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Abstract
In this study by modifying some techniques of classical Sturm-Liouville the-

ory and suggesting own approaches we investigate some spectral properties of
one Sturm-Liouville type problem on two disjoint intervals.
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1 Introduction

Many interesting applications of mathematical physics require investigation of
eigenvalues and eigenfunction of boundary value problems. For instance, phys-
ical and chemical properties of a surface are determined by its surface struc-
ture. Two basic questions addressed are: (1) Determine the atomic structure
at the surfaces of such materials; and (2) Determine basic physical character-
istics such as how the surface will react with various chemicals. Pandey [2]
obtains this type of information by computing eigenfunctions of Schrodingers
equation. Using these computations, he has shown that the accepted buck-
ling reconstruction mechanism for the configuration of atoms at surfaces is
valid only for heteropolar surfaces. Kerner [4] addresses the question of the
stability of plasmas which are confined magnetically. Such plasmas play a



44 K. Aydemir et al.

key role in the research on controlled nuclear fusion. This is an application
where large scale eigenvalue and eigenvector computations provide new insight
into basic physical behavior. The most dangerous instabilities in a plasma are
macroscopic in nature and can be described by the basic resistive magnetohy-
drodynamic model. A well-chosen discretization of this model transforms this
model into generalized eigenvalue problems: Ax = λBx where A-is a general
matrix and B is a real symmetric and positive definite matrix. The eigenval-
ues and eigenvectors of these systems provide knowledge about the behavior
of the plasma. Haller and Koppel [3] describe applications where eigenvalue
and eigenvector computations are used to obtain basic physical properties of
molecular systems and the matrices involved are complex symmetric. Elec-
tric power systems problems yield some of the most difficult nonsymmetric
eigenvalue and eigenvector problems.

In this study we shall investigate one Sturm-Liouville type problem which
consist of the equation

−y′′(x, λ) + q(x)y(x, λ) = λy(x, λ) (1)

to hold on two disjoint intervals [−π, 0) and (0, π] , where discontinuity in
y and y′ at the interface point x = 0 are prescribed by transmission conditions

a1y
′(0+, λ) + a2y(0+, λ) + a3y

′(0−, λ) + a4y(0−, λ) = 0, (2)

b1y
′(0+, λ) + b2y(0+, λ) + b3y

′(0−, λ) + b4y(0−, λ) = 0, (3)

together with the boundary conditions

cosαy(−π, λ) + sinαy′(−π, λ) = 0, (4)

cos βy(π, λ) + sin βy′(π, λ) = 0. (5)

where the potential q(x) is real-valued continuous function in each of the in-
tervals [−π, 0) and (0, π], and has a finite limits q(c ∓ 0), λ is a complex
parameter, ai and bi (i = 1, 2, 3, 4) are real numbers. These boundary con-
ditions are of great importance for theoretical and applied studies and have
a definite mechanical or physical meaning (for instance, of free ends). Also
the problems with transmission conditions arise in mechanics, such as thermal
conduction problems for a thin laminated plate, which studied in [6].

2 The Fundamental Solutions

Denote the determinant of the k-th and j-th columns of the matrix

H =

[
a1 a2 a3 a4
b1 b2 b3 b4

]
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by ρkj (1 ≤ k < j ≤ 4). Note that throughout this study we shall assume
that ρ12 > 0 and ρ34 > 0. With a view to constructing the characteristic
function we define two solutions φ1(x, λ), χ1(x, λ) on left interval [−π, 0) and
two solutions φ2(x, λ), χ2(x, λ) on right interval (0, π] as follows. Denote by
φ1(x, λ) and χ2(x, λ) the solutions of the equation (1) satisfying the initial
conditions

y(−π, λ) = sinα, y′(−π, λ) = − cosα (6)

and

y(π, λ) = − sin β, y′(π, λ) = cos β (7)

respectively. It is known that these solutions are entire functions of λ ∈ C for
each fixed x ∈ [−π, 0) and x ∈ (0, π] respectively (see, for example, [7]). Now,
denote by φ2(x, λ) and χ1(x, λ) the solutions of the equation (1) on (0, π] and
[−π, 0) satisfying the initial conditions

y(0+, λ) =
1

ρ12
(ρ23φ1(0−, λ) + ρ24

∂φ1(0−, λ)

∂x
) (8)

y′(0+, λ) =
−1

ρ12
(ρ13φ1(0−, λ) + ρ14

∂φ1(0−, λ)

∂x
). (9)

and

y(0−, λ) =
−1

ρ34
(ρ14χ2(0+, λ) + ρ24

∂χ2(0+, λ)

∂x
), (10)

y′(0−, λ) =
1

ρ34
(ρ13χ2(0+, λ) + ρ23

∂χ2(0+, λ)

∂x
). (11)

respectively. By applying the method used in [1] we can prove that these
solutions are entire functions of spectral parameter λ ∈ C for each fixed x.

