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Abstract
In this paper we prove a Suzuki type unique n-tupled common fixed point
theorem in a partially ordered metric space.
Keywords: Partial order, Metric space, n-tupled fixed point, W -compatible
maps.

1 Introduction and Preliminaries

Bhaskar and Lakshmikantham [13] introduced the notion of a coupled fixed
point and proved some coupled fixed point theorems in partially ordered com-
plete metric spaces under certain conditions. Later Lakshmikantham and Ciric
[17] extended these results by defining the mixed g-monotone property to gen-
eralize the corresponding fixed point theorems contained in [13]. After that,
Berinde and Borcut [16] introduced the concept of tripled fixed point and
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proved some related theorems. In this continuation, Karapinar [4] introduced
the quadruple fixed point and proved some results on the existence and unique-
ness of quadruple fixed points.

Recently Imdad et al.[8] introduced the concept of n-tupled coincidence and
n-tupled common fixed point theorems for nonlinear ¢-contraction mappings.
For more details see [9, 10].

In 2008, Suzuki [14, 15] introduced generalized versions of both Banach’s
and Edelstain’s basic results. Many other works in this direction have been
considered, for example refer [1, 2, 3, 5, 6, 12| and the references threin.

Combining the concepts of n-tupled fixed point theorems and Suzuki type
theorems ,in this paper, we prove n-tupled coincidence and n-tupled common
fixed point theorems of Suzuki-type in a partially ordered metric space.

Now we give some known definitions.

Let (X, <) be a partially ordered set and we denote X x X x X ---x X (n times)
by X™. X™is cquipped with the following partial ordering: for z,y € X™ where
r=(xl, 2% - 2") and y = (v, 9%, y"), * 2y & 2t <y if i is odd and
xt =yt if i is even.

Definition 1.1 ([8]) Let (X, =) be a partially ordred set. Let F': X" — X
and g : X — X be two mappings. Then the mapping F is said to have
the mized g-monotone property if F' is g-non decreasing in its odd position
arguments and g-non increasing in its even position arguments, that is, for all
zt xh e X,

Flat,z? -t oo™ S F(at, 2%, - 2h, -, 2™) if i s odd,

gx’i =< gxé =

F(xt,2? -t oo a™) = F(at, 22 - xb, - a™) if i is even

Definition 1.2 ([8]) An element (z' 22, ---2") € X is called a n-tupled
coincidence point of F: X" — X and g : X — X if

F<x17$27"’7 n) gxla

€T et
F(IQ,J}S, 7xn) = g‘r27

n

=) = gan.

n .1 .2
F(a" o' 2%z
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Definition 1.3 ([8]) An element (z', 22, ---2") € X is called a n-tupled
common fized point of F: X™ — X and g : X — X if

) =gzl =z,
) = ga? = 2%,

F(xt 2% - am
F(a?, 23, 2"

n n

F(a™ 2t 22 - 2™ ) = ga™ = 2™
Definition 1.4 ([7]) The mappings F : X x X — X and f: X — X are

called W -compatible if f(F(x,y)) = F(fz, fy) and f(F(y,z)) = F(fy, fz)
whenever fx = F(x,y) and fy = F(y,x).

Lemma 1.5 ([11]) Let X be a non-empty set and g : X — X be a mapping.
Then there exists a subset E of X such that g(E) = g(X) and the mapping
g: E — X is one-one.

Now we prove our main results.

