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Abstract
The purpose of this paper is to introduce the notion of fuzzy maximal

θ-continuous (fuzzy maximal θ-semi-continuous), fuzzy maximal θ-irresolute
(fuzzy maximal θ-semi irresolute) functions. Some basic properties and char-
acterization theorems are also to be investigated.
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1 Introduction and Preliminaries

The notion of fuzzy sets due to Zadeh [8] plays important role in the study
of fuzzy topological spaces which introduced by Chang [2]. In 1992, Azad [1]
introduced and investigated fuzzy semi open sets and fuzzy semi closed sets.
M.E. El. Shafei and A. Zakeri [7] defined fuzzy θ-open sets. Thereafter math-
ematicians gave in several papers in different and interesting new open sets.
Other preliminary ideas on fuzzy set theory can be found in [3, 4, 5, 9]. In this
paper we introduce a new class of mappings viz., fuzzy maximal θ-continuous,
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fuzzy maximal θ-semi-continuous, fuzzy maximal θ-irresolute and fuzzy max-
imal θ-semi irresolute functions and establish interrelationship among them
and some of their properties, characterizations theorems and some applica-
tions in details. Some fundamental theorems and their applications are also
studied. As for basic preliminaries some definitions and results are given for
ready references.

Through this paper X, Y and Z mean fuzzy topological space (fts, for
short) in Chang’s sense. For a fuzzy set λ of a fts X, the notion IX , λc = 1X−λ,
Cl(λ), Int(λ), FMaθ-Int(λ), FMiθ-Cl(λ) will respectively stand for the set of
all fuzzy subsets of X, fuzzy complement, fuzzy closure, fuzzy interior, fuzzy
maximal θ-interior, fuzzy minimal θ-closure of λ. By 1φ( or 0X or φ) and
1X (or X) we will mean the fuzzy null set and fuzzy whole set with constant
membership function 0 (zero function) and 1 (unit function) respectively.

A fuzzy point xp ∈ λ, where λ is a fuzzy subset in X if and only if p ≤ λ(x).
A fuzzy point xp is quasi-coincident with λ, denoted by xpqλ, if and only if
p ≥ λ′(x) or p + λ(x) > 1 where λ′ denotes the complement of λ defined by
λ′ = 1 − λ. A fuzzy subset λ in a fuzzy topological space X is said to be
q-neighbourhood for a fuzzy point xp if and only if there exist a fuzzy open
subset η such that xpqη ≤ λ. A fuzzy point xp is said to be a fuzzy θ-cluster
point of a fuzzy subset λ if and only if for every open q-neighbourhood η of
xp, Clη is quasi-coincident with λ. The set of all fuzzy θ-cluster points of λ is
called the fuzzy θ-closure of λ and is denoted by Clθ (λ) . The complement of
a fuzzy θ-closed subset is a fuzzy θ-open which is equivalent to the condition:
a fuzzy subset µ is called fuzzy θ-open if and only if Intθ (µ) = µ, where the
fuzzy set ∨{xp ∈ X : for some open q- neighborhood η of xp, Clη ⊆ µ}is the
fuzzy θ-interior of µ and is denoted by Intθ (µ) and Intβ (µ) is the largest fuzzy
β-open set contained in µ.

Definition 1.1. [7] A fuzzy set λ in a fuzzy topological space (X, τ) is called
fuzzy θ-closed set if λ = [λ]θ and it’s complement 1X −λ is called fuzzy θ-open
set in X.

The collection of all fuzzy θ-open sets and fuzzy θ-closed sets are respec-
tively, denoted by Fθ-O(X) and Fθ-C(X).

Definition 1.2. [1] A fuzzy subset λ of fuzzy space (X, τ) is said to be
(i) fuzzy regular open set if Int(Cl(λ)) = λ
(ii) fuzzy regular closed set if Cl(Int(λ)) = λ. Or if 1X − λ is fuzzy regular
open set in X.

The class of all fuzzy regular open and fuzzy regular closed sets are, re-
spectively denoted by FRO(X) and FRC(X).
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Definition 1.3. A fuzzy set λ ∈ IX is said to be fuzzy θ-semi open set in X
if ∃ a fuzzy θ-open set µ such that µ ≤ λ ≤ Cl(µ) (or λ ≤ Cl(FθInt(λ))) and
it’s complement 1X-λ is called fuzzy θ-semi closed set of X.

