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Abstract

In this paper, we have studied the nerve isgyhction potential impulse),
and amplitude of the nerve impulse, and then wengit to fit a catastrophic
model for the differential equation which represemihe Nerve cell behavior
specially excitation of the nerve cell and its citaphic phenomena by methods
of catastrophe theory. The main aim of this pagetoifind a catastrophe model
to represent the catastrophic behavior of nervdscelnd we have shown that
there is a catastrophic behavior of the nerve aalll that there is a mathematical
model to represent a Nerve Cell behavior. Furtheeno Nerve behavior is of
Cusp type Catastrophe.

Keywords: Nerve Cell behavior, Mathematical Catastrophe, Gataphic
Model, Cell Membrane.

1 I ntroduction

In this paper, we have illustrated the synaptic edl potentials on the folding
part of the cusp surface where x is the Nerve isgparameter that control the
frequency depending on the parametef Wwhich appears in the differential
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equation and control jumps of the excitation of \Wecell when the parameter
crosses the bifurcation set (BS). We divided tlaiggr into seven sections the first
section is the introductory, in section 2 we stddiatastrophe theory-elementary
catastrophes, In section 3 we studied applicatibncatastrophic model to
represent a nerve cell and we studied the Nerdeacel its behavior. Also we
studied the nonlinear differential equation whidds ha relationship with Nerve
cell behavior. In Catastrophe Theory, manifolde ased to explain sudden
changes in the course of an event due to shiftenvironmental factors. In
catastrophe theory: There are seven elementaryg tyfjpeatastrophes the first four
catastrophe geometries [7] are: Fold, Cusp, Swadlibw and Butterfly
catastrophe. Without going into the mathematictheir geometry, we need only
to observe that the Cusp manifold has one cuspt,painich is the point of
coming together of two folds in a sharp spike likeersection. The Swallowtall
manifold has two cusp points and the Butterfly rf@dihas three. Catastrophe
theory, in mathematics, a set of methods usedudysand classify the ways in
which a system can undergo sudden large chandashiavior as one or more of
the variables that control it, are changed contuslo Catastrophe theory is
generally considered as a branch of geometry bedfsvariables and resultant
behaviors are usefully depicted as curves or sestaand the formal development
of the theory is credited chiefly to the Frenchdiogist René Thom.

Catastrophe thegris a branch of bifurcation theory in the studydyhamical
systems.

Bifurcation theory studies phenomena characterigedudden jumps in behavior
arising from small changes in parameters, analyhow the qualitative nature of
equation solutions depends on the parameterspbatain the equation.
Catastrophe theory, which originated with the wofkhe French mathematician
René Thom in the 1960s, and became very popular tduthe efforts of
Christopher Zeeman in the 1970s, considers thei@dpsase where the long-run
stable equilibrium can be identified with the minim of a smooth, well-defined
potential function.

Small changes in certain parameters of a nonlisgstem can cause equilibriums
to appear or disappear, or to change from attrqdtnrepelling and vice versa
[10], leading to large and sudden changes of theer of the systems.

2 Elementary Catastrophes

Catastrophe theory analysdegenerate critical point®f the potential function

i.e. points where not just the first derivativet bue or more higher derivatives of
the potential function are also zero. These pa@rgscalled germs.

If the potential function depends on two or fewetivee variables, and four or
fewer active parameters, then there are only seeseric structures for these
bifurcation geometries, with corresponding standarchs into which the Taylor

series around the catastrophe germs can be tramedoby diffeomorphism (a

smooth transformation whose inverse is also smoofifjere are seven
fundamental types, with the names that system make a transition to a new
case, very different behavior[7].
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2.1 ThePotential Function of Cusp Type Catastrophe
The potential function of Cusp type catastropheis of theform
f(x)=x*+a+bx

The parameters a and b are called splitting anchaldiactors (respectively)

Let A=8a°+27b* =0

The bifurcation set is equal to the set[10]
{(ab): 8a%+27b? =0}

The diagram of cusp type catastrophe is shown below

Thom gave them. We will study only cusp types

If the factor a is slowly increased, the system t@low the stable minimum
point. But at a=0, the stable and unstable extremat. This is the bifurcation
point. At a>0 there is no stable solution. If a piogl system is followed through a
fold bifurcation, one therefore finds that as achess 0 the stability of the a<0
solution is suddenly lost

The potential function of the fold type catastrophef the form:

V(x)=x3+ ax. Sog—v =3x* + a.The equilibrium surface
X

X
fold bifurcation

isccjj—v = 0,ie. 3x* +a=0. Stable and unstable pair of extrema disappéas a

3  Applications

Scientists often describe events by constructingaahematical model. Indeed,
when such a model is particularly successful, isagd not only to describe the
events but also to explain them, if the model camdaluced to a simple equation.
It may even be called a law of nature.

