
 
Gen. Math. Notes, Vol. 12, No. 2, October 2012, pp. 24-31 
ISSN 2219-7184; Copyright © ICSRS Publication, 2012 
www.i-csrs.org 
Available free online at http://www.geman.in 

 

Some Strong Forms of Semiseparated Sets 
and Semidisconnected Space 

 

Abdullah M. Abdul-Jabbar 
 

Department of Mathematics, College of Science,  
University of Salahaddin-Erbil / Kurdistan Region Iraq 

E-mail: m1abdullah@yahoo.co.uk 
 

(Received: 27-5-12/ Accepted: 7-11-12) 

 
Abstract 

     The concept of semi-open sets in topological spaces was first introduced by 
Levine. Also the concept of θ-semi-open sets in topological spaces was introduced 
by Noiri, which is stronger than semi-open sets. Now, we introduce a new type of 
separated sets called θ-semiseparated sets, which is stronger than semiseparated 
sets due to Dube and Panwar, and we give some properties of it, furthermore we 
introduce a new type of disconnectedness interms of θ-semiseparated sets called 
θ-semidisconnected space, which is stronger than semi-disconnectedness due to 
Dorsett. Moreover, we give some characterizations and properties of it. It is 
shown that, a space X is θ-semiconnected if and only if every θs-continuous 
function from X to the discrete space {0, 1} is constant. 

     Keywords: θ-semi-open sets, θ-semiseparated sets and  θ-semidisconnected.      

1      Introduction 

The symbols X and Y represent topological spaces with no separation axioms 
assumed unless explicitly stated. Let S be a subset of X, the interior and closure of 
S are denoted by Int(S) and Cl(S), respectively. A subset S of X is said to be semi-
open [8] if and only if S ⊂ Cl(Int((S))). A subset S of X is said to be θ-semi-open 
set [10] if for each x ∈ S, there exists a semi-open set G in X such that x ∈ G ⊂ 
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Cl(G) ⊂ S. The complement of each semi-open (resp. θ-semi-open) sets is called 
semi-closed (resp.  θ-semi-closed). A point x is said to be in the θ-semi-closure of  
a set S [5], denoted by  sClθ(S), if S ∩ Cl(G) ≠ φ, for each G∈SO (X) containing 
x. If S = sClθ(S), then S is called θ-semi-closed. For each G ∈SO (X), Cl(G) is                  
θ-semi-open and hence every regular closed set is θ-semi-open. Therefore, 
x∈sClθ(S) if and only if S ∩ E ≠ φ, for each θ-semi-open set E containing x.                        
A space X is said to be semi-disconnected [2] if there exist two semi-open sets                     
A and B such that X = A ∪ B and A ∩ B = φ, otherwise it is called semi-
connected. Two non-empty subsets A and B of a topological space X are said to 
be semiseparated [3] if and only if A ∩ sCl(B) = sCl(A) ∩ B = φ. In a topological 
space X, a set which can be expressed as the union of two semiseparated sets is 
called a semi-disconnected space [3]. A function f : X→Y is said to be                             
θs-continuous [7] if for each  x ∈ X and each open set B of Y containing f (x), 
there exists a semi-open set U of X  containing x such that  f (Cl(U)) ⊂ B. 
 

2 θθθθ-Semiseparated Sets 
    
In this section we introduce a new type of  separated sets called θ-semiseparated 
sets, and some characterizations and properties of it will be given. 
We start this section with the following definition. 
 
Definition 2.1 Two non-empty subsets A and B of a topological space X are said 
to be θ-semiseparated if A ∩ sClθ (B) = sClθ (A) ∩ B = φ. 
 
Lemma 2.2 Every θ-semiseparated sets is semiseparated. 
 
Lemma 2.3 Every two θ-semiseparated sets in topological spaces are disjoint. 
 
Proof Assume that A and B are two  θ-semiseparated sets. Then, A ∩ sClθ (B) = 
sClθ (A) ∩ B = φ and hence (A ∩ sClθ (B)) ∪ (B ∩ sClθ (A) ) = φ. By Theorem 
1.2.2 of [1], sClθ (C) = C ∪  θsd(C). Therefore, (A ∩  (B ∪ θsd(B))) ∪ (B ∩ (A ∪ 
θsd(A))) = φ. Then, ((A ∩ B) ∪ (A ∩ θsd(B)) ∪ ((B ∩ A) ∪ (B ∩ θsd(A)) = φ . 
Thus, A ∩ B = φ. 
The converse of the above two lemmas are not true ingeneral as it is shown in the 
following examples. 
 
