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Abstract

The aim of this paper is to introduce and study of a new class of function
called almost contra θgs-continuous functions using θgs-open set.
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1 Introduction

In 1996, Dontchev [6] introduced the notion of contra continuity and strong
S-closedness in topological spaces. A new weaker form of this class of func-
tions called contra semi continuous function is introduced and investigated by
Dontchev and Noiri [7]. Recently in [10] the notion of of θ-generalized semi
closed (briefly,θgs-closed)set was introduced. The aim of this paper is to intro-
duce and study new generalization of contra continuity called Almost contra
θgs-continuous functions utilising θgs-open set.

2 Preliminaries

Throughout this paper (X, τ), (Y, σ)(or simply X, Y )denote topological
spaces on which no separation axioms are assumed unless explicitly stated.
For a subset A of a space X the closure and interior of A with respect to τ are
denoted by Cl(A) and Int(A) respectively.
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Definition 2.1 A subset A of a space X is called
(1) a semi-open set [9] if A ⊂ Cl(Int(A)).
(2) a semi-closed set [3] if Int(Cl(Int(A))) ⊂ A.
(3) a regular open [23] if A = Int(Cl(Int(A)))

Definition 2.2 [4] A point x ∈ X is called a semi-θ-cluster point of A if
sCl(U) ∩ A 6= φ, for each semi-open set U containing x. The set of all semi-
θ-cluster point of A is called semi-θ-closure of A and is denoted by sClθ(A).
A subset A is called semi-θ-closed set if sClθ(A) = A. The complement of
semi-θ-closed set is semi-θ-open set.

Definition 2.3 [10] A subset A of X is θgeneralized semi-closed(briefly, θgs-
closed)set if sClθ(A) ⊂ U whenever A ⊂ U and U is open in X. The com-
plement of θgs-closed set is θgeneralized-semi open (briefly,θgs-open).The fam-
ily of all θgs-closed sets of X is denoted by θGSC(X,τ) and θgs-open sets by
θGSO(X,τ).

Definition 2.4 [16] A topological space X is called Tθgs-space if every θgs-
closed set in it is closed set.

Definition 2.5 [13] A topological space X is said to be
(i) θgs-T1 space if for any pair of distinct points x and y, there exist θgs-open
sets G and H such that x ∈ G, y /∈ G and x /∈ H, y ∈ H.
(ii)θgs-T2 if for each pair of distinct points x and y of X, there exist disjoint
θgs-open sets, one containing x and the other containing y.

Definition 2.6 A function f : X → Y is called:
(i) θ-generalized semi-continuous (briefly,θgs-continuous)[11] if f−1(F ) is θgs-
closed set in X for every closed set F of Y .
(ii) contra θgs-continuous [19] if f−1(F ) is θgs-closed set in X for every open
set F of Y .

Definition 2.7 [12] A function f : X → Y is said to be θgs-open (resp., θgs-
closed) if f(V ) is θgs-open (resp., θgs-closed) in Y for every open set (resp.,
closed) V in X.

Definition 2.8 [23] (i)A topological space X is called Ultra Hausdroff space,
if every pair of distinct points of x and y in X, there exist disjoint clopen sets
U and V in X containing x and y respectively.
(ii)A topological space X is called Ultra normal if each pair of disjoint closed
sets can be separated by disjoint clopen sets.

Definition 2.9 [19] A space X is called locally θgs-indiscrete if every θgs-
open set is closed in X.
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Definition 2.10 [17] A topological space X is said to be θgs-normal if each
pair of disjoint closed sets can be separated by disjoint θgs-open sets.

Definition 2.11 [18] A topological space X is said to be
(i)θgs-connected if X cannot be written as union of two non empty disjoint
θgs-open sets.
(ii) θgs-compact if every θgs-open cover of X has a finite subcover.

Definition 2.12 [14] A function f : X → Y is said to be almost continuous
if f−1(V ) is open in X for each regular open set V of Y .

