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Abstract
In this paper, we established some sufficient conditions for the oscillation

of second order neutral difference inequalities

(−1)δx(n)
{

∆2z(n) + (−1)δq(n)f(x(σ(n)))
}
≤ 0, n ≥ n0 (∗)

where δ = 0 or δ = 1, z(n) = x(n) + p(n)x(n − τ), τ is a positive integer,
{p(n)}, {q(n)} are sequences of real numbers, {σ(n)} is a sequence of nonneg-
ative integers and f : R → R where R is the set of real numbers. There are
proved sufficient conditions under which every bounded solution of (∗) is either
oscillatory or lim infn→∞ |x(n)| = 0.

Keywords: Neutral difference equation, oscillation, oscillating coefficients.

1 Introduction

Consider the second order neutral difference inequalities

(−1)δx(n)
{

∆2z(n) + (−1)δq(n)f(x(σ(n)))
}
≤ 0, n ≥ n0, (Eδ)

where δ = 0 or δ = 1, z(n) = x(n) + p(n)x(n − τ), τ is a positive integer,
{p(n)}, {q(n)} are sequences of real numbers, {σ(n)} is a sequence of nonneg-
ative integers and f : R→ R where R is the set of real numbers.
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The symbol ∆ denotes the forward difference operator defined by
∆x(n) = x(n+1)−x(n), ∆ix(n) = ∆ (∆i−1x(n)), i = 1, 2, 3, ... and ∆0 = 1.

Recently several authors have been studying the oscillatory properties of
solutions of neutral delay and advanced difference equations and inequalities of
the first and higher order. In the oscillation theory of difference equations and
inequalities, one of the important problems is to find sufficient conditions that
every (bounded) solution of (Eδ) is either oscillatory or tends to zero as n→∞.

Let m = min {infn≥n0 σ(n), n0 − τ} . By a solution of (Eδ), we mean a real
sequence {x(n)} , n ∈ N(m) = {m,m+ 1,m+ 2, ...} satisfy (Eδ). We consider
only such solutions which are non trivial for all large n. A solution of (Eδ) is
said to be oscillatory if it is neither eventually positive nor eventually negative,
otherwise it is called nonoscillatory.

In this paper, we give some new aspects in the study of the oscillatory
properties of solutions of the inequalities (Eδ) with oscillating coefficients q(n).
With respect to the oscillation of delay difference equation with oscillating co-
efficients, reader can refer to [6, 7]. For the several background on difference
equation, one can refer to [1− 5].

Throughout this paper, we define

N(a) = {a, a+ 1, a+ 2, ...}
and

N(a, b) = {a, a+ 1, a+ 2, ..., b}
where a and b are integers with a ≤ b.

The following conditions are assumed to be hold throughout the paper.

(c1) limn→∞ σ(n) =∞.

(c2) {q(n)} is allowed to oscillate on N(n0).

(c3) {p(n)} and {q(n)} are not identically zero.

(c4) uf(u) > 0 for u 6= 0.

As a starting point, we introduce the following lemmas that are required
for the proof of our main results.
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Lemma 1.1 Let {x(n)} be a bounded solution of (Eδ) and {p(n)} be a
bounded sequence. Set

z(n) = x(n) + p(n)x(n− τ). (1)

Then the sequence {z(n)} is bounded.

Proof. The proof of Lemma is evident.

Lemma 1.2 Let {f(n)}, {g(n)} be sequences of real numbers on N(n0) and
τ be an integer such that

f(n) = g(n) + p(n)g(n− τ), n ≥ n0 + max {0, τ} . (2)

Assume that p(n) is one of the following ranges:

(i) p1 ≤ p(n) ≤ 0,

(ii) 0 ≤ p(n) ≤ p2 < 1,

(iii) 1 < p3 ≤ p(n) ≤ p4.
Suppose that g(n) > 0 for n ≥ n0, lim infn→∞ g(n) = 0 and that limn→∞ f(n) =
L ∈ R exists. Than L = 0.