Many phenomena of human behavior involve suddemgds bimodality,
hysteresis, and divergence. Catastrophe theoryestgygeveral models for such
behavior. A description of catastrophe theory isspnted that includes points of
special interest to psychologists and a sectiomathematical considerations. If
we attempt to find results in science we will todimathematical model to it and
then we project them to science.

Now we study a catastrophic model to representeenell as follows:
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3.1 Catastrophic Model to Represent a Nerve Cell
3.1.1 NerveCdl

The Main Parts of the Nerve Cell [9]

The nerve cell may be divided on the basis oftiiscture and function into three
main parts:

(2) the cellbody, also called the soma;

(2) numerous short processes of$bena called thedendrites and,

(3) the single long nerve fiber, th&on

These are described in Figure 1.
3.1.2 Nervous System

Nervous system, network of specialized tissue tbatrols actions and reactions
of the body and its adjustment to the environm¥&itually all members of the

animal kingdom have at least a rudimentary nengystem. Invertebrate animals
show vertebrate varying degree of complexity inrthervous systems, but it is in
the vertebrate animals [phylum chordate, subphyertebrata] that the system
reaches its greatest complexity. The nervous syssebuilt up of nerve cells,

called neurons, which are supported and protectedtbher cells. Of the 200

billion or so neurons making up the human nervorstesn, approximately half

are found in the brain. From the cell body of aidgpneuron extend one or more
outgrowths (dendrites), threadlike structures theaide and subdivide into ever-
smaller branches. The nervous system is dividemltimb parts: Central Nervous
System (CNS) and Peripheral Nervous System. Umdtifig of nervous system is
a neuron and the nervous system of human condigtgoomain types of cells:

Glia cells and Neurons. Neuron consists of cellybaad axon. cell body consists
Nucleons and has dendrites which have relatiorfshipransition or reception the
impulse and the cell body receives the electricgulse from other neurons by
their dendrites .The body of a nerve cell (see §&rhadé and Ford, 1973)) is
similar to that of all other cells. The cell bodgngrally includes the nucleus,
mitochondria, endoplasmic reticule, ribosome, atiteioorganelles. Nerve cells
are about 70 - 80% water; the dry material is al®@% protein and 20% lipid.

The cell volume varies between 600 and 70,000 |(&¢hadé and Ford, 1973)
The short processes of the cell body, the dendnigzeive impulses from other
cells and transfer them to the cell body. The effe#fcthese impulses may be
excitatory or inhibitory (see Fig 2)A cortical neuron may receive impulses from
tens or even hundreds of thousands

of neurons (Nunez, 1981). The long nerve fiber, dken, transfers the signal

from the cell body to another nerve or to a musdik. Mammalian axons are
usually about 1 - 20 um in diameter. Some axonarger animals may be several
meters in length. The axon may be covered withrsalating layer called the

myelin sheath [Fig 1] illustrates the construction of myelin sheathhieh is
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formed bySchwann cells™ The myelin sheath is not continuous but dividetd in
sections, separated at regular intervals bytites of Ranvier®

(1) named for the German physiologist Theodor Zehny 1810-1882, who first
observed the myelin sheath in 1838).

(2) named for the French anatomist Louis AntoinenRa, 1834-1922, who
observed them in 1878.
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Fig. 1

Nervous system, the system of cells , tissues pagahs that regulates the body's
responses to Nervous system internal and extetinallsvertebrates it consists of
the brain, spinal cord, nerves, ganglia, and paftthe receptor and affect or
organs. Axon expands from cell body and transtieeselectrical impulse from
Neuron. The axon surrounded by Myelin sheaths whictonconductor material
and nessasur for transferring electrical impulgdes.dollection of axons with each
other make the nerves, and nerves are divided timto types: Pre-Ganglion
Nerves and Post-Ganglion Nerves.[9]

Axons expend at their ends into synaptic terminatsch make contact with
nerves or other types of cells. if the nerves atsta muscle cell the junction is
called a nervous cular junction . Each nerve celkes contacts with thousands of
other nerves. Usually at the dendrites we notettiethemical transmitters carry
the signal across synopses. At the synaptic gapdtien potential ends. In most
cases further transmission of the signals requihesnical transmitter. there are a
few examples of electrical synapses known, but namst chemical, synapses
delay the signal : chemical transmission is sloWmn electrical transmission,
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chemical transmitters are made and stored in tegypaptic terminal .The nerve
carrying the impulse into the synapse is calledott@synaptic nerve

The nerve leaving the synapse is called the poaptynnerve (the Fig below
illustrates the Electrical and Chemical Transmisgio

Presynaptic Nerve Synaps e Postsynaptic Nerve
= A_, N =>
@
' 8
Electrical Transmission Electrical Transmission
Chemical
Transmission

* For transmission to occur the chemical transmitbeist be made and stored at
the presynaptic side.