The family of all fuzzy θ-semi open and fuzzy θ-semi closed set are respec-
tively, denoted by FθO(X) and FθC(X).

Definition 1.4. A nonempty proper fuzzy θ-open set λ of any fuzzy space
(X, τ) is said to be fuzzy maximal θ-open set if any fuzzy θ-open set which
contains λ is either λ or 1X .

Definition 1.5. A nonempty proper fuzzy θ-closed set β of any fuzzy space
(X, τ) is said to be fuzzy minimal θ-closed set if any fuzzy θ-closed set contained
in β is either 1φ or β or equivalently, if βc is fuzzy maximal θ-open set in (X, τ).

The family of all fuzzy maximal θ-open and fuzzy minimal θ-closed set are
respectively, denoted by FMaθ-O(X) and FMiθ-C(X).

Lemma 1.1. [1] If a fuzzy topological space (fts, for short) (X, τ) is product
related to anothar fts (Y, σ), then for λ ∈ IX and µ ∈ IY , Cl(λ × µ) =
Cl(λ)× Cl(µ).

Lemma 1.2. [1] If fi : (Xi, τi) −→ (Yi, σi) fuzzy mapping and λi be fuzzy set
of Yi (i = 1, 2). Then, (f1 × f2)−1(λ1 × λ2) = (f−11 (λ1)× f−12 (λ2)).

Definition 1.6. [6] A non empty proper fuzzy subset λ ∈ IX of any fts (X, τ)
is said to be fuzzy maximal θ-semi open set in X if ∃ a fuzzy maximal θ-open
set δ1 such that δ1 ≤ λ ≤ Cl(δ1) or if λ ≤ Cl(FMaθ-Int(λ)).

Definition 1.7. [6] A non empty proper fuzzy subset β ∈ IX of any fts (X, τ)
is said to be fuzzy minimal θ-semi closed set in X if ∃ a fuzzy minimal θ-closed
set β1 such that Int(β1) ≤ β ≤ β1 or if FMiθ-Cl(Int(λ)) ≤ λ.

Or, equivalently, if the complement (i.e 1X − β) of β is fuzzy maximal
θ-semi open set in X.

Or, equivalently, the complement of a fuzzy maximal θ-semi open set is
called fuzzy minimal θ-semi closed set in X.

The family of all fuzzy maximal θ-semi open and fuzzy minimal θ-semi
closed sets are respectably denoted by FMaθ-SO(X) and FMiθ-SC(X).
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2 Fuzzy Maximal θ-Continuous (resp. Fuzzy

Maximal θ-Semi Continuous) and Fuzzy Max-

imal θ-Irresolute (resp. Fuzzy Maximal θ-

Semi Irresolute) Functions

In this section we introduce some new notions of fuzzy mappings viz., fuzzy
maximal θ-continuous (fuzzy maximal θ-semi continuous) and fuzzy maximal
θ-irresolute, fuzzy θ-semiirresolute functions. We also establish some of their
characterization theorems and show some interrelationships among these new
classes of functions.

Definition 2.1. A mapping f : (X, τ) → (Y, σ) is said to be fuzzy maximal
θ-continuous (shortly, FMaθ-continuous) iff for each λ ∈ FO(Y ), f−1(λ) ∈
FMaθ-O(X).

Example 2.1 Consider the function f : (X, τ1)→ (Y, τ2) defined by f(x) =
x, ∀x ∈ X, where (X, τ1) defined in Example 2.1 [6] and (Y, τ2) is defined as
Y = {a, b, c}, τ2 = {0Y , 1Y , C}, where C(a) = 0, C(b) = 1, C(c) = 1. Here C
is the only non-empty proper fuzzy open set in Y and also it is fuzzy maximal
θ-open set in X such that f−1(C(x)) = C(f(x)) = C(x) = A1(x) ∈ FMaθ-
O(X). Thus f is fuzzy maximal θ-continuous function on X.