2 Main Results

Theorem 2.1 . Let (X, =,d) be a partially ordered metric space and F' :
X" = X and f : X — X be two mappings such that F has the mized g-
monotone property on X and satisfying the following :

(2.1.1) F(X™) C g(X) and g(X) is complete,
(2.1.2)  If there exists a constant 6 € [0,1) such that

d(g$1,F($17I’2,"',{En>>, d(gl‘l,gyl)7
d(g[lf2,F(£B2,fL’3,'",[L’n,l'l)), d(gx2,gy2),

n(#) min ) < max )
d (g$n7 F<xn7 xla T 7$n_1)) d(g[lj‘n, gyn)

implies
d(F(IE17$2, e ’xn)’ F(?JlﬁUQa Tt ayn))

d(gz' ,gyl), (92%,9y%),- -, d(ga" 9y )
< 0 max{ d(gx', F(a' 2% -z )), (gx N L A L DN
d(gy', F(al,a? - 2)) d(gny(x,:v, 2" h)

for all x*, 22, -, 2™, y', y?, - -, y" € X for which gx* and gy’ (f =1,2,--+,n)

are comparable, where 1 : [0,1) — (3,1] defined by 7(0) = 115 is a strictly
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decreasing function,

(2.1.3) There exist elements x, 2%+, x5y € X such that
gzl = F(xh,apt, - ay, xh, x5, -+ ah Y) if iis odd and
i i il noo1 2 i—1\
gry = Fzg, x5, 2g, T, Tg, - xg ) if 1 is even.

(2.1.4) (a) Suppose F' and g are continuous
or

(b) X has the following properties :
(i) If a non-decreasing sequence {x,,} — x, then x,, < x, for all m,
(11) If a non-increasing sequence {ym} — y, then y =y, for all m.
Then F' and g have a n-tupled coincidence point in X.

Proof. Let ), 22 -+, 28 € X be satisfying (2.1.3).

In view of (2.1.1), we construct sequences {z! } {22}, -, {2"} in X as fol-
lows: . . )
9L = F(mm—lwxm—h 7x%—1)7
gx?n = F(x?n—lv xi)n—lﬁ SRERE xrln—l)a (1)
gx?n = F(lefpxinfp 7'T%7—117)
for all m > 1.

We claim for all m > 0, that
gxl, < gat . if iisodd and gal, = gal,., if iiseven (2)

Relations (2.1.3) and (1) implies that (2) holds for m = 0.
Suppose (2) holds for m =k > 0.
For odd i, consider z}_, and using mixed g-monotone property of F, we get

i _ i it n .1 i—1
gwk-q-l _F(xkaxk 3y Xy Tyt 05 T )
i i+1 n .1 i—1
jF(xk-l—l’xk 7y Ly Ty =77 T )
i it+1 n .1 i—1
= F(xk+1,xk+1,---,xk,xk,-u,xk )
i i+1 n 1 i—1
= F(?’Ckﬂ,l’kﬂa TR Tt Thp)
N 3
= 9T
For even 17, consider
i _ i it+1 n 1 i—1
9Thyo = F(xk—l—l{f{wrl? o Tgy L1t a@"{cﬂ)
) 7 n 1 i—
= F(xk’xk—&-ll’ BRREEL)'SE PR PR 71’]@—111)
7 1+ n 1 1—
S (2, @ T Ty Thg)
7 i+1 n i—1
= F($k7$k ) y Ly Loy y L )
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Hence by mathematical induction, (2) holds for all m > 0.

Suppose gw}mr1 = gx;,, gr2 1 = g, -, gxl ., = gl for some m.
Then (2,22 -+, 2") is a n-tupled coincidence point of F' and g.

Assume that gz, , # gz;, or g2, | # ga2,, or --- or gar, | # gar, for all m.
Since

d(gj(](l), F(:E(l)7 x%a e ,{L‘g),

1 1 DRI
7(0) min : < min d(9$0>g331)an ;
n n 1 no1 d(gzg, ga7)
d(gl‘O’F(xova"'WIO )7

S max d(gx%b%x%)?n’ :
d(gzy, got)

by (2.1.2) we have

d(g:r;%,g:v%) :d(F<£Cé,ZL'(2J,,JZ'8) F(xlwxh” ))
d(gxy, ga1), - -+, d(gag, gw’f)
< 0 maxq d(gxzg, gay),-- -, d(grg, gat)
(gx%,gl“i), ,d(gzy, got)
=0 maX{ d(gxg, gx1), - - (gfco,gwl)
Similarly
d(g2?,923) <0 max{ d(gx}, go}), -, d(gaf, gu7) }.
d(g}, gv3) <0 max{ d(ga}, g2i), -+, d(gf, g27) }.
Thus

max { d(gr},gzb), - d(grt,gr) } < 6 max{ d(geh, ga}). - d(gg. ga7) }.