*, Stored in membrane bound vesicles
*, Transmitter is ready to be released whenever tiongootential arrive

Excitatory postsynaptic potential: An electricalaoge in the membrane of a
postsynaptic neuron caused by the binding of anta®cy neuron transmitter
from a presynaptic receptor, makes it move likely & postsynaptic neuron to
generate an action potential because the transmdtte®nly on one side the
impulse can go in only one direction [6].

3.1.3. Nerveand Muscle Cdlls:

An important physical property [1] of the membrasethe change in sodium
conductance due to activation, the higher the maminvalue achieved by the
sodium conductance, the higher value of the sodaumcurrent and the higher the
rate of change in the membrane voltage .the resalthigher gradient of voltage,
increased local currents, faster excitation, amde@sed conduction velocity. The
decrease in the threshold potential facilitates tifiggering of the activation
process.

The capacitance of the membrane per unit lengtlerahtes the amount of
change required to achieve a certain potential thiedefore affects the time
needed to reach the threshold. Large capacitances/awith other parameters
remaining the same, mean a slower conduction uglociThe velocity also
depends on the resistivity of the medium inside antside the membrane since
these also affect the depolarization time constEm. temperature greatly affects
the time constant of the sodium conductance; aedserin temperature decreases
the conduction velocity [1].
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The above effects are reflected in an expressioivetk by Muler and Markin
(1978) using an idealized nonlinear ionic curramiction for the velocity of the
propagating nerve impulse in unmyelinated axory ti#ained

v = 3I'-.i'.:z2 max
'J rz":m'}rfh
Where v= velocity of the nerve impulse (m/s) .
la max = Maximum sodium current per length (A/m) .
Vi = threshold voltage (V) .

ri = axial resistance per unit length( /m) .
Cm = membrane capacitance per unit length (F/m) .

A myelinated axon can produce a nerve impulse ahlithe nodes of rangier. In
these axons the nerve impulse propagates from aae to another.

The membrane capacitance per unit length of a mgteld axon is much smaller
than in an myelinated axon. Therefore, the myetiaash [Fig 5] increases the
conduction velocity. The resistance of the axoptaper unit length is inversely
proportional to the cross-sectional area of thenaxiad thus to the square of the
diameter. the membrane capacitance per unit lasgthrectly proportional to the
diameter . Because the time constant formed fraptioduct controls the nodal
trans- membrane potential, it is reasonable to esgpphat the velocity would be
inversely proportional to the time constant. Ors thasis the conduction velocity
of the myelinated axon should be directly proparéiato the diameter of the axon.

3.1.4 Biodectric Function of the Nerve Cdl

The membrane voltage (Vi) of an excitable cell is defined as the poterdtaihe
inner surface®;) relative to that at the outeb{) surface of the membrane, i\&,

= (d)) - (dy). This definition is independent of the cause g potential, and
whether the membrane voltage is constant, periaticyo periodic in behavior.
Fluctuations in the membrane potential may be ifladsaccording to their
character in many different ways. The classifiaatior nerve cells developed by
Theodore Holmes Bullock (1959)[9]. According to Bk, these transmembrane
potentials may be resolved into a resting potergral potential change due to
activity. The latter may be classified into thre#edent types [9]:

1. Pacemaker potentials: the intrinsic activity of the cell which occursitihout
external excitation.

2. Transducer potentials across the membrane, due to external events. These
include generator potentials caused by eceptors or synaptic potential changes
arising at synapses. Both subtypes can be inhjoatoexcitatory.

3. As a consequence of transducer potentials, durisponse will arise. If the
magnitude does not exceed the threshold, the respaitl beno propagating. If
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the response is great enough\eave impulse [9] will be produced which obeys
the all-or-nothing law and proceeds unattenuatedgathe axon or fiber.
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Fig. 2
3.1.5 TheCup Catastropheand its Properties[9]
The general form of the cusp catastrophe is[7]:
V:R—R

Such that
V(x,a,b) = x* +ax® + bx

And a, b are parameters, depending on which théatxo value increases or
decreases as the values of a and b varying.

The set {(a, by R% is called Control space (see Fig 3). The catastrophic surface
(see Fig 3) is represented by the expression’[7]:

v,
0x

That is,
A+ 2ax+b=0.