Theorem 2.1. For the mapping f : (X, τ)→ (Y, σ) the following statements
are equivalent:
(a) f is FMaθ-continuous function.
(b) for every fuzzy point xr of X and for every fuzzy neighbourhood η of f(xr)
in (Y, σ), ∃ a fuzzy maximal θ-open neighbourhood ν of xr in (X, τ) such that
f(ν) ≤ η.
(c) f−1(β) ∈ FMiθ-C(X), ∀β ∈ FC(Y ).

Proof. We need to prove the following implications: (a) ⇒ (b), (b) ⇒ (c)
and (c) ⇒ (a).

(a) ⇒ (b). Let f be FMaθ-continuous function and let xr ∈ X and η
be any fuzzy neighbourhood of f(xr) in Y . Then ∃ a µ ∈ σ such that
f(xr) ≤ µ ≤ η ⇒ xr ∈ f−1(µ) ≤ f−1(η). As f is FMaθ-continuous and
µ ∈ σ. So, f−1(µ) ∈ FMaθ-O(X) so that ν = f−1(η) is a fuzzy maximal
θ-neighbourhood of xr in X such that f(ν) = η ≤ η.

(b) ⇒ (c). Let (b) is true for the function f and let β be a closed set in
Y and xr ∈ f−1(βc) ⇒ f(xr) ∈ βc. Since βc is open neighbourhood of f(xr),
so by hypothesis, ∃ a fuzzy maximal θ-neighbourhood ν of xr in X such that
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f(ν) ≤ βc so that ν ≤ f−1(βc). Since ν is fuzzy maximal θ-neighbourhood of
xr, ∃ a fuzzy maximal θ-open set G such that xr ∈ G ≤ f−1(βc) ⇒

⋃
{xr} ≤⋃

{G} ≤
⋃
{f−1(βc)} ⇒ f−1(βc)} ≤

⋃
{G} ≤

⋃
f−1(βc) ⇒ (f−1(β))c =⋃

{G} = G or 1X ∈ FMaθ-O(X)⇒ f−1(β) ∈ FMiθ-C(X).

(c)⇒ (a). Let (c) is true and let λ ∈ FO(Y ). Then f−1(λ) = f−1((λc)c) =
(f−1(λc))c. Since, λc ∈ FC(Y ), by hypothesis, we have, f−1(λc) ∈ FMiθ-
C(X) and hence (f−1(λc))c = f−1(λ) ∈ FMaθ-O(X) showing that f is FMaθ-
continuous function on X.

Theorem 2.2. For FMaθ-continuous mapping f from a fts (X, τ) into an-
other fts (Y, σ) following statements hold:
(i) f(FMaθ-Int(µ)) ≥ Intf(µ), for every fuzzy set µ in X.
(ii) FMaθ-Int(f−1(λ)) ≥ f−1(Int(λ)), for every fuzzy set λ in Y and for onto
map f .
(iii) f(FMiθ-Cl(µ)) ≤ Clf(µ), for every fuzzy set µ in X.
(iv) FMiθ-Cl(f−1(λ)) ≤ f−1(Cl(λ)), for every fuzzy set λ in Y and for onto
map f .

Proof. (i) Since, Int(f(µ)) is fuzzy open set in Y and f is FMaθ-continuous,
f−1(Intf(µ)) ∈ FMaθ-O(X). As we know that f(µ) ≥ Intf(µ) ⇒ µ ≥
f−1(Intf(µ)) ⇒ FMaθ-Int(µ) ≥ f−1(Intf(µ)) so that f(FMaθ-Int(µ)) ≥
Intf(µ).

(ii) Since, f−1(λ) is a fuzzy set in X, so far µ = f−1(λ) (i) must holds
i.e., f(FMaθ-Int(f

−1(λ))) ≥ Int(f(f−1(λ))) = Int(λ [As f is onto mapping].
Hence, FMaθ-Int(f

−1(λ)) ≥ f−1(Int(λ)).

(iii) Since, Cl(f(µ)) is fuzzy closed set in Y and f is FMaθ-continuous,
f−1(Cl(f(µ)) ∈ FMaθ-C(X). Now f(µ) ≤ Cl(f(µ))⇒ µ ≤ f−1(Cl(f(µ)))⇒
FMiθ-Cl(µ) ≤ f−1(Cl(f(µ))). Thus f(FMiθ-Cl(µ)) ≤ Cl(f(µ)).

