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Abstract

For any lacunary sequence 0 = (k,), the aim of the present work is to intro-
duce strong 0-statistical limit and strong 0-statistical cluster points of sequences
on probabilistic normed spaces (briefly PN -spaces). Some relations among the
sets of ordinary limit points, strong 0-statistical limit and strong 0-statistical
cluster points of sequences on PN -spaces are obtained.

Keywords: Lacunary sequence, PN -space, statistical convergence, statis-
tical limit and cluster point.

1 Introduction

The idea of statistical convergence of a number sequence was introduced by
Fast [5], later developed in [3], [6], [16], [17] and many others. Fridy [7] used
statistical convergence to introduce the set A, of all statistical limit points
and the set I'; of all statistical cluster points of a sequence z = (x,) of real
numbers and discussed some interesting relations. These issues have been
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further explored in different directions by many authors (see [14], [2], [8] and
4]).

Menger [13] introduced probabilistic metric space (PM-space) to resolve
the interpretative issue of quantum mechanics. He replaced the distance be-
tween points p and ¢ by a distribution function F),, whose value F,, (z) at the
real number z is interpreted as the probability that the distance between p
and ¢ is less than .

An important family of PM-spaces are PN-spaces. PN-spaces were first
introduced by Serstnev [19] by means of a definition that was closely molded
to the definition of normed space. In 1993, Alsina et al. [1] presented a
new definition of a PN-space which includes the definition of Serstnev as a
special case. In recent years, statistical convergence and related notions are
found useful to handle many convergence problems arising on PN-spaces. For
instance [8], [9], [10], [11], [12], [15] and [18].

In this paper, we use lacunary sequence 6 = (k,) to define strong 6-
statistical limit and strong f-statistical cluster points of sequences on PN-
spaces. For the sake of convenience we recall some definitions. Let N de-
notes the set of positive integers, R the set of reals, Rt = [0,00] and R =
R U {—o00, oo}.

Definition 1.1 A distribution function is a non decreasing function F defined
on R with F (—o0) =0 and F (c0) = 1.

Let A denotes the set of all distribution functions that are left continuous
on (—oo,00). The elements of A are partially ordered via F' < G if and only
if F(z) < G (z) Vo € R. For any a € R, ¢,, the unit step at a, is the function
in A given by

. (:1:):{ 0, if —oo <z < a,
“ 1, ifa<z<o

and
(z) = 0, if —oo <z < o0,
Cool) = 1, ifx =00

The distance dy, (F,G) between two functions F,G € A is defined as the infi-
mum of all numbers h € (0, 1] such that the inequalities
Fx—h)—h<G(x)<F(x+h)+hGx—h)—h<F(x)<G(x+h)+h

hold for every z € (—%, %) It is known that dj is a metric on A.

Definition 1.2 A distance distribution function is a non decreasing function
F defined on R = [0, 00] that satisfies F (0) = 0 and F (c0) = 1, and is left
continuous on (0, 00).

Let A" denotes the set of all distance distribution functions.
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Definition 1.3 A triangular norm, briefly, a t-norm is a function T : [0, 1] x
[0,1] — [0, 1] that satisfies the following conditions:
(i) T is commutative, i.e., T (s,t) = T (t,s) for all s and ¢ in [0, 1];
(11) T is associative, i.e., T (T (s,t) ,u) =T (s,T(t,u)) for all s,t and u in

[0, 1];
(443) T is nondecreasing, i.e., T(s,t) < T(s',t) for all t,s,s € [0, 1]

whenever s < s’
(1v) T satisfies the boundary condition 7' (1,t) = ¢ for every ¢ € [0, 1].
The most important t—norms are M and [] respectively given by M (z,y) =
min{z,y} and [](z,y) = xy. Given a t-norm T, its t-conorm T™* is defined
on [0,1] x [0,1] by T* (z,y) =1 —-T(1 —s,1 —t).