Definition 2.13 [8] A topological space X is said to be hyperconnected if
every open set is dense.

Definition 2.14 [2] A function f : X → Y is said to be R-map if f−1(V ) is
regular open in X for each regular open set V of Y .

Definition 2.15 [15] A function f : X → Y is said to perfectly continuous
if f−1(V ) is clopen in X for each open set V of Y .

Definition 2.16 [21] A space X is said to be weakly Hausdorff if each element
of X is an intersection of regular closed sets.

Definition 2.17 A space X is said to be
(i) Nearly compact [21] if every regular open cover of X has a finite subcover.
(ii) Nearly countably compact [21] if every countable cover of X by regular
open sets has a finite subcover.
(iii) Nearly Lindelöf [21] if every regular open cover of X has a countable
subcover.
(iv) S-Lindelöf [8] if every cover of X by regular closed sets has a countable
subcover.
(v) Countably S-closed [5] if every countable cover of X by regular closed sets
has a finite subcover.
(vi) S-closed [1] if every regular closed cover of x has a finite subcover.

3 Almost Contra θgs-Continuous Functions

In this section, new type of continuity called an almost contra θgs-
continuity, which is weaker than contra θgs-continuity is introduced and stud-
ied some of their properties.

Definition 3.1 A function f : X → Y is said to be almost contra θgs-
continuous if f−1(V ) is θgs-closed in X for each regular open set V in Y .
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Theorem 3.2 If X is Tθgs-space and f : X → Y is almost contra θgs-
continuous, then it is contra almost continuous.

Proof. Let U be a regular open set in Y . Since f is almost contra θgs-
continuous f−1(U) is θgs-closed set in X and X is Tθgs-space, which implies
f−1(U) is closed set in X. Therefore f is contra almost continuous.

Theorem 3.3 If a function f : X → Y is almost contra θgs-continuous and
X is locally θgs-indiscrete space, then f is almost continuous.

Proof. Let U be a regular open set in Y . Since f is almost contra θgs-
continuous f−1(U) is θgs-closed set in X and X is locally θgs-indiscrete space,
which implies f−1(U) is an open set in X. Therefore f is almost continuous.

Theorem 3.4 If f : X → Y is contra θgs-continuous then it is almost contra
θgs-continuous.

Proof. Obvious, because every regular open set is open set.

Remark 3.5 Converse of the above theorem need not be true in general as
seen from the following example.

Example 3.6 Let X = Y={a, b, c}, τ = {X,φ, {a} , {b} , {a, b}} and σ =
{Y, φ, {a} , {a, b}} {b, c}}be topologies on X and Y respectively. We have
θgs-closed sets in X are {X,φ, {a} , {b} , {c} , {a, c} , {b, c}}. Define a function
f : X → Y by f(a) = a, f(b) = b and f(c) = c. Then f is almost contra
θgs-continuous function but not contra θgs-continuous, because for the open set
{a, b} in Y , f−1({a, b}) ={a, b} is not θgs-closed in X.

Theorem 3.7 If f : X → Y is almost contra θgs-continuous and X is Tθgs-
space then f is contra almost continuous.

Proof. Let U be a regular open set in Y . Since f is almost contra θgs-
continuous f−1(U) is θgs-closed set in X and X is Tθgs-space, which implies
f−1(U) is an closed set in X. Therefore f is contra almost continuous.

Theorem 3.8 For a function f : X → Y the followings are equivalent:
(i) f is almost contra θgs-continuous.
(ii) for every regular closed set F of Y , f−1(F ) is θgs-open set of X.