(iv) Since, f−1(λ) ∈ IX , ∀λ ∈ IY , so for µ = f−1(λ) we have from (iii)
f(FMiθ-Cl(f

−1(λ))) ≥ Clf(f−1(λ)) = Cl(λ) [Being f an onto map]. Hence,
FMaθ-Int(f

−1(λ)) ≥ f−1(Cl(λ)).

Definition 2.2. A function f : (X, τ) → (Y, σ) is said to be fuzzy maximal
θ-irresolute (shortly, FMaθ-irresolute) iff for each λ ∈ FMaθ-O(Y ), f−1(λ) ∈
FMaθ-O(X).

Example 2.2 Let f : (X, τ) → (X, τ) be a function defined by f(x) = x,
∀x ∈ X, where, (X, τ) is defined in Example 2.1 [6]. Since, for A1 ∈ FMaθ-
O(X), f−1(A1(x)) = A1(f(x)) = A1(x) ∈ FMaθ-O(X), f is fuzzy maximal
θ-irresolute function on X.
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Definition 2.3. A function f : (X, τ) → (Y, σ) is said to be fuzzy maximal
θ-semi irresolute iff for each λ ∈ FMaθ-SO(Y ), f−1(λ) ∈ FMaθ-SO(X).

Example 2.3 Let f : (X, τ) → (X, τ) be a function defined by f(x) = x,
∀x ∈ X, where, (X, τ) is defined in Example 2.2 [6]. Since, for A4 ∈ FMaθ-
SO(X), f−1(A4(x)) = A4(f(x)) = A4(x) ∈ FMaθ-SO(X), f is fuzzy maximal
θ-semi irresolute function on X.

Theorem 2.3. If f : (X, τ1) → (Y, τ2) be FMaθ-continuous function and
g : (Y, τ2)→ (Z, τ3) be fuzzy continuous function. Then g◦f : (X, τ1)→ (Z, τ3)
is also FMaθ-continuous function.

Proof. λ ∈ FO(Z). Now, (g ◦f)−1(λ) = (f−1 ◦g−1)(λ) = (f−1(g−1(λ)). Since
g is fuzzy continuous, g−1(λ) is fuzzy open and then (g ◦f)−1(λ) = (f−1( fuzzy
open in Y )). But f being FMaθ-continuous (g ◦ f)−1(λ) ∈ FMaθ-O(X). This
shows that g ◦ f is FMaθ-continuous function.

Theorem 2.4. If f : (X, τ1) → (Y, τ2) be FMaθ-irresolute function and g :
(Y, τ2) → (Z, τ3) be fuzzy FMaθ-continuous function. Then g ◦ f : (X, τ1) →
(Z, τ3) is also FMaθ-continuous function.

Proof. λ ∈ FO(Z). Now, (g ◦ f)−1(λ) = (f−1 ◦ g−1)(λ) = (f−1(g−1(λ)).
Since g is fuzzy FMaθ-continuous, g−1(λ) is fuzzy FMaθ-open and then (g ◦
f)−1(λ) = (f−1(FMaθ fuzzy open set in Y )). But f being FMaθ-irresolute (g◦
f)−1(λ) ∈ FMaθ-O(X). This shows that g ◦ f is FMaθ-continuous function.

Theorem 2.5. Composition of two FMaθ-irresolute function is again a FMaθ-
irresolute function.

Proof. Straight forward.

Definition 2.4. A mapping f : (X, τ) → (Y, σ) is said to be fuzzy maxi-
mal θ-semi continuous (shortly, FMaθ-S-continuous) iff for each λ ∈ FO(Y ),
f−1(λ) ∈ FMaθ-SO(X).

Example 2.4 Consider the function f : (X, τ1) → (Y, τ2) defined by f(x) =
x, ∀x ∈ X, where, (X, τ1) defined in Example 2.2 [6] and (Y, τ2) is defined as
Y = {a, b}, τ2 = {0Y , C, 1Y }, where, C(a) = 9

10
, C(b) = 7

8
Here C is the only

non-empty proper fuzzy open set in Y and in Example 2.2 [6] we have shown
that C ∈ FMaθ-SO(X). Since, f−1(C(x)) = C(f(x)) = C(x) = A4(x) ∈
FMaθ-SO(X). Thus f is fuzzy maximal θ-semi continuous function on X.