Proof. From (2), we see that

f(n+ τ)− f(n) = g(n+ τ) + [p(n+ τ)− 1]g(n)− p(n)g(n− τ). (3)

Let {nk} be a sequence of integers such that

lim
k→∞

nk =∞ and lim
k→∞

g(nk) = 0. (4)

We should prove the lemma when (i) holds. The cases where (ii) or (iii)
holds are similar and will be omitted. By replacing n by nkin (3) and by using
(4) and the fact that {p(n)} is bounded, we obtain

lim
k→∞

[
g(nk + τ)− p(nk)g(nk − τ)

]
= 0.

As g(nk+τ) > 0 and p(nk)g(nk−τ) ≤ 0, it follows that limk→∞ p(nk)g(nk−τ) =
0 and so

L = lim
k→∞

f(nk) = lim
k→

[
g(nk)− p(nk)g(nk − τ)

]
= 0.

The proof is complete.
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Lemma 1.3 Let {f(n)}, {g(n)} and {p(n)} be sequences of real numbers
and τ be a positive integer such that

f(n) = g(n) + p(n)g(n− τ) for n ≥ n0 + τ.

Assume that 0 < g(n) ≤ g0 < ∞ and limn→∞ f(n) = 0. In addition, we
suppose that there exists constants p1, p2 such that either

−1 < p1 ≤ p(n) ≤ 0 or 0 ≤ |p(n)| ≤ |p1| < 1, (5)

or
p(n) ≤ p2 < −1. (6)

Then
lim
n→∞

g(n) = 0.

Proof. (i) Let (5) holds. Then

g(n) = f(n)− p(n)g(n− τ) ≤ f(n) + |p1| g(n− τ), n ≥ n0 + τ.

By iteration, for sufficiently large n, we have

g(n) ≤ f(n)+|p1| f(n−τ)+|p1|2 f(n−2τ)+...+|p1|k−1 f(n−(k−1)τ)+|p1|k g(n−kτ).

The last relation we can written in the form

0 < g(n+ kτ) ≤ f(n+ kτ) + |p1| f(n+ (k− 1)τ) + |p1|2 f(n+ (k− 2)τ) + ...+

+ |p1|k−1 f(n+ τ) + |p1|k g(n)

for sufficiently large n.

In view of limn→∞ f(n) = 0, for any ε1 > 0 there exists sufficiently large N
such that

|f(n)| < ε1 for n ≥ N.

Then

|g(n+ kτ)| < ε1
1

1− |p1|
+ |p1|k g0, n ≥ N. (7)

Therefore for any ε > 0 there exists ε1 and k = k0 such that

ε1
1 + p1

+ |p1|k0 q0 < ε.

Then from (7) in view of the last relation, we have

lim
n→∞

g(n) = 0.
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(ii) Let (6) hold. Then from p(n)g(n − τ) = f(n) − g(n) with regard to
(6), we get

g(n) ≤ 1

p2
(f(n+ τ)− g(n+ τ)) , n ≥ n0 + 2τ.

By iteration for sufficiently large n, we have

g(n) ≤ 1

p2
f(n+τ)− 1

p22
f(n+2τ)+...+(−1)k−1

1

pk2
f(n+kτ)+(−1)k

1

pk2
g(n+kτ).

In view of limn→∞ f(n) = 0, for any ε1 > 0, there exists sufficiently large N
such that |f(n)| ≤ ε1, for n ≥ N . Then

|g(n)| ≤ ε1
|p2| − 1

+
g0

|p2|k
.

Then analogously as in the case (i) we obtain limn→∞ g(n) = 0.

Lemma 1.4 Let {w(n)}∞n=n0
and {v(n)}∞n=n0

be two sequences of real num-
bers. If the limit limn→∞ [w(n)v(n) + v(n+ 1)] exists in the extended real line
R∗, then the limit limn→∞ v(n) exists in R∗

Proof. If the conclusion is false, then there are numbers ξ and η such that

lim inf
n→∞

v(n) < ξ < η < lim sup
n→∞

v(n).