Continuing in this way, we obtain

max{ d(gx}nvgx}n—l—l)? T } < emax{ d(Qxin—l?gx}n)? Ty
d(gx:;ng:%—i-l) - d<gxnm—1agx%)

< 92 max d(gm%nf% gaj%nfl)7 Ty
- d(gzy, 9 9T, 1)

d(gzh, grl), - - }
< 0™ ma; AN 3
< X{ d(gry, ga7) ()
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For m > [, consider

gz, gxy,) < d(ge, gaiyy) + d(gaiy, gotys) + - - -+ d(gzy, 4, 92),)
<@ +0F .+ oY max{ d(gx(l),%x%),y; o } from (3)
d<gx079551)
< elmax{ d(gl’é,gl’%), Ty }

1-0 d(gzg, got)
—0 as [ — oo.

Hence {gx} } is a Cauchy sequence in g(X). Similarly we can show that
{gz2}, -+, {gx™} are Cauchy sequences in g(X) .
Since g(X) is complete, there exist p', p?,---,p", 21, 2% -+, 2" € X such that

gx,, = p' =gzt gal, = p® = g%, -+ gal, = Pt = gz". (4)

Suppose (2.1.4)(a) holds, i.e F' and g are continuous.
From Lemma 1.5, there exists a subset £ C X such that g(E) = ¢g(X) and

the mapping g : £ — X is one - one. Let us define G : [¢g(F)]* — X by
G(gxt, ga?, -+ ga™) = F(a!, 2%, - - - 2™) for all gzt, gz?, - gz" € g(FE).
Since F' and g are continuous, it follows that G is continuous.
Now, we have
F(/Zla 227 Ty Zn) = G(gzlag227 U ,gzn)
= lim F(z} 22 - a")
B P T
= lim gz, ., =gz
Similarly we have
922 = F<Z27' ' .727172:1)’ e 7gzn = F(Zn7217'” 7271—1)'
Thus (2!, 22, .-+ 2") is a n-tupled coincidence point of F' and g.
Suppose (2.1.4)(b) holds.
Since gz;,,, # gy, or gxZ ., # g, or --- or gar,., # gar for all m and
grl — g2t gr? — g2% -+, ga" — gz" it follows that
max{d(gzl ,gz'),d(gz?,, gz?),- -+, d(gz™, gz")} > 0 for infinitely many m.

U d(gzlaF(xl>x27'"7xn))a"'7 d(gzl,ga;l),~-,
Claim : max{ d(g=", F(a™, o, -, 2" 1)) < fmax d(g2", ga™)

for all z!, 22, -+, 2" € X with gz* < ga' for ¢ is odd and gz* = gz for i is even
and max{d(gz', gz'),---,d(gz", gz™)} > 0.
Let b, 22, ---, 2" € X with gz' < g2* for 7 is odd and gz* = ga® for i is even
and max{d(gz!, gz'),---,d(gz", gx™)} > 0.



52 K.P.R. Rao et al.

,n there exists a positive integer my such

{ }

Since gz!, — gz, for i = 1,2,---
that for m > mg we have

max {

Now for m > my, consider

d(gzlag‘rl)v T
d(gz", ga")

(g, 92'), - -

d(gxy, 92") = ®)

1
— max
6

d(gxim F(ajrlm %27” e 73721))’ d(gl‘}n, gxrln—i-l)a
n(#) min : < max :
d(ngv F(wnma m71n? e 71':711_1)) d(gxnm> gl‘nm+1)

d(gx,,, 92") + d(g92", gl 1),

max {

< max

<

(=] ]

[max d(gz!, gat)

< [max d(gz', gxt),

d(gry,, 92") + d(92", gxp,, 1)