Theorem 2.6. Let Xi, Yi (i = 1, 2) be fts. s. t. X1 is product related
to X2 and fi : (Xi, τi) → (Yi, σi) (i = 1, 2) fuzzy maximal θ-semi continuous
function. Then, f1 × f2 : X1 × X2 → Y1 × Y2 is also fuzzy maximal θ-semi
continuous function on X1 ×X2.
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Proof. Let λ ∈ FO(Y1), µ ∈ FO(Y2). Then λ × µ ∈ FO(Y1 × Y2). Using
Lemma 1.8 [1] we have, (f1×f2)−1(λ×µ) = f−11 (λ)×f−12 (µ). Since, fi is fuzzy
maximal θ-semi continuous function on Xi. So f−1i (λ) is fuzzy maximal θ-semi
open set of X1. Again, since, X1 is product related to X2. So, by Theorem
2.10 [6], (f1 × f2)

−1(λ × µ) = f−11 (λ) × f−12 (µ) ∈ FMaθ-SO(X1 × X2) and
hence, f1 × f2 is fuzzy maximal θ-semi continuous function on X1 ×X2.

Theorem 2.7. Let Xi, Yi (i = 1, 2, 2, ..., n) be fts. s. t. Xi is product related
to Xj (i 6= j) and fi : (Xi, τi)→ (Yi, σi) (i = 1, 2, 3, ..., n) fuzzy maximal θ-semi
continuous function. Then,

∏n
i=1 fi :

∏n
i=1Xi →

∏n
i=1 Yi is also fuzzy maximal

θ-semi continuous function on
∏n

i=1.

Proof. Obvious.

Theorem 2.8. Let f : X → Y be a function, defined by f(x) = y, ∀x ∈ X
and g : X → X×Y a graph of the map f defined by g(x) = (x, f(x)), ∀x ∈ X.
If g is fuzzy maximal θ-semi continuous, then so is f .

Proof. Let µ ∈ FO(Y ). Then for 1X ∈ FO(X), 1X × µ is a fuzzy open set in
X×Y . Since, g is a graph of the map f , so, g(x) = (x, y) = (x, f(x)), ∀x ∈ X.
Now ∀x ∈ X we have, g−1(1X ×µ)(x) = (1X ×µ)(g(x)) = (1X ×µ)(x, f(x)) =
min{1X(x), µf(x)} =1X(x)∧f−1(µ)(x) = (1X∧f−1(µ))(x) = f−1(µ)(x). Since
g is fuzzy maximal θ-semi continuous, so, g−1(1X × µ) = f−1(µ) ∈ FMaθ-
SO(X), ∀µ ∈ FO(Y ). Hence, f is fuzzy maximal θ-semi continuous function
on X.

Theorem 2.9. Every fuzzy maximal θ-continuous function is fuzzy maximal
θ-semi continuous function.

Proof. Proof follows from Corollary 2.1 (a) [6], i.e., from the fact that Every
fuzzy maximal θ-open set is fuzzy maximal θ-semi-open set in a fts (X, τ).

The converse of the above Theorem need not be true as seen from the
following Example.

Example 2.5 Consider the function f : (X, τ1) → (Y, τ2) defined by f(x) =
x, ∀x ∈ X, where, (X, τ1) defined in Example 2.2 [6] and (Y, τ2) is defined as
Y = {a, b}, τ2 = {0Y , C, 1Y }, where, C(a) = 9

10
, C(b) = 7

8
. Here C is the only

non-empty proper fuzzy open set in Y and in Example 2.2 [6] we have shown
that C ∈ FMaθ-SO(X). Since, f−1(C(x)) = C(f(x)) = C(x) = A4(x) which
is a FMaθ-semi open but not FMaθ-open set in X. Thus f is fuzzy maximal
θ-semi continuous function but not fuzzy maximal θ-continuous function on
X.
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Theorem 2.10. Every fuzzy maximal θ-irresolute function is fuzzy maximal
θ-semi irresolute function.

Proof. Obvious.