We are able to select an increasing sequence {nk}∞k=1 with the following prop-
erties:

lim
k→∞

nk =∞, lim
k→∞

∆v(nk) = 0, (8)

v(n2k−1) < ξ, v(n2k) > η, k = 1, 2, 3, .... (9)

In view of (8) we see that the limit

lim
k→∞

[w(nk)∆v(nk) + v(nk + 1)] = lim
k→∞

v(nk + 1)

exists in R∗. However, this is a contradiction, since (9) implies that the se-
quence {v(nk)}∞k=1 cannot have a limit in R∗.

We are now in a position to state and prove our main results.
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2 Main Results

In addition we suppose that

(C1) There exists two sequences {aj}∞j=1 and {bj}∞j=1 of nonnegative integers
such that ∞⋃

j=1

N(aj, bj) ⊂ N(n0), lim
j→∞

aj =∞,

and for any j = 1, 2, 3, ...,

aj + τ < bj < aj+1, aj+1 − aj ≤M <∞.

(C2) q(n) ≥ 0 for n ∈ ⋃∞j=1N(aj, bj) and lim infn→∞ q(n) = 0.

(C3) Let there exists constants p1 and p2 such that the following holds:

p1 ≤ p(n) ≤ p2, n ≥ n0.

Denote

Ak =
∞⋃
j=k

N(aj, bj)

Theorem 2.1 Let (C1), (C2), (C3) hold. If

lim
j→∞

bj−1∑
n=aj

q(n) =∞, (10)

then every bounded solution of (E0) is either oscillatory or limn→∞ |x(n)| = 0.

Proof. Let {x(n)} be a nonoscillatory bounded solution of (E0). With-
out loss of generality, we suppose that {x(n)} is an eventually positive and
bounded solution of (E0). Then there exist an integer n1 ≥ n0 such that
{x(n)} is bounded, x(n− τ) > 0 and x (σ(n)) > 0, for all n ≥ n1.

Then from (E0), we get that {∆z(n)} is decreasing and {z(n)} is monotone
on A1 ∩N(n1).

In view of that {x(n)} is bounded and x(n) > 0 on N(n1), there exists a
constant K and n2 ≥ n1 such that |f (x(σ(n)))| ≤ K for all n ≥ n2. With
regard to (C2) for any there exists a n3 ≥ n2 such that

q(n) ≥ −δ/KM for n ≥ n3. (11)

Then from (E0) with regard to (11), we have ∆2z(n) ≤ δ/M for n ≥ n3.
Summing the last inequality from bj to aj+1 − 1 (bj ≥ n3, j ∈ N) we have
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∆z(aj+1) ≤ ∆z(bj) + δ, bj ≥ n3, j ∈ N. (12)

(I) Let there exists a j0 ≥ 1 such that ∆z(n) < 0 for all n ∈ Aj0 ∩N(n3).
Summing (E0) from aj to bj − 1, j ≥ j0 and using that ∆z(n) < 0 we obtain

bj−1∑
n=aj

q(n)f (x(σ(n))) ≤ ∆z(aj)−∆z(bj) ≤ −∆z(bj). (13)

(a) Let infj≥j0 {∆z(bj)} > −∞, then from (13) we have

bj−1∑
n=aj

q(n)f (x(σ(n))) <∞, aj ≥ n3, j ≥ j0. (14)

The last inequality with regard to (10) and the property of the function f
and the sequence {σ(n)} implies lim infn→∞ x(n) = 0.

(b) Let infj≥j0 {∆z(bj)} = −∞. Then in view of (12) and that {∆z(n)}
is eventually negative and decreasing sequence on Aj0 ∩ N(n3), we get that
{z(n)} is unbounded below. Then this, in view of (C3) and Lemma 1.1, we
get that {x(n)} is unbounded, which is a contradiction to the assumption that
{x(n)} is a bounded sequence.

(II) Let there exists a sequence {ir}∞r=1, ir ∈ N such that ∆z(n) > 0 and
{∆z(n)} is decreasing for all n ∈ Air ⊂ N(n0). Then summing (E0) from air
to bir − 1, r ≥ 1, we have

bir−1∑
n=air

q(n)f (x(σ(n))) ≤ ∆z(air)−∆z(bir) ≤ ∆z(air). (15)

Because {x(n)} is bounded on N(n1), by Lemma 1.1 we get that {z(n)}
is bounded on N(n1). Therefore with regard to (12) and the monotonicity of
{z(n)}, {∆z(n)} we have supir≥i1 {∆z(air} <∞. Thus from (15) we get (14),
which implies as in the case (Ia) that lim infn→∞ x(n) = 0.