We are considering (V) and (x) also to be functiohshe control variables a, b.
Note that a, b are called splitting factor, norrfedtor respectively and x is the
state. The curve (the boundaries of excitation staiphe) of folding part
represented by the expressions [7]:
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0 o\
_V:O and _V2:

0 X 0 X

When we eliminate the variable x in these two eignatwe obtain the bifurcation
set {(a, b) :8&27/=0} this curve is the boundaries of cell excitatio

catastrophe.

. The input (control) space is two-dimensional; twe tontrol parameters
are namea andb.

. The output space is one-dimensional (the nerve Isejpu

In a three-dimensional space data are put togethar surface which seems split.
Above some parts of the control space, there acestreets of the data surface
(see Fig 3). When the representative point of yiséesn

. goes on the rip, it jumps from one sheet to thermdime.

. The fig. 3 describes the cusp surface. There arggubut there is also
continuous pathway from green to blue.

. The green color is meant the maximum value of tketaion of nerve

cell the blue color is meant the minimum value leé excitation, which
jumps from one sheet to the other one.

. One can fit a cup catastrophic model in the Brain.

. Now, we have to interpret this split surface.

F,
b

Behaviour space

(=2

Control space /

Fig. 3 The cusp as a model for the nerve impulse behavior

The excitation potential V is a function of x anghtrolled by a and b, what we
write V,yx). The system may only choose x. We know thatsiystem havéwo
possible behavior for some inputs; so we are seggclor excitation potential
VadX) which may have two minima (see Fig 6).
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3.1.6 Nonlinear Differential Equation and Nerve System:

The general form of the nonlinear differential etipra of the nerve impulse
considered here is written as follows:-

y+ g0 i/+y +eca y3 =¢(1-o)cosot . (¢ =d/dt) (6.1)

Whereg is very small parameter.

If =0 then we have the linear form in which case veerante interested because
catastrophic behavior of the nerve cell appear amlthe nonlinear differential
equation.

For ¢£0 , we proceed to obtain the approximate solutibrequation (6.1) as
follows

Lety =v (6.2)

And, from equations 6.1 and 6.2, we have

V=-cay-y-ca y3 +&(1-a)cosnt 3.

To satisfy equations 6.2 and 6.3, we further assinaie

y(t)=A cosft+¢) (6:4)
v(t)=-A sin@t+¢) (664)

where A is considered as a nerve impulse amplitude.

Substitute eq.s (6.4and (6.4) into (6.2) and (6.3) we can find two
simultaneous equations ,solving them we can firertbn-autonomous systems

A and(gand integrating w.r.t the time t from O to/@.
We get the following response equation[8]:

A2 (F0A>-20)*=(1-0) A2 (6.5)
let x = A? then after some calculation we get

314ux3 — Jwx? + (4w’ + o)X - (1 —a)® =0 &P

By some change of coordinate we can eliminate ¢éha thich containsthen
(6.6) becomes

X —16/3* (0%0) — 1/4] x + 16/9¢:* + va) = 0 (6.7)
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Here we note that the changevicause the change in frequency value.
Or X +ax+b=0 (6.8)

Where

a= —16/3p* (0*0) — 1/4] and b= 16/8¢ + ®a)
The cubic equation (6,8) can have one or theat noots (synaptic or Local
potentials as shown on Fig 4 ) and the conditiantie existence of three real
roots is[8]

4a° +27b* <0

P )
ot B =0 [m*] ‘n|| Time
: Merve

impulse

Threshold ...

Depolarizing
(Excitatory)

v b

Vm= & F

Hyperpolarizing

Inhibit MERYE

(Inhibitary) IMPLILSE
RESTING  PACEMAKER GENERATOR AND SYNAPTIC LOCAL
POTENTIAL POTEMTIALS RECEPTOR POTENTIALS POTENTIALS

POTEMTIALS

Fig. 4

The surface represented by equation (6.8) candtte@dlas shown on figure 5

gynaptic or Local potentials

Fig 5 lllustrates the Nerve impulse (triple curve) aswsh on Fig 4

Now, after integration of equation (6.8) with resp®® x , the excitation potential
function is obtained as follows:

V(x,a,b) = 1/4% + 1/2axX + bx (6.9)
X is the amplitude of the Nerve impulse
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T

* ® 0
behaviour

potential

Fig 6 Discuses the catastrophic surface and behavigotehtial function (6.9)

Conclusion

There are the main results of the paper

Proposition 1 There is a catastrophic behavior of the nerve cell
Proposition 2 There is a mathematical model to represent a Neellebehavior
Proposition 3 Nerve behavior is of Cusp type Catastrophe
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