Definition 2.5. (a) A collection M is said to be fuzzy maximal θ-open cover
(shortly, FMaθ-open cover) of a fuzzy set µ ∈ IX iff M covers µ and each
member of M is fuzzy maximal θ-open set in X i.e., µ ≤ Sup{µα ∈ FMaθ-
O(X) : µα ∈M, ∀α ∈ ∧}.
(b) A collection M is said to be fuzzy maximal θ-semi open cover (shortly,
FMaθ-semi open cover) of a fuzzy set µ ∈ IX iff M covers µ and each member
of M is fuzzy maximal θ-semi open set in X i.e., µ ≤ Sup{µα ∈ FMaθ-
SO(X) : µα ∈M, ∀α ∈ ∧}.

Definition 2.6. (a) A fuzzy set λ ∈ IX of a fts (X, τ) is said to be fuzzy
maximal θ-compact (shortly, FMaθ-compact) iff for each FMaθ-open cover M
of λ has a finite subcover M0 which also covers λ.
(b) A fuzzy set λ ∈ IX of a fts (X, τ) is said to be fuzzy maximal θ-semi
compact (shortly, FMaθ-semi compact) iff for each FMaθ-semi open cover M
of λ has a finite subcover M0 which also covers λ.

Theorem 2.11. (a) Fuzzy maximal θ-continuous image of a FMaθ-compact
set is fuzzy compact.
(b) Fuzzy maximal θ-semi continuous image of a FMaθ-S-compact set is fuzzy
compact.

Proof. (a) Let f : X → Y be fuzzy maximal θ-continuous and B ∈ IX , a
FMaθ-compact set of a fts X and P = {µα : α ∈ Λ} be a fuzzy cover of
f(B) such that f(B) ≤ SupP ⇒ B ≤ f−1(f(B)) ≤ f−1(Sup{µα : α ∈ Λ}) =
Sup{f−1(µα) : α ∈ Λ}. Then, Q = {f−1(µα) : α ∈ Λ} is a fuzzy cover of
B. Since f is fuzzy maximal θ-continuous function, f−1(µα) ∈ FMaθ-O(X),
∀α ∈ Λ, an arbitrary index set and then Q is FMaθ-open cover of B. Since,
B is FMaθ-compact, ∃ a finite sub cover Q = {f−1(µα) : α = 1, 2, 3, ..., n}
of Q such that B ≤ Sup{f−1(µα) : α = 1, 2, 3, ..., n}. Since each f−1(µα) is
distinct FMaθ-open set in X. So, Sup{f−1(µα) : α = 1, 2, 3, ..., n} = 1X so
that A ≤ 1X ⇒ f(A) ≤ f(1X) = 1Y . This shows that Pε = {1Y } is the
existing finite subcover of P . Hence, f(B) is compact set in Y .

(b) Same as the proof of (a).

Theorem 2.12. (a) If f : X → Y is fuzzy maximal θ-irresolute function and
A ∈ IX , a FMaθ-compact set of X, then f(A) is FMaθ-compact set in Y .
(b) If f : X → Y is fuzzy maximal θ-semi irresolute function and A ∈ IX , a
FMaθ-semi compact set of X, then f(A) is FMaθ-semi compact set in Y .
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Proof. (a) Let A be a FMaθ-compact set of X and Q = {µα : α ∈ Λ}
be a fuzzy FMaθ-open cover of f(A) such that f(A) ≤ SupQ. Then, P =
{f−1(µα) : α ∈ Λ} is a cover of A. Since f is fuzzy maximal θ-irresolute
function, each f−1(µα) ∈ FMaθ-O(X), ∀α ∈ Λ = arbitrary index set and
then P is FMaθ-open cover of A. Since, A is FMaθ-compact, ∃ a finite sub
cover Pε = {f−1(µα) : α = 1, 2, 3, ..., n} of P such that A ≤ Sup{f−1(µα) :
α = 1, 2, 3, ..., n}. Since, each f−1(µα) is distinct FMaθ-open set in X. So,
Sup{f−1(µα) : α = 1, 2, 3, ..., n} = 1X so that A ≤ 1X ⇒ f(A) ≤ f(1X) = 1Y .
This shows that Q0 = {1Y } is existing finite FMaθ-open subcover of Q. Hence,
f(B) is FMaθ-compact set in Y .

(b) Same as the proof of (a).

