈ − ḧb̈)x̄ip + (ḧä+ hb̈θ̈)ȳip = 0 (23)

at position λ = µ = λ̇ = µ̇ = 0.

Proof. If we substitute the acceleration pole points into equation (1), we
find

P̄ (x̄ip, ȳip) =

(
h
−ḧä− 2ḣb̈θ̇ + h(äθ̇2 − b̈θ̈)
(ḧ− hθ̇2)2 + (2ḣθ̇ + hθ̈)2

+ a , h
−ḧb̈+ 2ḣäθ̇ + h(b̈θ̇2 + äθ̈)

(ḧ− hθ̇2)2 + (2ḣθ̇ + hθ̈)2
+ b

)
.

(24)
If we take λ = µ = λ̇ = µ̇ = 0 in the last equation, we have equation (23).
So, we can give the following corollaries at the position of λ = µ = λ̇ = µ̇ = 0.

Corollary 3.7 The acceleration pole points on the fixed plane lie on the
line given by equation (12) if θ (λ, µ) is constant.

Corollary 3.8 As a special case, if h (λ, µ) = 1 and θ (λ, µ) is constant, the
acceleration pole points on the moving plane and the acceleration pole points
on the fixed plane are congruent.

Corollary 3.9 The acceleration pole points on the fixed plane lie on the
line given by equation (9) if h (λ, µ) 6= 0 is constant.

Corollary 3.10 If h (λ, µ) = 1 the acceleration pole line of a moving plane
obtained from Corollary 12 and the acceleration pole line of a fixed plane ob-
tained from Corollary 15 are congruent.

Corollary 3.11 As is seen from Corollaries 4-15 and 6-17 , the pole line
of a fixed plane and the acceleration pole line of a fixed plane are congruent.
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4 Two-Parameter Homothetic Motion Along

a Curve in Euclidean Space

In this section, we define two-parameter homothetic motion along a curve in
a Euclidean Space and obtain characterization of the same trajectory surface.

Let E3 and E ′3 are moving and fixed Euclidean Space, respectively, then
motion of E3 with respect to E ′3 depend on 6 independent variable. The first
three of them are three component of orthogonal matrix represents rotation
and the other three of them are three component of represents translation. Let
s and t denotes the parameters of two-parameter motion of E3 with respect to
E ′3. Then generally the locus of a point is a surface.
Two-parameter motion of E3 with respect to E ′3 is represented by

ϕ(s, t) = A(s, t)~p+ ~d(s, t). (25)

In this section, some parametrizations of orbit surface are given in special case
of A(s, t) is orthogonal matrix and ~d(s, t) is translation vector. O(3) denotes
the set of all 3× 3 orthogonal matrices and Ω(3) denotes a vector space, given
by

Ω(3) =

Ω =

 0 w3 −w2

−w3 0 w1

w2 −w1 0

 , wi ∈ R


Let, P is column matrix corresponding to ~p for ~p ∈ E3 and Ω is an anti-
symmetric matrix corresponding to ~w, then

ΩP = ~w ∧ ~p

In the other words, cross product of two vectors are equal to matrix product
of corresponding to these vectors.
Let, ~w(s) = (w1(s), w2(s), w3(s)), which is a differentiable function with re-
spect to s ∈ R, a vector-valued function. Accordingly, there is a unique Ω
anti-symmetric matrix

Ω(s) =

 0 w3(s) −w2(s)
−w3(s) 0 w1(s)
w2(s) −w1(s) 0


for all ∀ s ∈ I ⊂ R satisfying the following equality:

Ω(s)P(s) = ~w(s) ∧ ~p(s) (26)

for ~w(s) and ~p ∈ E3.

A(s, t) = I + (sin t)Ω + (1− cos t)Ω2 (27)
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is the orthogonal matrix defined via the anti-symmetric matrix Ω(s) corre-
sponding to the vector ~w(s) = (w1(s), w2(s), w3(s)) [8].
Let ~p(s) and P indicates position vector and matrix form of ~p ∈ E ′3, respec-
tively. Then, from equation (27) we get

A(s, t)~p = A(s, t)P =
[
I + (sin t)Ω + (1− cos t)Ω2

]
P. (28)

Also, since ΩP = ~w ∧ ~p and ~w ∧ (~w ∧ ~p) = 〈~w, ~p〉 ~w − 〈~w, ~w〉 ~p by using the
equations (27) and (28), we obtain

A(s, t)~p = ~p cos t+ 〈~w, ~p〉 ~w(1− cos t) + (~w ∧ ~p) sin t. (29)

Definition 4.1 Two-parameter homothetic motion in a Euclidean space
along the curve α (s) is defined by

ϕ(s, t) = h(s, t)A(s, t)~p+ α(s).

Let
{
~T , ~N, ~B

}
be the Frenet frame of the curve α of the point p. The trajectory

ϕ (s, t) (p) of the point p is a surface. From equations (27) and (29), we obtain
the parametrization of this surface as follows.

ϕ(s, t)(p) = ~p cos t+
〈
~T , ~p
〉
~T (1− cos t) +

(
~T ∧ ~p

)
sin t+ α(s).