Definition 1.4 A triangle function is a binary operation on AT namely a
function 7 : AT x AT — AT such that for all F,G and H in A", we have
() ( (F7G)’H):T<F7T(G7H));

(id) 7 (F,G) = 7 (G, F);

(tii) F<G=r71(F,H)<7(G,H) and

() T (F,e9) = 7 (e, F) = F.

Definition 1.5 A PN-space is a quadruple (V,9,7,7*), where V is a real
linear space, T and T are continuous triangle functions with = < 7 and 19 is
a mapping (the probabilistic norm) from V into A" such that for all p,q in'V,
the following conditions hold:
(PN1) 9, = € if and only if, p = 0 (6 is the null vector in V);
(PN2) 0, = 0,
(PN3) Uprq > 7(9,,7,) and
(PN4) 9, <t (19,\p,19 »p) for every A € [0,1].

A PN space is called a Serstnev space if it satisfies (PN1), (PN3) and the
following condition: For all p € V, o € R—{0} and = > 0 one has

Doy () =V, (%) .

which clearly implies (PN2) and also (PN4) in the strengthened form for all
A E [0, 1] , 19p =Tum (19)\]), 19(1_>\)p) .

A PN-space in which 7 = 7 and 7" = 7p- for a suitable continuous ¢-norm
T and its t-conorm T, is called a Menger PN-space where

7 (F,G) (x) = sup,,—, T (F(s),G(t)) and 77« (F, G) (x) = infy 4y T*(F (s),G (1)) .

Definition 1.6 Let (V,9,7,7*) be a PN-space. For p € V and t > 0, the
strong t-neighborhood of p is the set

Ny (t) ={q €V 94 (t) > 1 -1},
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and the strong neighborhood system for V is the union Uycy N, where N, =
{N, (t) : t>0}.

There is a natural topology define on a PN-space (V,9,7,7*) called the
strong topology in terms of strong neighborhood system. In the sequel, when
we consider a PN-space (V,9,7,7%) we mean it is endowed with the strong
topology.

Definition 1.7 A sequence p = (p,,) in a PN-space (V,¥,7,7*) is said to be
strongly convergent to a point po in' V', symbolically, limy pp = po, if for any t >
0 there exists a positive integer m such that py is in Ny, (t) whenever k > m.

For any set K’ C N, let K, denotes theset {k € K : k < n} and |K,,| denotes
the number of elements in K,,. The natural density § (K) of K is defined by
§ (K) = lim,n"'|K,| . The natural density may not exist for each set K. But
the upper density d defined by § (K) = limsup, n~! | K,| always exists for any
set K C N. Also ¢ (K) different from zero we mean 4 (K) > 0. Moreover,
§ (K9 =1-6(K); and for A C B then § (4) < § (B). Using natural density,
statistical convergence on a P N-space is defined as follows.

Definition 1.8 Let (V,9,7,7*) be a PN-space. A sequence p = (p,) in V is
satd to be strongly statistically convergent to a point py in V' provided that

.1
lim ~[{k <7n :px & Npo(t)}] = 0;

i.e., S({k € N:py & N, (t)}) = 0. In this case, po is called the strong statistical
limit of the sequence p = (p,) and we write S — limy py = po.

Definition 1.9 Let (V,0,7,7%) be a PN-space and p = (p,) be any sequence
inV. If (pk(j)) be a subsequence of (py) and K = {k(j) : j € N}, then we
denote (pk(j)) by (p) - If lim, % {k(j) : j € N}| =0, then we say that (pk(j))
is a thin subsequence of (px). On the other hand, K is non-thin provided that
limsup, = {k (j) : j € N}| > 0.

Definition 1.10 Let (V, 9, 7,7*) be a PN-space and p = (p,) be any sequence
in V. Then an element q € V is a strong statistical limit point of (py) provided
that there exists a non-thin subsequence of (py) that strongly converges to q.
We denote the set of all strong statistical limit points of (pr) by A (S,p).