Definition 2.7. (a) Two non-empty fuzzy sets λ and µ of a fuzzy space (X, τ)
are said to be fuzzy maximal θ-separated (in short, FMaθ-separated) if FMaθ-
Cl(λ)qµ and FMaθ-Cl(µ)qλ.
(b) Two non-empty fuzzy sets λ and µ of a fuzzy space (X, τ) are said to
be fuzzy maximal θ-semi separated (in short, FMaθ-S-separated) if FMaθ-S-
Cl(λ)qµ and FMaθ-S-Cl(µ)qλ.
(c) A fuzzy set β is said to be fuzzy maximal θ-connected (shortly, FMaθ-
connected) iff β can’t be expressed as the union of two FMaθ-separated sets λ
and µ of X.
(d) A fts X is said to be fuzzy maximal θ-connected (shortly, FMaθ-connected)
iff X can’t be expressed as the union of two non empty disjoint FMaθ-open sets
λ and µ i.e., X 6= λ ∨ µ, where λ, µ ∈ FMaθ-O(X).
(e) A fuzzy set β is said to be fuzzy maximal θ-semi connected (shortly, FMaθ-
S-connected) iff β can’t be expressed as the union of two FMaθ-semi separated
sets λ and µ of X.
(f) A fts X is said to be fuzzy maximal θ-semi connected (shortly, FMaθ-semi
connected) iff X can’t be expressed as the union of two non empty disjoint
FMaθ-semi open sets λ and µ i.e., X 6= λ ∨ µ, where λ, µ ∈ FMaθ-S-O(X).

Theorem 2.13. A fuzzy subset λ ∈ IX of a fts (X, τ) is FMaθ-connected
(resp. FMaθ-semi connected) iff X can’t be expressed as the union of two non
empty disjoint FMaθ-closed sets (FMaθ-semi closed sets).

Proof. Follows from Definition.

Theorem 2.14. (a) If f : X → Y is FMaθ-continuous surjection map and
X is FMaθ-connected, then Y is fuzzy connected.
(b) If f : X → Y is FMaθ-semi continuous surjection map and X is FMaθ-
semi connected, then Y is fuzzy connected.

Proof. (a) Suppose that f(X) = Y is not fuzzy connected space. Then, ∃
non empty fuzzy open sets λ and µ such that f(X) = λ ∨ µ ⇒ Both λ and
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µ are fuzzy clopen sets in Y . Then X = f−1(λ) ∨ f−1(µ). Since f is FMaθ-
continuous and λ and µ are non empty disjoint fuzzy closed sets, f−1(λ) and
f−1(µ) are also non empty disjoint and ∈ FMaθ-C(X). This shows that X is
not FMaθ-connected which is a contradiction to the given hypothesis. Hence,
Y is fuzzy connected.

(b) Similar to the proof of (a).

Theorem 2.15. (a) If f : X → Y is FMaθ-irresolute surjection map and X
is FMaθ-connected, then Y is fuzzy FMaθ-connected.
(b) If f : X → Y is FMaθ-semi irresolute surjection map and X is FMaθ-semi
connected, then Y is fuzzy semi-connected.

Proof. (a) Suppose that f(X) = Y is not FMaθ-connected space. Then, ∃
non empty fuzzy open sets λ and µ such that f(X) = λ∨µ⇒ Both λ and µ are
fuzzy FMaθ-open as well as FMaθ-closed sets in Y . ThenX = f−1(λ)∨f−1(µ).
Since λ and µ are non empty disjoint FMiθ-closed sets and f is f is FMaθ-
irresolute surjection, f−1(λ) and f−1(µ) are also non empty disjoint and ∈
FMaθ-C(X) such that X = f−1(λ) ∨ f−1(µ). This shows from Theorem 2.13.
that X is not FMaθ-connected which is a contradiction to the given hypothesis
that X is FMaθ-connected. Hence, Y is fuzzy FMaθ-connected.

(b) Similar to the proof of (a).

3 Conclusion

In this paper, we introduce fuzzy maximal θ-semi continuous to create some
applications which is fuzzy maximal θ-semi generalized continuity, fuzzy maxi-
mal θ-semi generalized irresolute and fuzzy maximal θ-semi generalized closed
maps. We also investigate the relationship of some maximal closed sets which
is related to fuzzy maximal θ-semi generalized closed sets. This will give some
new relationships which have be found to be useful in study of generalized
closed sets and generalized continuities in fuzzy topological spaces.
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