3 Asymptotic Approximation Formulas for Fun-

damental Solutions

By applying the method of variation of parameters we can prove that the next
integral and integro-differential equations are hold for k = 0 and k = 1.

dk

dxk
φ1(x, λ) = sinα

dk

dxk
cos [s (x+ π)]− cosα

s

dk

dxk
sin [s (x+ π)]

+
1

s

x∫
−π

dk

dxk
sin [s (x− z)] q(z)φ1(z, λ)dz (12)
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dk

dxk
χ1(x, λ) = − 1

ρ34
(ρ14χ2(0+, λ) + ρ24

∂χ2(0+, λ)

∂x
)
dk

dxk
cos [sx]

+
1

sρ34
(ρ13χ2(0+, λ) + ρ23

∂χ2(0+, λ)

∂x
)
dk

dxk
sin [sx]

+
1

s

0∫
x

dk

dxk
sin [s (x− z)] q(z)χ1(z, λ)dz (13)

for x ∈ [−π, 0) and

dk

dxk
φ2(x, λ) =

1

ρ12
(ρ23φ1(0−, λ) + ρ24

∂φ1(0−, λ)

∂x
)
dk

dxk
cos [sx]

− 1

sρ12
(ρ13φ1(0−, λ) + ρ14

∂φ1(0−, λ)

∂x
)
dk

dxk
sin [sx]

+
1

s

x∫
0

dk

dxk
sin [s (x− z)] q(z)φ2(z, λ)dz (14)

dk

dxk
χ2(x, λ) = − sin β

dk

dxk
cos [s (π − x)]− cos β

s

dk

dxk
sin [s (π − x)]

+
1

s

π∫
x

dk

dxk
sin [s (x− z)] q(z)χ2(z, λ)dz (15)

for x ∈ (0, π].

Lemma 3.1 Let λ = s2, Ims = t. Then if sinα 6= 0

dk

dxk
φ1(x, λ) = sinα

dk

dxk
cos [s (x+ π)] +O

(
|s|k−1 e|t|(x+π)

)
(16)

dk

dxk
φ2(x, λ) =

ρ24
ρ12

sinαs sin [sπ]
dk

dxk
cos [sx] +O

(
|s|ke|t|(x+π)

)
(17)

as |λ| → ∞, while if sinα = 0

dk

dxk
φ1(x, λ) = −cosα

s

dk

dxk
sin [s(x+ π)] +O

(
|s|k−2 e|t|(x+π)

)
(18)

dk

dxk
φ2(x, λ) = −ρ24

ρ12
cosα cos [sπ]

dk

dxk
cos [sx] +O

(
|s|k−1e|t|(x+π)

)
(19)

as |λ| → ∞ (k = 0, 1). Each of these asymptotic equalities hold uniformly for
x.

Proof. Multiplying both side of (12) by e−|t|(x+π) and denoting φ̃(x) :=
max

x∈[−π,0)
|e−|t|(x+π)φ1(x, λ)| we can derive that φ̃(λ) = O(1) as |λ| → ∞. Con-

sequently φ1(x, λ) = O(e|t|(x+π)) as |λ| → ∞. Substituting this asymptotic
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expression of φ1(x, λ) in the integral term of the right hand of (12) we get (16)
for k = 0. Other formulas are derived similarly.

Similarly we can prove the next Lemma.