The proof of the Theorem is complete.

Theorem 2.2 Let (C1), (C2), (C3) and (10) hold. Then every bounded
solution of (E1) is either oscillatory or lim infn→∞ |x(n)| = 0.

Proof. Let {x(n)} be a nonoscillatory bounded solution of (E1). Without
loss of generality, we may assume that {x(n)} is an eventually positive and
bounded solution of (E1). Then there exists an integer n1 ≥ n0 such that
{x(n)} is bounded, x(n− τ) > 0 and x(σ(n)) > 0, for all n ≤ n1. If q(n) > 0
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for any n ∈ A1∩N(n1), then from (E1) we get that {∆z(n)} is increasing and
{z(n)} is monotone on A1 ∩N(n1).

Analogously as in the proof of Theorem 2.1 we have (11). Then from (E1)
in view of (11), we have

∆2z(n) ≥ −δ/M for n ≥ n2.

Summing the last inequality from bj to aj+1 − 1, bj ≥ n2, j ∈ N , we obtain

∆z(aj+1) ≥ ∆z(bj) + δ, bj ≥ n2, j ∈ N. (16)

(I) Let there exists a j0 ≥ 1 such that ∆z(n) > 0 for all n ∈ Aj0 , aj0 ≥ n2.
Summing (E1) from aj to bj − 1 for any j ≥ j0, we obtain

bj−1∑
n=aj

q(n)f (x(σ(n))) ≤ ∆z(bj)−∆z(aj) ≤ ∆z(bj). (17)

(a) Let supj≥j0 {∆z(bj)} < ∞, then from (17) in view of (10) and the
property of the function f and the sequence {σ(n)}, we have

lim inf
n→∞

x(n) = 0.

(b) Let supj≥j0 {∆z(bj)} = ∞, then in view of (16) and the fact that
{∆z(n)} is increasing and positive for all n ∈ Aj0 , we have that {z(n)} is
unbounded above. Then in view of (C3) and of Lemma 1.1 we get that {x(n)}
is unbounded, which is a contradiction.

(II) Let there exists a sequence {ir}∞r=1 , ir ∈ N such that ∆z(n) < 0 and
{∆z(n)} is increasing all n ∈ Air ⊂ N(n0). Then summing (E1) from air to
bir − 1, r ≥ 1, we obtain

bir−1∑
n=air

q(n)f (x(σ(n))) ≤ ∆z(bir)−∆z(air) ≤ −∆z(air). (18)

In view of Lemma 1.1 and that {x(n)} is bounded and positive on N(n1),
we have that {z(n)} is bounded on N(n1). Then with regard to (16) and the
monotonicity of {z(n)}, {∆z(n)} we get

sup
ir≥i1
{−∆z(air)} <∞.

Therefore from (18) we get

bir−1∑
n=air

q(n)f (x(σ(n))) <∞.
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The last relation in view of (10) and the property of the function f and the
sequence {σ(n)} we get that

lim inf
n→∞

x(n) = 0.

The proof of Theorem 2.2 is complete.

Now denote

q+(n) = max {0, q(n)} , q−(n) = max {0,−q(n)} , n ≥ n0. (19)

Then q(n) = q+(n)− q−(n).

Theorem 2.3 Let (C3) hold. In addition we suppose that

∞∑
n=n0

q+(n) =∞ (20)

and
∞∑

n=n0

q−(n) <∞. (21)

Then every bounded solution of (E0) is oscillatory, or lim infn→∞ |x(n)| = 0.