{ dlgzl, 92") +
max { d(gz', gz}, ) + -
max { d(g2", gx"), - --

}

-+ (g, 92") |+
+d(g2", 92 11) }
,d(gz", gx™) } from(5)

— lmax

- d(g2", ga) } — Fmax { d(gz', ga"), -+, d(gz", ga") }]

(g2, ga7) = max { d(gaty,g21), - d(gat 92") }] from(5)

{
{
d(gz', gz') —

= max{ d(g=", gz") —

(g, 92'), -
(g, 92")

)}

S max{ d(Qximgaﬂ% ) d(Qx:rL’ngn) } :

From (2), (4) and (2.1.4)(b), we have ga! =< gz'if i is odd and gz* < gzt
is even for all m. Hence for all m,we have

if 4

gri < gz < gr' foriisodd and gz' < gz' < gz’ foriis even. (6)

Hence by (2.1.2), we get
.. 755”))
d(gl’?ln,gl’l), T

d(gxy,, gTh 1)
d(gx', gx}q), -,

d(gxy,, gz™),
d(gxl, g 1),
d(gz", gxi, . )

< # max

Letting m — oo, we get

d<g217 F(xl xza o 7:Cn)> < Gmax{ d(gzlvgxl)a e 7d(gzn’gxn) } :
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Analogously we can prove that
d(gz27 F([L‘2 ' ’xn’ xl)) S Gmax{ d(gzla g$1)7 e ,d(gz”7gx ) }
d(gz", F(x™, zt - 2" 1)) < Qmax{ d(gzt, gzb), -+, d(gz", gz™) }
Thus
d(gzt, F(zt, 22, -, a™)), d(gzt, gxt),
max e < fmax e (7)
d(gz", F(z", 2t -+ 2™ b)) d(gz", gz™)
Hence the claim.

Now consider

d(gl.l’F(xlij’_”’xn)) < d(g:LJ,ng)+d(gzl’F(xl7x2’___’xn))

< d(gaz', gz') + O max e from (7)

d(gz", ga™)

d(gat, gz*),
< (14 60)max e
d(gz", gz™)

Thus
d(gzt, g2'),
T](Q)d(gxl’F(xlvx27'"7xn)) < max T :
d(gz", ga™)
Hence
1 .1
d(gzt, F(xt, 2? ,x”)),"'a dlg",97).
n(#) min d(ga®, F(a", 21, -, 27-1)) < max e .
g ) ) b ) d(gzn’gl‘ )

Now from (2.1.2), we have

d(F(l‘l,fL’Q, T 7xn)7F(Z17 227 to 7Zn))

d(gxlagzl)7" . ,d(gl‘ ’gzn)7
<Omax? d(gzt, F(xt 22 - 2")), -, d(ga"™, F(a™, zt - 2" 1)), (8)
d(gzlaF(aj17$27"'7xn)> ))

)T 7d(gznaF(xnaxl> e 737”_1
Now from(8), we obtain

d(F(z} 22 - an), (1727

m? m?

,2"))
(gfcm,gz )y ( T 92"),
< f# max d(ga:m,g:l?m+1)7 ,d(9h,, 920 41)s ¢ -
d(gz", gxh, ), - d(g2", gy y)
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Letting m — oo, we get

d(gz', F(2',2%,- -, 2") < 0 so that gz! = F(2!,2%,---,2")
Analogously, we can show that gz? = F(z2, 23, .-+, 2" 2Y),- -+ |
gz = F(z" 2t 2.

Thus (2!, 22,--+, 2") is a n-tupled coincidence point of F' and g.

Theorem 2.2 In addition to the hypotheses of Theorem 2.1, suppose that
for any (x', 22, - - 2™), (y' 9% -, y") € X", there exists (u',u?, -+, u™) €
X" such that (F(u,u? -+, u™), F(u?u? - u™ul), - F(u",ul, - u™ 1))
is comparable with (F(z', 2, - a"), F(2* 23, -, 2™, 21, -+, F(z", 2, .- 2" 1))
and
(F(yla y27 e 7yn>7 F<y27 y37 eyt y1>7 T 7F(yn7 yla T ayn_l)) . Further more
assume that F and g are W-compatible, then F' and g have a unique n-tupled
common fized point.