Example 2.4 Let X = {a, b, c, d} and  τ = {φ, X, {a, b}, {c}, {a, b, c}}. Let A = 
{a} and B = {c, d} be two subsets of  (X, τ). Then, SO(X, τ) = {φ, X, {c}, {a, b}, 
{c, d}, {a, b, c}, {a, b, d}} and θSO(X, τ) = {φ, X, {c, d}, {a, b, d}}. Therefore, 
{a} and {c, d} are two semiseparated sets, but they are not θ-semiseparated sets 
since {a} ∩ sClθ ({c, d}) = {a} ∩ X ≠ φ. 
 
Example 2.5 If we use the same topology (X, τ) in Example 2.4 and we take                    
Y = {a, b} and W = {c, d} are two subsets of  (X, τ). Then, Y and W are disjoint, 
but they are not θ-semiseparated sets. 
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Proposition 2.6 If A and B are two θ-semiseparated subsets of a topological 
space X, C ⊂ A  and D ⊂ B, then C and D are also θ-semiseparated. 
 
Proof It is obvious. 
 
Theorem 2.7 Two θ-semi-closed subsets A and B of a topological space X are                  
θ-semiseparated if and only if they are disjoint. 
 
Proof The first direction follows from Lemma 2.3 and the second direction it is 
obvious. 
 
Theorem 2.8 Two θ-semi-open subsets A and B of a topological space X are                        
θ-semiseparated if and only if they are disjoint. 
 
Proof The first direction follows from Lemma 2.3. 
Conversely, assume that A and B are disjoint. Since A and B are two θ-semi-open 
sets, then (X \ A) and (X \ B) are θ-semi-closed. Therefore, sClθ (X \ A) = (X \ A) 
and sClθ (X \ B) = (X \ B). Since A and B are disjoint, then A ⊂ (X \ B) and B ⊂ 
(X \ A). Therefore, sClθ (A) ⊂ sClθ (X \ B) and sClθ (B) ⊂ sClθ (X \ A). This 
implies that, sClθ (A) ⊂ (X \ B) and  sClθ (B) ⊂ (X \ A). So, (sClθ (A) ∩ B) ⊂                       
((X \ B) ∩ B) = φ and (A ∩ sClθ (B)) ⊂ (A ∩ (X \ A)) = φ. Therefore, sClθ (A) ∩ 
B = A ∩ sClθ (B) = φ. Hence A and B are θ-semiseparated sets. 
    
 
3 θθθθ-Semidisconnectedness and θθθθ-Semiconnectedness 
 
In this section we introduce two new types of disconnected and connected spaces 
interms of θ-semiseparated sets called θ-semidisconnected and θ-semiconnected 
spaces, some characterizations and properties of them will be given. 
We start this section with the following definition. 

 
Definition 3.1 Let X be a topological space, a subset A of X is said to be                              
θ-semidisconnected if it is the union of non empty θ-semiseparated sets, that is 
there exist two non empty sets B and C such that B ∩ sClθ (C) = φ, sClθ (B) ∩ C = 
φ and A = B ∪ C. Also, we say that A is θ-semiconnected if it is not                                         
θ-semidisconnected. 
It is obvious that every θ-semidisconnected space is semidisconnected. But the 
converse is not true ingeneral, as it is shown in the following example. 
 
Example 3.2 Let X = {a, b, c, d}and τ = {φ, X, {a, b}, {c}, {a, b, c}}. Then, 
SO(X, τ) = {φ, X, {c}, {a, b}, {c, d}, {a, b, c}, a, b, d}} and θSO(X, τ) = {φ, X, 
{c, d}, {a, b, d}}. Therefore, X is semidisconnected, but it is not                                             
θ-semidisconnected. 
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We give some characterizations of θ-semidisconnected space. 
 
Theorem 3.3 A topological space X is θ-semidisconnected if and only if there 
exists a non empty proper subset of X which is both θ-semi-open and θ-semi-
closed in X. 
 