Lemma 3.2 Let λ = s2, Ims = t. Then if sin β 6= 0

dk

dxk
χ2(x, λ) = sin β

dk

dxk
cos [s (π − x)] +O

(
|s|k−1 e|t|(π−x)

)
(20)

dk

dxk
χ1(x, λ) = −ρ24

ρ34
sin βs sin [sπ]

dk

dxk
cos [sx] +O

(
|s|ke|t|(π−x)

)
(21)

as |λ| → ∞, while if sin β = 0

dk

dxk
χ2(x, λ) = −cos β

s

dk

dxk
sin [s(π − x)] +O

(
|s|k−2 e|t|(π−x)

)
(22)

dk

dxk
χ1(x, λ) = −ρ24

ρ34
cos β cos [sπ]

dk

dxk
cos [sx] +O

(
|s|k−1e|t|(π−x)

)
(23)

as |λ| → ∞ (k = 0, 1). Each of these asymptotic equalities holds uniformly for
x.

4 The Eigenvalues

It is well-known from ordinary differential equation theory that the Wron-
skians w1(λ) := W [φ1(x, λ), χ1(x, λ)] and w2(λ) := W [φ2(x, λ), χ2(x, λ)] are
independent of variable x. By using (8)-(11) we have

w1(λ) = φ1(0−, λ)
∂χ1(0−, λ)

∂x
− χ1(0−, λ)

∂φ1(0−, λ)

∂x

=
ρ12
ρ34

(φ2(0+, λ)
∂χ2(0+, λ)

∂x
− χ2(0+, λ)

∂φ2(0+, λ)

∂x
)

=
ρ12
ρ34

w2(λ)

for each λ ∈ C. It is convenient to introduce the notation

w(λ) := ρ34w1(λ) = ρ12w2(λ). (24)

Slightly modifying the standard method we prove that all eigenvalues of the
problem (1)− (5) are real.

Theorem 4.1 The eigenvalues of the boundary-value-transmission problem
(1)− (5) are real.
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Proof. Let λ0 be any eigenvalue and y0(x) be eigenfunction corresponding to
this eigenvalue. By applying the well-known Lagrange’s identity [7] we obtain
that

ρ34

0∫
−π

(λ0y0(x))y0(x)dx+ ρ12

π∫
0

(λ0y0(x))y0(x)dx

= ρ34

0∫
−π

(−y′′0(x) + q(x)y0(x))y0(x)dx+ ρ12

π∫
0

(−y′′0(x) + q(x)y0(x))y0(x)dx

= {ρ34
0∫
−π

y0(x)λ0y0(x)dx+ ρ12

π∫
0

y0(x)λ0y0(x)dx}

+ ρ34W [y0, y0; 0−]− ρ34 W [y0, y0;−π] + ρ12W [y0, y0; π]

− ρ12W [y0, y0; 0+] (25)

Since the eigenfunction y0(x) is satisfied the boundary and transmission con-
ditions (2)− (5) it is easy to verify that

W (y0, y0;−π) = W (y0, y0; π) = 0 (26)

W (y0, y0; 0−) = ρ12
ρ34

W (y0, y0; 0+). (27)

By substituting these equations in (25) we have

(λ0 − λ0)[ρ34
∫ 0

−π
(y0(x))2dx + ρ12

∫ π

0
(y0(x))2dx] = 0

Since ρ12 > 0 and ρ34 > 0 we get λ0 = λ0. Consequently all eigenvalues of the
problem (1)− (5) are real. The proof is complete.

Corollary 4.2 Let u(x) and v(x) be eigenfunctions corresponding to dis-
tinct eigenvalues. Then they are orthogonal in the sense of the following equal-
ity

ρ34

∫ 0

−π
u(x)v(x)dx+ ρ12

∫ π

0
u(x)v(x)dx = 0. (28)

Theorem 4.3 The geometric multiplicity of each eigenvalue of the problem
(1) − (5) (i.e. the maximal number of linearly independent eigenfunctions
corresponding to this eigenvalue) is one.

Proof. Let u1 and u2 are two eigenfunctions for the same eigenvalue λ0 . From
the boundary condition (4) it follows that u1(−π)u′2(−π)−u′1(−π)u2(−π) = 0.
Consequently u1(−π) = ku2(−π) and u′1(−π) = ku′2(−π) for some k ∈ R
(k 6= 0). By the uniqueness theorem for solutions of ordinary differential
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equation we have that u1(x) = ku2(x) for all x ∈ [−π, 0). Similarly we deduce
that u1 = `u2 on (0, π] for some real ` 6= 0. Substituting u1 and u2 in the
transmission conditions (2)-(3) we see that k = `, i.e. u1 and u2 are linearly
dependent on whole [−π, 0) ∪ (0, π]. Thus, the geometric multiplicity of λ0 is
one. The proof is complete.