Definition 1.11 Let (V,9,7,7*) be a PN-space and p = (p,,) be any sequence
in V. Then an element v € V is a strong statistical cluster point of (px)
provided that for every t > 0, we have limsup,, % {k € N:p, € N, (t)}| > 0.
We denote the set of all strong statistical cluster points of (px) by I' (S, p).



48 Meenakshi et al.

By a lacunary sequence, we mean an increasing sequence 0 = (k,) of pos-
itive integers such that ky = 0 and h, = k, — k,_1 — oo as r — oco. The
intervals determined by 6 will be denoted by I, = (k,_1,k,] and the ratio
k./k,_1 is denoted by g.

Definition 1.12 Let 0 = (k) be a lacunary sequence and (V,9,7,7*) be a PN -
space. A sequence p = (p,) in V is said to be strongly lacunary statistically
convergent to a point py in V if

1
hrmh— H{k el :p, & Npy(t)} =0

In this case, py is called the strong lacunary statistical limit of the sequence
p = (p,) and we write Sy — limy, pr, = po.

We now consider the quite natural definitions of strong lacunary statistical
limit and strong lacunary statistical cluster points of sequences on a P N-space.

2 Main Results

Let 8 = (k,) be a lacunary sequence. For a PN-space (V, 9, 7,7%), let p = (p,,)
be a sequence in V. Let (p, ;) be a subsequence of p and K = {k (j) : j € N},
then we denote (py;)) by (p)g- If

.1 . :
rli}rgoh—r H{k(j) eI, :jeN} =0;
then (p), is called #-thin subsequence. On the other hand (p), is a §-nonthin
subsequence of p provided that

1
limsuph— H{k(j) €l :jeN} >0.

T—00 s

Definition 2.1 Let 6 = (k,) be a lacunary sequence and (V,9,7,7*) be a PN -
space. An element p € V is called a strong lacunary statistical limit point
(briefly strong Sg—limit point) of a sequence p = (p,) in V provided that there
1S a 0-nonthin subsequence of p that is strongly convergent to p.

Let A(Sp, p) denotes the set of all strong Sy-limit points of the sequence p =

(Py)-

Definition 2.2 Let 6 = (k,) be a lacunary sequence and (V,9,7,7*) be a PN -
space. A point v € V is said to be a strong lacunary statistical cluster point
(briefly strong Sp— cluster point) of a sequence p = (p,) in V provided that for
allt > 0,

1
limsuph— {kel :p, e N,(t)} >0.

700 T
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Let I'(Sy, p) denotes the set of all strong Sp-cluster points of the sequence p =
(py.)-

Theorem 2.1 Let 0 = (k,) be a lacunary sequence and (V,9,7,7*) be a PN-
space. For any sequence p = (p,) in V', A(Sp,p) CT'(Sp,p).

Proof. For p € A((Sp,p), there is a -nonthin subsequence (pk(j)) of p that
strongly converges to p. Since (pk( j)) is a #-nonthin subsequence so we have

1
limsuph—]{kef,, tpr € N, (1)} > 0. (1)

r—00 T

Now for every ¢ > 0, the containment {k € I, : pr € N, (1)} D {k(j) € I, :
Pr(j) € Ny (1)} gives

kel pe Ny} 2 k() Lsj e Ny = {k(G) € Iy s gy € N ()}
which immediately implies

1 1
limsuph— Hkel :p, € N,(t)} > limsuph— {k(5) 1, :j €N}

T—00 T T—00

—limsuphi Hk(G) el oy € Nu ()} (2)

r—00 s

Further, the strong convergence of (pk( j)) to p gives for t > 0, the set
{k (7) € I = (Pyy) & Nu (t)} is finite for which we have

(kG €L gy & Na ()} =0 (3)

li !
imsup —
7"—>oop h"'

Using (1) and (3) in (2), we get

1
limsuph— H{kel :p,€eN,(t)} >d>0.