Proof Let X be a θ-semidisconnected, so there exist two non empty subsets A and 
B of X such that A ∩ sClθ (B) = φ, sClθ (A) ∩ B = φ and X = A ∪ B. Since B ⊂ 
sClθ (B). Then, (A ∩ B) ⊂ (A ∩ sClθ (B)) = φ. Therefore, A ∩ B = φ and A ∪ B = 
X, so A = (X \ B) (B is a non empty and A is a proper subset of X) because if A = 
X, then (X \ B) = X, which implies that B = φ, this is contradiction. Now, A ∪ B = 
X and B ⊂ sClθ (B), then X = (A ∪ B) ⊂ (A ∪ sClθ (B)). But, always (A ∪                           
sClθ (B)) ⊂ X. So, A ∪ sClθ (B) = X. Since A ∩ sClθ (B) = φ. Therefore, A = (X \ 
sClθ (B)). Likewise, we can show B = (X \ sClθ (A)). Since sClθ (A) and sClθ (B) 
are θ-semi-closed sets. Also, A = (X \ sClθ (B)). Thus, A is θ-semi-open. Also,                    
B = (X \ sClθ (A)). Thus, B is also θ-semi-open, and since A = (X \ B), then A is                          
θ-semi-closed. So, A is the required non empty subset of X which is both θ-semi-
open and θ-semi-closed (infact B is also a non empty proper subset of X, which is 
both θ-semi-open and θ-semi-closed). 
Conversely, let A be a non empty proper subset of X, which is both θ-semi-open 
and θ-semi-closed and B = (X \ A). Now, A ∪ B = (A ∪ (X \ A)) = X. Also, A ∩ 
B = A ∩ (X \ A) = φ. Since A is θ-semi-closed. Therefore, sClθ (A) = A. Also, A 
is θ-semi-open. Then, (X \ A) is θ-semi-closed.This implies that B is θ-semi-
closed. Therefore, sClθ (B) = B. Hence, A ∩ B = A ∩  sClθ (B) = φ  and  sClθ (A) 
∩ B = φ. So, X is θ-semidisconnected. 
Recall that, a space X is said to be θs-disconnected [1] if there exist two                            
θ-semi-open sets A and B such that X = A ∪ B and A ∩ B = φ. In this case, we 
call A ∪ B is called a θs-disconnection of X, otherwise X is called θs-connection. 
The above definition is equivalent to the Definition 3.1 as it is shown in the 
following result. 
 
Theorem 3.4 A topological space X is θ-semidisconnected if and only if one of the 
following statements hold: 
 

(i) X is the union of two non empty disjoint θ-semi-open sets. 
(ii) X is the union of two non empty disjoint θ-semi-closed sets. 

 
Proof (i) Let X be a θ-semidisconnected, so by Theorem 3.3, there exists a non-
empty proper subset A of X which is both  θ-semi-open and θ-semi-closed. So,        
(X \ A) is also both θ-semi-open and θ-semi-closed. Thus, A and (X \ A) are two 
θ-semi-open sets such that A ∩ (X \ A) = φ and A ∪ (X \ A) = X. So, X is the 
union of two non empty disjoint θ-semi-open sets A and X \ A of X. 
Conversely, let X = A ∪ B and A ∩ B = φ, where A and B are two non empty                  
θ-semi-open subsets of X. We want to show that X is θ-semidisconnected. Since                     
A ∩ B = φ and X = A ∪ B. Therefore, A = (X \ B), so A is θ-semi-closed.                       
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Thus, A is a non empty proper subset of X (if A is not proper, then A = X and 
hence B = φ, this is contradiction). Hence, A is a non empty proper subset of X, 
which is both θ-semi-open and θ-semi-closed, so by Theorem 3.3, X is                                  
θ-semidisconnected. 
(ii) We can show the equivalence between θ-semidisconnectedness of X and the 
condition gives in (ii) by the same way. 

 
Theorem 3.5 Let X be a topological space. If A and B are two non empty                             
θ-semiseparated sets, then A ∪ B is θ-semidisconnected. 
 