Proof. (i)⇒ (ii) Let F be a regular closed set in Y , then Y − F is a regular
open set in Y . By (i), f−1(Y − F )=X − f−1(F ) is θgs-closed set in X. This
implies f−1(F ) is θgs-open set in X. Therefore, (ii) holds.
(ii) ⇒ (i) Let G be a regular open set of Y . Then Y − G is a regular closed
set in Y . By (ii), f−1(Y −G) is θ-open set in X. This implies X − f−1(G) is
θgs-open set in X, which implies f−1(G) is θgs-closed set in X. Therefore, (i)
holds.
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Theorem 3.9 For a function f : X → Y the followings are equivalent:
(i) f is almost contra θgs-continuous.
(ii) f−1(Int(Cl(G))) is θgs-closed set in X for every open subset G of Y .
(iii) f−1(Cl(Int(F ))) is θgs-open set in X for every closed subset F of Y .

Proof. (i) ⇒ (ii) Let G be an open set in Y . Then Int(Cl(G)) is regular
open set in Y . By (i), f−1(Int(Cl(G))) ∈ θGSC(X).
(ii)⇒ (i) Proof is obvious.
(i) ⇒ (iii)Let F be a closed set in Y . Then Cl(Int(G)) is regular closed set
in Y . By (i), f−1(Cl(Int(G))) ∈ θGSO(X).
(iii)⇒ (i) Proof is obvious.

Theorem 3.10 If f : X → Y is an almost contra θgs-continuous injection
and Y is weakly Hausdorff, then X is θgs-T1.

Proof. Suppose Y is weakly Hausdorff. For any distinct points x and y in X,
there exist V and W regular closed sets in Y such that f(x) ∈ V , f(y) /∈ V ,
f(y) ∈ W and f(x) /∈ W . Since f is almost contra θgs-continuous, f−1(V )
and f−1(W ) are θgs-open subsets of X such that x ∈ f−1(V ), y /∈ f−1(V ),
y ∈ f−1(W ) and x /∈ f−1(W ). This shows that X is θgs-T1.

Corollary 3.11 If f : X → Y is a contra θgs-continuous injection and Y is
weakly Hausdorff, then X is θgs-T1.

Theorem 3.12 If f : X → Y is an almost contra θgs-continuous injective
function from space X into a Ultra Hausdroff space Y , then X is θgs-T2.

Proof. Let x and y be any two distinct points in X. Since f is an injective
f(x) 6= f(y) and Y is Ultra Hausdroff space, there exist disjoint clopen sets U
and V of Y containing f(x) and f(y) respectively. Then x ∈ f−1(U) and y ∈
f−1(V ), where f−1(U) and f−1(V ) are disjoint θgs-open sets in X. Therefore
X is θgs-T2.

Theorem 3.13 If f : X → Y is an almost contra θgs-continuous closed
injection and Y is ultra normal, then X is θgs-normal.

Proof. Let E and F be disjoint closed subsets of X. Since f is closed and
injective f(E) and f(F ) are disjoint closed sets in Y . Since Y is ultra normal
there exists disjoint clopen sets U and V in Y such that f(E) ⊂ U and
f(F ) ⊂ V . This implies E ⊂ f−1(U) and F ⊂ f−1(V ). Since f is an almost
contra θgs-continuous injection, f−1(U) and f−1(V ) are disjoint θgs-open sets
in X. This shows X is θgs-normal.

Theorem 3.14 If f : X → Y is an almost contra θgs-continuous surjection
and X is θgs-connected space, then Y is connected.



50 Md. Hanif Page

Proof. Let f : X → Y be an almost contra θgs-continuous surjection and X
is θgs-connected space. Suppose Y is a not connected space. Then there exist
disjoint open sets U and V such that Y = U ∪ V . Therefore U and V are
clopen in Y . Since f is almost contra θgs-continuous, f−1(U) and f−1(V ) are
θgs-open sets in X. Moreover f−1(U) and f−1(V ) are non empty disjoint and
X = f−1(U)∪f−1(V ). This is contradiction to the fact that X is θgs-connected
space. Therefore, Y is connected.