7—00 T

This shows that 1 € I' (S, p) and therefore we have the containment A (Sy, p) C
r (507 p) u

Theorem 2.2 Let 0 = (k) be a lacunary sequence and (V,9,7,7*) be a PN-
space. For any sequence p = (p,,) in V, I' (Sp,p) C L(p), where L(p) denotes
the set of all strong limit points of p = (p,)-

Proof. Assume that v € I' (S, p), then for all £ > 0, we have

1
lim sup > kel :p, € N,(t)} >0. (4)

r—00 (s
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For t > 0, if we denote K = {k € I, :p; € N, (t)}, then the set K =
{k1 < kg < ---} is an infinite set as otherwise i.e. if K is finite set then left
side of (4) becomes zero and we obtain a contradiction. This shows that we
have a subsequence (p), of the sequence p = (p,) that is strongly conver-

gent to 7. Hence v is a strong limit point of (p,) and therefore we have the
containmentI (Sp,p) C L (p). A

Theorem 2.3 For any lacunary sequence 8 = (k) and any sequence p = (p,,)
in a PN-space (V,9,7,7%), T' (Sg,p) is a closed set.

Proof. To prove the theorem it is sufficient to prove that cl(I' (Sg,p)) C
" (Sp, p) where cl(A) denotes the strong closure of any set A. Let u € cl(I" (Sy, p)),

then for any t > 0, I'(Sp, p) contains some point v € N,, (t). Choose t such
that N,(t') C N, (t). Since v € T' (S, p), therefore

hmsup (keI :py€ N,(t)} >0;

7—00 hr
which immediately gives

hmsuph— {k el :p,e N, (t)} >0.

T—00

This shows that p € ' (Sp, p) and therefore we have cl(I" (Sp,p)) C T'(Sp, p).
|

Theorem 2.4 Let § = (k,) be a lacunary sequence. For any sequence p = (p,,)
ina PN-Sp(LC@ (V719a T, T*)7 ZfSQ_hmkpkz = Do, then A (Sevp) =T (Seap) = Do-

Proof. We first show that A (S, p) = {po}. Let ¢t > 0 and assume A (Sy, p) =
{po, qo} such that py #o. By definition there exist two #-nonthin subsequences
(pk(i)) and (pl(j)) of the sequence p = (p,) which are respectively strongly
convergent to py and ¢y. Since (pl(]-)) strongly converges to ¢y , therefore for
any t > 0, there is a positive integer m such that pj is in N, (¢) whenever k >
m. This shows that for any ¢ > 0 we have

i o [{1G) € o sy € N (0} =0 5

Moreover, for any ¢t > 0 one can write

{l(G)el, :jeNy={1(j) €L : pj) € Ngo(t) } U{L(4) € I : puijy & Noo(t) }

which implies

: 1 : : . 1 :
hmsuph— {l(j) € I.:j €N} = llmsuph— {1(j) € I : puij) € Noo(t) }]

s T
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1 .
+lim sup W {L(j) € I : ;i) € Ny () }]- (6)

Since (I(j)) is f-nonthin subsequence so we have together with (5),
limrsuphir Hl (7) € I : pu(j) € Ny, (t)}| > 0. (7)
Also using the fact Sy — limy, pr, = pg, we have
im0k € 1 i Ny (6} =0, (8)
which gives for any ¢ > 0

1
limsuph— {k €1, :pi € Ny (t)}| > 0. (9)

Also for py # qo, {l<J) €l Dy € Nqo(t)} N{kel, :p € Npo(t)} = (. So

we have,

{l (J> Sy ") € NQO(t)} C {k €l :p € Npo(t)}v

which immediately with use of (8)
. 1 . ) 1
hmsuph— |{l (4) € L i oy € Nqo(t)}| ghmsuph— H{k el :p, & Ny(t)} =0;

which contradict (7). Hence A (Sp,p) = {po}. Similarly, we can show that
['(S0,p) = {po}. W

Theorem 2.5 Let § = (k,) be a lacunary sequence. If p = (px) and ¢ = (q,,)
are two sequences in (V,0,7,7%) such that lim, ;- |{k € I, : pr # q1}| = 0,
then A (Sy, p) = A (Sp, q) and T'(Sy, p) =T (Sp, q).