Proof Since A and B are θ-semiseparated sets, then A ∩ sClθ (B) = φ and sClθ (A) 
∩ B = φ. Let G = (X \ sClθ (B)) and H = (X \ sClθ (A)). Then,    G and H are                          
θ-semi-open and (A ∪ B) ∩ G = A and (A ∪ B) ∩ H = B are non empty disjoint 
set whose union is A ∪ B. Thus, G and H form a θ-semidisconnection of A ∪ B 
and so A ∪ B is θ-semidisconnected. 

 
Theorem 3.6 Let G ∪ H be a θ-semidisconnection of A. Then, A ∩ G and A ∩ H 
are θ-semiseparated sets. 

 
Proof Now, A ∩ G and A ∩ H are disjoint; hence we need only show that each 
set contains no θs-limit point of the other. Let p be a θs-limit point of A ∩ G and 
suppose p ∈(A ∩ H). Then, H is a θ-semi-open set containing p and so H contains 
a point of  A ∩ G distinct from p, that is, (A ∩ G) ∩ H ≠ φ. But (A ∩ G) ∩ (A ∩ 
H) = φ = (A ∩ G) ∩ H. Then, p ∉ (A ∩ H). Likewise, if p is a θs-limit point of A 
∩ H, then p ∉ (A ∩ G). Thus, A ∩ G and A ∩ H are θ-semiseparated sets. 
 
Theorem 3.7 Let G ∪ H be a θ-semidisconnection of A and let B be                                               
a θ-semiconnected subset of A. Then, either B ∩ H = φ or B ∩ G = φ, and so 
either B ⊂ G or B ⊂ H. 

 
Proof Now, B ⊂ A, and so A ⊂ (G ∪ H). Then, B ⊂ (G ∪ H) and (G ∩ H) ⊂                     
(X \ A). Therefore, (G ∩ H) ⊂ (X \ B). Thus, if both B ∩ G and B ∩ H are non 
empty, then G ∪ H forms a θ-semidisconnection of B. But B is θ-semiconnected, 
hence the conclusion follows. 
 
Theorem 3.8 Let X be a topological space. If A and B are θ-semiconnected sets 
which are not θ-semiseparated, then A ∪ B is θ-semiconnected. 
 
Proof Let A ∪ B be θ-semidisconnected and G ∪ H be a θ-semidisconnection of 
A ∪ B. Since A is a θ-semiconnected subset of A ∪ B. Therefore, by Theorem 
3.7, either A ⊂ G or A ⊂ H. Likewise, either B ⊂ G or B ⊂ H. Now, if  A ⊂ G and 
B ⊂ H (or B ⊂ G and A ⊂ H), then by Theorem 3.6, (A ∪ B) ∩ G = A and (A ∪ 
B) ∩ H = B are θ-semiseparated sets. This contradicts the hypothesis; hence (A ∪ 
B) ⊂ G or  (A ∪ B) ⊂ H, and so G ∪ H is not a θ-semidisconnection of A ∪ B.         
In other words, A ∪ B is θ-semiconnected. 
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Theorem 3.9 Let X be a topological space. If  A = {A i} is a class of                                           
θ-semiconnected subsets of X such that no two members of  A  are                                         
θ-semiseparated. Then, B = ∪ i Ai is θ-semiconnected. 
 
Proof Assume that B is not θ-semiconnected and  G ∪ H is                                                                  
a θ-semidisconnection of B. Now, each  Ai ∈A  is θ-semiconnected and so by 
Theorem 3.7, is contained in either G or H and disjoint from the other. 
Futhermore, any two members Ai1, Ai2 ∈A  are not θ-semiseparated and so by 
Theorem 3.8, Ai1 ∪ Ai2 is θ-semiconnected; then  Ai1 ∪ Ai2  is contained in G or H 
and disjoint from the other. Therefore, all the members of A, and hence B = ∪ i Ai 
, must be contained in either G or H and disjoint from the other. This is 
contradictions the fact that G ∪ H is a θ-semidisconnection of B; hence B is                                     
θ-semiconnected. 
 
Theorem 3.10 Let A = {A i} be a class of θ-semiconnected subsets of X with                              
a non empty intersection. Then, B = ∪ i Ai  is θ-semiconnected. 
 
Proof Since ∩ i Ai  ≠ φ, any two members of  A are not disjoint and so are not                             
θ-semiseparated; hence by Theorem 3.9, B = ∪ i Ai  is θ-semiconnected. 
 