Theorem 3.15 For two functions f : X → Y and g : Y → Z, let g ◦ f :
X → Z is a composition function.Then, the following properties hold
(i) If f is almost contra θgs-continuous and g is an R-map, then g◦f is almost
contra θgs-continuous.
(ii) If f is almost contra θgs-continuous and g is perfectly continuous, then
g ◦ f is θgs-continuous and contra θgs-continuous.
(iii) If f is contra θgs-continuous and g is almost continuous, then g ◦ f is
almost contra θgs-continuous.

Proof. (i) Let V be any regular open set in Z. Since g is an R-map, g−1(V )
is regular open in Y . Since f is an almost contra θgs-continuous f−1(g−1(V ))=
(g ◦ f)−1(V ) is θgs-closed set in X. Therefore, g ◦ f is almost contra θgs-
continuous.
(ii) Let V be any open set in Z. Since g is perfectly continuous, g−1(V ) is clopen
in Y . Since f is an almost contra θgs-continuous f−1(g−1(V ))=(g ◦ f)−1(V )
is θgs-open and θgs-closed set in X. Therefore, g ◦ f is θgs-continuous and
contra θgs-continuous.
(iii) Let V be any regular open set in Z. Since g is almost continuous, g−1(V )
is open in Y . Since f is contra θgs-continuous f−1(g−1(V ))=(g ◦ f)−1(V ) is
θgs-closed set in X. Therefore, g ◦ f is almost contra θgs-continuous.

Theorem 3.16 Let f : X → Y is a contra θgs-continuous and g : Y → Z
is θgs-continuous. If Y is Tθgs-space, then g ◦ f : X → Z is an almost contra
θgs-continuous.

Proof. Let V be any regular open and hence open set in Z. Since g is θgs-
continuous g−1(V ) is θgs-open in Y and Y is Tθgs-space implies g−1(V ) open
in Y . Since f is contra θgs-continuous f−1(g−1(V ))=(g ◦ f)−1(V ) is θgs-closed
set in X. Therefore, g ◦ f is an almost contra θgs-continuous.

Definition 3.17 A function f : X → Y is said to be strongly θgs-open (resp.
strongly θgs-closed) if image of every θgs-open (resp. θgs-closed) set of X is
θgs-open (resp. θgs-closed) set in Y .

Theorem 3.18 If f : X → Y is surjective strongly θgs-open (or strongly
θgs-closed) and g : Y → Z is a function such that g ◦ f : X → Z is an almost
contra θgs-continuous, then g is an almost contra θgs-continuous.
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Proof. Let V be any regular closed (resp. regular open) set in Z. Since g◦f is
an almost contra θgs-continuous, (g ◦ f)−1(V )=f−1(g−1(V )) is θgs-open (resp.
θgs-closed) in X. Since f is surjective and strongly θgs-open (or strongly θgs-
closed), f(f−1(g−1(V )))=g−1(V ) is θgs-open(or θgs-closed). Therefore g is an
almost contra θgs-continuous.

Definition 3.19 A topological space X is said to be θgs-ultra-connected if
every two non empty θgs-closed subsets of X intersect.

Theorem 3.20 If X is θgs-ultra-connected and f : X → Y is an almost
contra θgs-continuous surjection, then Y is hyperconnected.

Proof. Let X be a θgs-ultra-connected and f : X → Y is an almost contra
θgs-continuous surjection. Suppose Y is not hyperconnected. Then there exists
an open set V such that V is not dense in Y . Therefore, there exist nonempty
regular open subsets B1 = Int(Cl(V )) and B2 = Y − Cl(V ) in Y . Since f is
an almost contra θgs-continuous surjection, f−1(B1) and f−1(B2) are disjoint
θgs-closed sets in X. This is contrary to the fact that X is θgs-ultra-connected.
Therefore, Y is hyperconnected.

Definition 3.21 A space X is said to be
(i) Countably θgs-compact if every countable cover of X by θgs-open sets has
a finite subcover.
(ii) θgs-Lindelöf if every θgs-open cover of X has a countable subcover.
(iii) mildly θgs-compact if every θgs-clopen cover of X has a finite subcover.
(iv) mildly countably θgs-compact if every countable cover of X by θgs-clopen
sets has a finite subcover.
(v) mildly θgs-Lindelöf if every θgs-clopen cover of X has a countable subcover.