Proof. From Theorem 2.1, the set of n-tupled coincidence points of F' and g
is non-empty.
Let (2%, 2?%,---,2") and (y',9% ---,9y") be two n-tupled coincidence points of
F and g, That is
F(mla 513'2, U ,xn) = g'xla F(yla 3/2, T ,yn> = gy17
F(.CL’Q,.T?’, e anu xl) = 91’2, F<y27 y37 U 7yn7 y1> = gy27

F(xn’xl7 e 71‘”71)) = ga:.n, F(yna y17 e 7yn71)) = gyn
Now we shall show that

grt =gy’ gz* = gy’,- -+, ga" = gy". (9)
By the assumption, there exists (u!,u?, -+, u") € X x X such that
(F(ul,u?, - u™), F(u®,u3, - ju™ ub), - F(u™, ul, - - u™ 1)) is comparable
with (F(zt, 2%, -+, 2"), F(2?, 23, 2" 2t),- - F(a™, 2, - 2" 1)) and
(F(ylay27"'7yn))F(y27y377"'aynayl)a"')F(ynﬂyla”'aynil))'
Put uf = u',u? = u? - -, ul = u" and choose uj,u?,---,u} € X such that
gu% = F(u(l)au(%’ T 7“8)
gu% = F(u(2)7u87 e au6Lau[1))
guy = F(ugvu(l)v T ﬂuSLil)

As in in the proof of Theorem 2.1, we can define the sequences {ul }, {u? },
-+, {u } such that

1 _ 1 2 n
Uy, = F(um—h Upp—15° " 7um—1)
2 _ 2 3 n 1
U, = F(“m—l’ U157 U1 U’m—l)
n __ n 1 n—1
gul = F(ul'_j,uy 1, um—y) for m>1
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Further, set x(l) = xl,x% =z ... , T8 = 2" and y(l) — y17y(2) =2,
Yo = y" in the same way, we define the sequences {gz! }.{g22}, ---, {gz™}

and {gy,, } {9y}, -+ {gyp} by

gw F( Lin— 1733%1 1?"'>xn )>gy F(ym 17ym—17“'7y?n—1)’

gxgn:F(xgnfhxilflv' R m 1 U 1) = (ym 17ym 1" '7y?n717yrlnfl)7
n __ n 1 n—1 n __ n 1 n—1 .

9T = F(xmflvxmfh U 7xm—1))7gym - F(:ymfl?ymfl? s Yme— 1))

Without loss of generality assume that

(F(zt, 2% - 2"), F(2?, 23, 2™ 2t), - F(a, 2t - 2™ 1) <

(F(ut, u2 ), F(u?ud, - ut ut), - F(u™ ety -+ u™ ) and

(F(y 7y s T ’yn)7F(y2’y3’___,yn’yl),__.’F<yn’y1’_”’ n—l)) j

(F(ul,u? - u™), F(u?,ud, - u™ ul), - F(u™ ut, - - u™ ).

Then we have ga' < gu! for i is odd and gz’ = gu} for i is even.

As in Theorem 2.1, we have gu!, < gul, , for i is odd and gu’, > gu’, ., for i
is even for all m.

Hence gz’ < gu!, for i is odd and gz’ = gu!, for i is even for all m.