Then, two-parameter homothetic motion in Euclidean space along the curve
α (s) can be deduced to

ϕ(s, t)(p) = h(s, t)
[
~p cos t+

〈
~T , ~p
〉
~T (1− cos t) +

(
~T ∧ ~p

)
sin t

]
+α(s). (30)

Now, we obtain the normal of the surface drawn by the trajectory of the points
p. Since the Frenet formulas are

~T ′ = k1 ~N , ~N ′ = −k1 ~T + k2 ~B , ~B′ = −k2 ~N

then from the equation (30) we get

ϕt = ht(s, t)
[
~p cos t+

〈
~T , ~p
〉
~T (1− cos t) +

(
~T ∧ ~p

)
sin t

]
+h(s, t)

[
−~p sin t−

〈
~T , ~p
〉
~T sin t+

(
~T ∧ ~p

)
cos t

]
and

ϕs = hs(s, t)
[
~p cos t+

〈
~T , ~p
〉
~T (1− cos t) +

(
~T ∧ ~p

)
sin t

]
+h(s, t)

[
k1 sin t

(
~N ∧ ~p

)
+ (1− cos t)k1

〈
~N, ~p

〉
~T + (1− cos t)

〈
~T , ~p
〉
k1 ~N

]
+ ~T .
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If we take ~p = λ ~N , then

ϕt = (htλ cos t− hλ sin t) ~N + (htλ sin t+ hλ cos t) ~B,

ϕs = [hk1λ (1− cos t) + 1] ~T + hsλ cos t ~N + hsλ sin t ~B.

Hence, of the surface drawn by the trajectory of the points p is

ϕt ∧ ϕs =

∣∣∣∣∣∣
~T ~N ~B
0 htλ cos t− hλ sin t htλ sin t+ hλ cos t

h (1− cos t) k1λ+ 1 hsλ cos t hsλ sin t

∣∣∣∣∣∣
i.e.,

ϕt ∧ ϕs = [−hshλ2] ~T + [hk1λ
2 (ht sin t+ h cos t) (1− cos t) + htλ sin t+ hλ cos t] ~N

+ [hk1λ
2 (h sin t− ht cos t) (1− cos t)− htλ cos t+ hλ sin t] ~B.

If h(s, t) is a constant that is never vanishing, then the normal of this surface
is in a normal plane which is perpendicular to the tangent vector field of the
curve α(s).

5 Parametrizations of Trajectory Surfaces

In this section, we find some parametrizations of the trajectory surfaces ob-
tained from two-parameter motions in a Euclidean space.

5.1 Cylinder Surface

Assume that α(s) = (0, 0, s) and p = (p1, p2, p3) ∈ E3. Substituting these into
equation (30), we get

ϕ(s, t)(p) = (hp1 cos t− hp2 sin t , hp2 cos t+ hp1 sin t , hp3 + s) .

As a special case, if p = (p1, p2, 0), we obtain

ϕ(s, t)(p) = (hp1 cos t− hp2 sin t , hp2 cos t+ hp1 sin t , s) .

For p1 = r sin θ and p2 = r cos θ, we get

ϕ(s, t)(p) = (hr sin θ cos t− hr cos θ sin t , hr cos θ cos t+ hr sin θ sin t , s) ,

that is,
ϕ(s, t)(p) = (hr sin (θ − t) , hr cos (θ − t) , s) . (31)

Example 5.1 Let −1 < s < 1 , 0 < t, θ < 2π and h(s, t) = s + sin t cos t
in equation (31) then we can obtain the homothetic cylinder surface given in
Figure 1.

Example 5.2 If we take h(s, t) = 1 in equation (31) the cylinder surface
is obtained as given in Figure 2.
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Figure 1: Homothetic cylinder surface Figure 2: Cylinder surface

5.2 Hyperboloid Surface

Let α(s) = (0, 0, s) and p(s) = (1, s, 0); substituting these into equation (30),
we get

ϕ(s, t)(p) = (h cos t− hs sin t, hs cos t+ h sin t, s) . (32)

Example 5.3 In equation (32) if −1 < s < 1 , 0 < t < 2π and h(s, t) =
s + sin t cos t are given, then a homothetic hyperboloid surface is obtained as
given in Figure 3.

Example 5.4 In equation (32) if h(s, t) = 1 is taken, then a hyperboloid
surface is obtained as given by Figure 4.

Figure 3: Homothetic hyperboloid surface Figure 4: Hyperboloid surface

5.3 Tor Surface

Let the curve α(s) = (r sin θ, r cos θ, 0) be a circle with radius r on the xy-plane.
Then the Frenet frame of the curve α(s) at the point p is

~T = (cos θ,− sin θ, 0) , ~N = (− sin θ,− cos θ, 0) , ~B = (0, 0,−1)
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and for ~p = λ ~N , substituting these equations into equation (30), we obtain an
equation of the tor surface as follows:

ϕ(s, t)(p) = (sin θ [r − hλ cos t] , cos θ [r − hλ cos t] ,−hλ sin t) . (33)

Example 5.5 In equation (33) if 0 < s < 1 , 0 < t, θ < 2π and h(s, t) =
s+ sin t cos t are given, then a homothetic tor surface is obtained as drawn in
the Figure 5.

Example 5.6 In equation (33) if h(s, t) = 1 is taken, then a tor surface is
obtained as drawn in Figure 6.

Figure 5: Homothetic tor surface Figure 6: Tor surface

6 Conclusion

The results we have presented deal with Euclidean homothetic motions in
which position of the moving object depends on two parameters. The hodographs
of two-parameters Euclidean homothetic motions were obtained. A hodograph
is the locus of the end points of the velocity of a particle and it is the solution of
the first order equation which is Newton’s Law. The locus of a the hodograph
of Euclidean homothetic motion was found as an ellipse in this study.

Also this paper deals with trajectory surfaces (cylinder, hyperboloid and tor
surfaces) generated by a point, the moving body, and figures of these surfaces
were drawn by using MATLAB software.
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