5 Asymptotic Behaviour of Eigenvalues and

Eigenfunctions

Since the Wronskians of φ2(x, λ) and χ2(x, λ) are independent of x, in partic-
ular, by putting x = π we have

w(λ) = φ2(π, λ)χ′2(π, λ)− φ′2(π, λ)χ2(π, λ)

= cos βφ2(π, λ) + sin βφ′2(π, λ). (29)

Let λ = s2, Ims = t. By substituting (16)-(19) in (29) we obtain easily the
following asymptotic representations
(i) If sin β 6= 0 and sinα 6= 0, then

w(λ) = −ρ24
ρ12

sinα sin β s2 sin2 [sπ] +O
(
|s| e2π|t|

)
(30)

(ii) If sin β 6= 0 and sinα = 0, then

w(λ) =
ρ24
ρ12

cosα sin β s cos [sπ] sin [sπ] +O
(
e2π|t|

)
(31)

(iii) If sin β = 0 and sinα 6= 0, then

w(λ) =
ρ24
ρ12

sinα cos β s sin [sπ] cos [sπ] +O
(
e2π|t|

)
(32)

(iv) If sin β = 0 and sinα = 0, then

w(λ) = −ρ24
ρ12

cos β cosα cos2 [sπ] +O

(
1

|s|
e2π|t|

)
(33)

Now we are ready to derive the needed asymptotic formulas for eigenvalues
and eigenfunctions.

Theorem 5.1 The boundary-value-transmission problem (1)-(5) has an pre-
cisely numerable many real eigenvalues, whose behavior may be expressed by
{λn} with following asymptotic as n→∞

(i) If sin β 6= 0 and sinα 6= 0,then

sn = (
n− 1

2
) +O

(
1

n

)
(34)
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(ii) If sin β 6= 0 and sinα = 0, then

sn =
n

2
+O

(
1

n

)
, (35)

(iii) If sin β = 0 and sinα 6= 0, then

sn =
n

2
+O

(
1

n

)
, (36)

(iv) If sin β = 0 and sinα = 0, then

sn =
n+ 1

2
+O

(
1

n

)
, (37)

where λn = s2n .

Proof. By applying the well-known Rouche theorem (see, [5]) we can show
that ω(λ) has the same number of zeros inside the appropriate large contours
as the leading term

ω0(λ) = −ρ24
ρ12

sinα sin β s2 sin2 [sπ]

provided that each zero is counted according to its multiplicity. Consequently,
if λn = s2n are zeros of ω(λ) , which numbered as λ1 ≤ λ2 ≤ λ3... we have

sn = (
n− 1

2
) + δn

where | δn |< π
4

for sufficiently large n. By substituting in (30) we have
δn = O(n−1). The proof for the first case is complete. The other cases can be
proved similarly.

Using these asymptotic expressions of eigenvalues we can easily obtain the
corresponding asymptotic expressions for corresponding eigenfunctions of the
problem (1)-(5). Indeed, taking in view, that the function φn(x) defined on
whole [−π, 0) ∪ (0, π] by

φn(x) =

{
φ1(x, λn) for x ∈ [−π, 0)
φ2(x, λn) for x ∈ (0, π]

(38)

is an eigenfunction according to the eigenvalue λn = s2n and by putting (34)-
(37) in the (16)-(19) we obtain the next Theorem.

Theorem 5.2 (i) If sinα 6= 0, then

φn(x) = sinα cos [sn (x+ π)] +O
(

1

n

)
for x ∈ [−π, 0) (39)
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φn(x) =
ρ24
ρ12

sinαsn sin [snπ] cos [snx] +O (1) for x ∈ (0, π] (40)

(ii) If sinα = 0, then

φn(x) =
− cosα

sn
sin [sn(x+ π)] +O

(
1

n2

)
for x ∈ [−π, 0)

φn(x) = −ρ24
ρ12

sinα cos [snπ] cos [snx] +O
(

1

n

)
for x ∈ (0, π] (41)

as n→∞. Each of these asymptotic equalities holds uniformly for x.
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