Proof. Assume v € A (Sp, p), then there exists a §-nonthin subsequence (p),-
of the sequence p = (py) that converges to .
Since, lim, h% Hk el : ke K, p,#q}| =0, it follows that

1
1imsuph—|{k€],,:kEK,pkzqu>0 (10)

Therefore, there exists a §-nonthin subsequence (¢), of the sequence ¢ = (qy)
that converges to . This shows that v € A (Sy, q) and therefore A (Sp,p) C

A (Sp, q). By symmetry we have A (Sy, q) C A (Sp,p). Hence we have
A (Sp,p) = A(Sp,q). Similarly we can prove I' (Sp,p) = I'(Sp,q). B



52 Meenakshi et al.

Theorem 2.6 Let 0 = (k) be a lacunary sequence and p = (pg) be a sequence
n (V,9,1,7"), then we have

(¢) If liminf, ¢. > 1 then A (Sp,p) C A(S, p);

(7) If lim sup, ¢, < oo then A(S,p) C A (Sp,p) and

(737) If 1 < liminf, ¢, < limsup, ¢. < oo then A(S,p) = A (S, p).

Proof. (i) Let liminf, ¢, > 1, then there exists a 6 > 0 such that ¢, > 146
for sufficiently large r which 1mphes that kr < &L Let u € A(Sp,p), then
by definition, there exists a set K = {k(j) : j € N} such that lim;_, pr(j)y = p
and

1
limsuph— H{k(j) €l :j €N} >0 (11)

r—00 T

Since,

—|{k<><k JENY > L |{k(j) €L, :j €N}

it follows by (11) that

hmsupk— {k(j) < k.:jeN} >0.

r—00

Since (pk(j)) is already strongly convergent to pu, it follows that p € A (S,p).
Hence we have A (Sg,p) C A (S, p).

() If lim sup, g, < oo, then there exists a real number H such that ¢, < H
for all ». Without loss of generality, we can assume H > 1. Now for all r,

hr o kr - krfl
kr—l B kr—l

=q.— 1< H-1

Now, Let p € A(S,p), then by definition there is a set K = {k(j):j € N}
with 0 (K) > 0 and lim; o prjy = - Let N, = |{ke I, : ke K}| = |KN L]
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and t, = ]X—T’ For any integer n satisfying k,_; <n < k., we can write

1

1
Sk <nike KN < |{k <k ke K}
n

r—1

1
k'r—l

{N1+ No+ N3+ ---+N,}

1
kr—l

{tih1 + tohy + tshs + - -+ t.h,}

1 h,
== D hti
Sl h Z k1

S —1 h (A2
Zi:l 1 =1

Suppose t, — 0 as r — oo. Since 6 is a lacunary sequence and the first part on
the right side of above expression is a regular weighted mean transform of the
sequence t = (t,), therefore it too tends to zero as r — oo. Since n — oo as
r — 00, it follows that § (K) = 0 which is a contradiction as ¢ (K) # 0. Thus
we have lim, _,, ¢, # 0 and therefore by definition dg(K) # 0. This shows that
p € A(Sp,p). Hence A(S,p) C A(Sy,p).

(737) This is an immediate consequence of (7) and (7).

Theorem 2.7 Let 0 = (k) be a lacunary sequence and p = (px) be a sequence
in (V,9,7,7), then we have,

() If liminf, ¢, > 1 then I' (Sy, p) C I'(S, p);

(7) If lim sup, ¢, < oo then I'(S,p) C I'(Sy,p) and

(z3i) If 1 < liminf, ¢, < limsup, ¢, < oo then I'(S,p) = I' (S, p).
Proof for the theorem, goes on the similar lines as for Theorem 2.6, so is
omitted here.
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