Proof. Let {x(n)} be a bounded nonoscillatory solution of (E0). Without
loss of generality, we suppose that {x(n)} is an eventually positive and bounded
solution of (E0). Then there exists an integer n1 ≥ n0 such that {x(n)} is
bounded, x(n−τ) > 0 and x(σ(n)) > 0, for n ≥ n1. Analogously as in the proof
of Theorem 2.1, there exists K > 0 and n2 ≥ n1, such that |f(x(σ(n)))| ≤ K
for n ≥ n2. Then the inequality (E0) in view of (19) we can write in the form

∆2z(n) + q+(n)f (x(σ(n)))−Kq−(n) ≤ 0, n ≥ n2. (22)

With regard to (21) there exists a L > 0 such that
∑∞
n=n2

q−(n) = L. Then
(22) via the estimation (19) we have ∆z(n) ≤ ∆z(n2) + KL, i.e., {∆z(n)}
is bounded above. If

∑∞
n0
q+(n)f (x(σ(n))) = ∞, then the estimation (22)

implies that limn→∞∆z(n) = −∞ and therefore limn→∞ z(n) = −∞. Thus in
view of Lemma 1.1 and (C3) contradicts the fact that {x(n)} is bounded on
N(n1). Therefore

∞∑
n=n0

q+(n)f (x(σ(n))) <∞. (23)

Then (23) in view of (20) and the properties of function f and the sequence
{σ(n)} implies that
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lim inf
n→∞

x(n) = 0 (24)

The proof of Theorem 2.3 is complete.

Now we consider the equation

∆2z(n) + q(n)f (x(σ(n))) = 0, n ≥ n0 (E)

as a special case of (E0).

Theorem 2.4 Let either (5) or

−∞ < p3 ≤ p(n) ≤ p2 < −1 (25)

hold. In addition we suppose that

∞∑
n=n0

nq+(n) =∞ and (26)

∞∑
n=n0

nq−(n) <∞. (27)

Then every bounded solution of (E) is either oscillatory or

lim
n→∞

x(n) = 0 and lim
n→∞

∆iz(n) = 0, i = 0, 1.

Proof. Let {x(n)} be a bounded nonoscillatory solution of (E). Without loss
of generality, we suppose that {x(n)} is an eventually positive and bounded
solution of (E). Then there exist an integer n1 ≥ n0 such that {x(n)} is
bounded, x(n− τ) > 0 and x(σ(n)) > 0 on N(n1). Multiplying (E) by n and
then summing from n2 to n− 1, we have

u(n) =
n−1∑
s=n2

s∆2z(s) =
n−1∑
s=n2

sq−(s)f (x(σ(s)))−
n−1∑
s=n2

sq+(s)f (x(σ(s))) . (28)

If
∑∞
n=n2

nq+(n)f (x(σ(n)) =∞, then in view of (27) and the boundedness
of {x(n)} from (28), we get limn→∞ u(n) = −∞. By Lemma 1.4 there exists
limn→∞ z(n) = z0 ∈ R∗. Let |z0| < ∞. Then limn→∞ u(n) = −∞ implies
limn→∞ n∆z(n) = −∞. From this relations we get limn→∞ z(n) = −∞ which
contradicts the fact that |z0| < ∞. Therefore limn→∞ |z(n)| = ∞. This in
view of Lemma 1.1 gives a contradiction to the fact that {x(n)} is bounded.
Therefore
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∞∑
n=n2

nq+(n)f (x(σ(n))) <∞. (29)

Then (29) in view of (26) and the property of f and the sequence {σ(n)} im-
plies that (24) holds.

Now, letting n → ∞ in (28), then using the boundedness of {x(n)}, (27),
(29) and the property of f , we have

lim
n→∞

[
n∆z(n)− z(n+ 1)

]
= L1, |L1| <∞. (30)

With regard to Lemma 1.4 and the fact that {z(n)} is bounded, we obtain
that limn→∞ z(n) = L, |L| < ∞. Then if we use either (5) or (25), (24) and
Lemma 1.2, we obtain that L = 0. From (30) in view of L = 0, we get that
limn→∞∆z(n) = 0. We proved that limn→∞∆kz(n) = 0, k = 0, 1. Then if we
use Lemma 1.3, we have limn→∞ x(n) = 0.

The proof of the Theorem 2.4 is complete.
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