Since

d(gxl,F(xl,xQ,---,x")), d(.gxl’guin%
7(0) min : =0 < max :
d(ga™, F(z™ 2t -+ 2" 1)) d(gx™, gul)

We have by (2.1.2) that

d(F(xlvaW"axn)aF(ul UZ un))

mI m) r'm

d(g:)j17 gu}n)? e ,d(g:ljn, gu%%
§9max d(g[El,F(ﬂfl,fE27'"axn)),"'vd
d(f]u?lna F(xl,x2, T ’xn))’ B d

which implies that

d(gxla gurln)a B d(gl‘n, gunm)v
d(gz', guy, ) < 6Omax 0,---,0
= ¢ max {d(gilj’l, gu}n)? Ty d(g[lj’n, gufn)} :

Similarly, for ¢ = 2,3,---,n we can we show that

d(ga', gul,yy) < Omax {d(gz', gus,), -, d(ga", guis)} .



56 K.P.R. Rao et al.

Thus

1.1 Logul
max{ d(gx >€Lum+é)""’ } < Hmax{ dlgz ,%um);b, } (11)
d(gz™, gup 1) d(gz", gur,)

Let 7, = max {d(gz', gul ), -, d(gz", gu™)}.
Then from (11), we have r,,,1 < 0ry,.
Hence 71 < 0rp, < P11 < ... < 0™rg — 0 as m — o0.
Hence
Jim d(gz' gu’) =0 for i=1,2,---,n. (12)

Similarly, we can show that
Jim d(gy',gu’) =0 for i=1,2,--- n. (13)

Hence gz' = gy’ for i = 1,2,---, n.

Thus (9) is proved.

Since gz' = F(a', 2%, -, 2"),g2> = F(2?, 2%, --- 2™, 2b), - - -,

gr" = F(xz™ 2t .- 2" ') | by W-compatibility of F' and g, we have

3

g(gxl) = (F(Il,xQ, T ’xn)) = F(g$179x27 T 7933”)7
9(gz?) = g(F(2*, % -+ 2", 2')) = F(gz*, ga?, -+, ga", gxt),
g(g$n> = g(F(xnwrlv U ’xn—l)) = F(gajn?gxla U ’gxn—1)7
Denote ga! = 2%, ga? = 22, ---,, g™ = 2" Then
gzl = F(217 227 ) Zn))
2 2 .3 n 1
gz = F(z YRR R ),
( ) (1)
gzn — F(Zn,Zl, ’Zn—1>7
Thus (z',22,--+,2") is a n-tupled coincidence point of F' and g. Then from
9), we have gz' = gz!, ga® = g2%,- -+, ga" = gz"
( gr' =gzl g1° =g gz" =g
so that
=gt =g 2 = g2 (15)
Now by (14) and (15), we conclude that (2!, 2%, .-+, 2") is a n-tupled common

fixed point of F' and g¢.

To prove the uniqueness of n-tupled common fixed point of F' and ¢, assume
that (s', s%, -+, s") is another n-tupled common fixed point of F' and g.
Then from (9), we have gz! = gs', g2z2 = gs?, .-+, g2" = gs" which yields that

=gt 2?2 =52 2 =5

Hence (z!,22%,---,2") is the unique n-tupled common fixed point of F' and g.

Now we illustrate Theorem 2.2 with an example when n = 4.
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Example 2.3 Let X = R and d(z,y) = |v —y| for all x,y € X. Let us
define < by ordering <.
Define F: X* — X and g: X — X by

bt — 222 4 323 — 42t

F(x', 22 2° 2*) = ol ., gr = %
Then for (z!, 22, 23, 2%), (v',v% v3, y?) in X%, we have
d(F(x1,$2,m3,x4),F(yl,y2,y3,y4)) — ’x17256246»i‘31374x4 _ y172y246rjy374y4‘
L[5 eelg 2
<[l -

_ o [ d(gzt, gy") +2d(92, gy®)+
16| 3d(ga®, gy*) + 4d(g*, gy*)

d(ga*, gy*), d(gz?, gy?) }
§max ) ) ) )
8 { d(gz®, gy*), d(gz*, gy*)

IN

Thus (2.1.2)is satisfied with § = 3 and () = . Clearly F and g are W-
compatible.One can easily verify the remaining conditions of Theorem 2.2.

Clearly (0,0,0,0) is a n-tupled unique common fixed point of F' and g.
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