Theorem 3.11 Let X be a topological space. If A is θ-semiconnected subset of X 
and A ⊂ B ⊂ sClθ (A), then B is θ-semiconnected and hence, inparticular, sClθ (A) 
is θ-semiconnected. 
 
Proof Suppose that B is θ-semidisconnected and suppose  G ∪ H is                                                
a θ-semidisconnected of B. Now, A is a θ-semiconnected subset of B and so, by 
Theorem 3.7, either A ∩ H = φ or A ∩ G = φ; say, A ∩ H = φ. Then, (X \ H) is                           
a θ-semi-closed superset of  A and therefore, A ⊂ B ⊂ sClθ (A) ⊂ (X \ H). 
Consequently, B ∩ H = φ. This is contradicts the fact that G ∪ H is                                           
a θ-semidisconnection of B; hence B is θ-semiconnected. 
 
Theorem 3.12 A topological space X is θ-semidisconnected if and only if there 
exists a θs-continuous function  f  from X onto the discrete space {0, 1}. 
 
Proof Suppose that X is θ-semidisconnected. Then, there exist two non empty 
disjoint θ-semi-open subsets G1 and G2 of X such that X = G1 ∪ G2. Define                               
a function f : X →{0, 1} as follows 
                       
                               0   if  x ∈ G1  

f (x)  =    
                         
                              1   if  x ∈ G2 
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Now, the only open sets in {0, 1} are  φ, {0}, {1} and {0, 1}. So,  f –1(φ) = φ,  
f –1({0}) = G1, f 

–1({1}) = G2  and  f –1({0, 1}) = X, which are θ-semi-open sets in 
X. Thus,  f  is θs-continuous surjection from X to the discrete space {0, 1}. 
Conversely, let the hypothesis holds and if possible suppose that X is                                    
θ-semiconnected. Therefore, by [6, Corollary 17], f (X) is connected. Thus, {0, 1} 
is connected, which is contradiction since {0, 1} is discrete space and every 
discrete space which contain more than one point is disconnected. So, X must be                                
θ-semidisconnected. 
Finally, we prove the following theorem.  
 
Theorem 3.13 A topological space X  is θ-semiconnected if and only if every                     
θs-continuous function from X to the discrete space {0, 1} is constant. 
 
Proof Let X be θ-semiconnected and f : X →{0, 1} any θs-continuous function. 
Let  y ∈ f (X) ⊂ {0, 1}, then {y} ⊂ {0, 1} and since {0, 1} is discrete, so {y} is 
both open and closed in   {0, 1}. Since  f  is θs-continuous. Therefore, by [7, 
Theorem 2.3],  f –1({y}) is both θ-semi-open and θ-semi-closed in X. Now, since  
y ∈ f (X). Therefore, there exists  x∈X  such that y = f (x). Thus, f (x) ∈ {y} and                          
x ∈ f –1({y}).Thus, we obtain  f –1({y}) ≠ φ. If  f –1({y}) ≠ X, then  f –1({y}) is                           
a non empty subset of X which is both θ-semi-open and θ-semi-closed, which 
implies that X is θ-semidisconnected, this is a contradiction, so f –1({y}) = X. 
Thus,  f (X) = {y}, it means that  f (x) = y, for each  x ∈ X, so  f  is constant. 
 Conversely, let the hypothesis be holds; if possible suppose that X is                                       
a θ-semidisconnected. Therefore, by Theorem 3.3, X has a non-empty proper 
subset of X which is both θ-semi-open and θ-semi-closed. So, (X \ A) is also                             
a non empty proper subset of X which is both θ-semi-open and θ-semi-closed. 
Now, consider the characteristic function  ψA  of A defined as 
 
                                 0   if  x ∈ A  

    
 
           ψA (x) =  

                               1   if  x ∈ (X \ A) 
 
 
ψA 

-1 (φ) = φ, ψA 
-1 ({0}) = (X \ A), ψA 

-1 ({1}) = A and ψA 
-1 ({0, 1}) = X, which 

are all θ-semi-open sets in X. So, ψA is θs-continuous function from X to the 
discrete space {0, 1}. By hypothesis, ψA  must be constant, this is contradiction 
since ψA   is not constant function. So, X is θ-semiconnected, which completes the 
proof. 
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