Theorem 3.22 Let f : X → Y be an almost contra θgs-continuous surjec-
tion. Then, the following properties hold.
(i) If X is θgs-compact, then Y is S-closed.
(ii) If X is countably θgs-closed, then Y is is countably S-closed.
(iii) If X is θgs-Lindelöf, then Y is S-Lindelöf.

Proof.(i) Let {Vα : α ∈ I} be any regular closed cover of Y . Since f is almost
contra θgs-continuous, {f−1(Vα) : α ∈ I} is θgs-open cover of X. Since X is
θgs-compact, there exists a finite subset I0 of I such thatX = ∪{f−1(Vα) : α ∈ I0}.
Since f is surjective, Y = ∪{Vα) : α ∈ I0} is finite subcover for Y . Therefore,
Y is S-closed.
(ii) Let {Vα : α ∈ I} be any countable regular closed cover of Y . Since f is
almost contra θgs-continuous, {f−1(Vα) : α ∈ I} is countable θgs-open cover of
X. Since X is countably θgs-compact, there exists a finite subset I0 of I such
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that X = ∪{f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{Vα) : α ∈ I0} is
finite subcover for Y . Therefore, Y is countably S-closed.
(iii) Let {Vα : α ∈ I} be any regular closed cover of Y . Since f is almost con-
tra θgs-continuous, {f−1(Vα) : α ∈ I} is θgs-open cover of X. Since X is θgs-
Lindelöf, there exists a countable subset I0 of I such thatX = ∪{f−1(Vα) : α ∈ I0}.
Since f is surjective, Y = ∪{Vα) : α ∈ I0} is finite subcover for Y . Therefore,Y
is S-Lindelöf.

Definition 3.23 A function f : X → Y is said to be almost θgs-continuous
if f−1(V ) is θgs-open in X for each regular open set V of Y .

Theorem 3.24 Let f : X → Y be an almost contra θgs-continuous and
almost θgs-continuous surjection. Then, the following properties hold.
(i) If X is mildly θgs-closed, then Y is nearly compact.
(ii) If X is mildly countably θgs-compact, then Y is nearly countabaly compact.
(iii) If X is mildly θgs-Lindelöf, then Y is nearly Lindelöf.

Proof.(i) Let {Vα : α ∈ I} be any regular open cover of Y . Since f is al-
most contra θgs-continuous and almost θgs surjection, {f−1(Vα) : α ∈ I} is
θgs-clopen cover of X. Since X is mildly θgs-compact, there exists a finite
subset I0 of I such that X = ∪{f−1(Vα) : α ∈ I0}. Since f is surjective,
Y = ∪{Vα) : α ∈ I0}, which is finite subcover for Y . Therefore, Y is nearly
compact.
(ii) Let {Vα : α ∈ I} be any countable regular open cover of Y . Since f is
almost contra θgs-continuous and almost θgs surjection, {f−1(Vα) : α ∈ I} is
countable θgs-closed cover of X. Since X is mildly countably θgs-compact,
there exists a finite subset I0 of I such that X = ∪{f−1(Vα) : α ∈ I0}. Since
f is surjective, Y = ∪{Vα) : α ∈ I0} is finite subcover for Y . Therefore, Y is
nearly countably compact.
(iii) Let {Vα : α ∈ I} be any regular open cover of Y . Since f is almost contra
θgs-continuous and almost θgs surjection,, {f−1(Vα) : α ∈ I} is θgs-closed cover
ofX. SinceX is mildly θgs-Lindelof, there exists a countable subset I0 of I such
that X = ∪{f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{Vα) : α ∈ I0} is
finite subcover for Y . Therefore, Y is nearly Lindelöf.
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