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Abstract

The system of differential equationsfor simple ma#tical models of Human
Immune-deficiency Virus (HIV)for the model whichmpomnents are plasma
densities of uninfectedCD4+T helper cells, infeCiBd+Thelper cells and free
virus (HIV-1) will be study within the nature ofulprium points and discuss
stability for each of them. After that we study teoliability using therapy that
uses constant drug dosage of reverse transcrigtibibitor (RTI) and protease
inhibitor (PI) to help HIV- infected patient to dekie long term non-progressor
(LTNP) status. . Also, observability and output teoltability will apply on this
model where in general the state controllabilitynether necessary nor sufficient
for controlling the output. The analytical treatmterare complemented with the
numerical solution of the system.

Keywor ds:HIV;Viral population growth;HIV Math. Model.



On the Behavior of Numerical Solutions... 43

1 Introduction

The Human Immune-deficiency Virus (HIV) which casis@cquired Immune
Deficiency Syndrome (AIDS) destroys the immune aysby infecting CD4+T
helper cells which are play an important role immune system. CD4+T helper
cells assist in immune responses for strange bddsssst in phagocytosis). When
the CD4+T helper cells count react ¥ mm~3or below in an HIV infected
patient, the patient is having AIDS and will likejie from any infection.
Moreover, a monotherapy is likely to fail becausé/Han easily develop
resistance to monotherapies. To avoid this problétighly Active Anti-
Retroviral Therapy (HAART) is widely used to trelflV-infected patients.
HAART, which is known as a ‘cocktail,’ is effectivie the prolonged reduction of
the viral load. HAART uses a combination of twoegpof drugs. These drugs can
be classified as Reverse Transcriptase Inhibitefids), which block the reverse
transcription of HIV from RNA to DNA, and Proteasehibitors (PIs), which
inhibit the production of new composition comporseot HIV (such as enzymes)
by cutting protein chains. Although prolonged tmeant is needed because the
viral load rebounds after cease HAART, the longatense HAART is not
recommended due to its serious side effects [Srdfore, a therapy that enables
an HIV-infected patient to become a Long-Term NoogPessor (LTNP) is
needed. An LTNP is a patient who has been infectgd HIV but does not
progress to the status of AIDS for at least sevears/ by sustained immune
responses without medication.

There has been much interest recently in matheatatiodels of viral population
dynamics in host cells [12], with most attentiocdeed on HIV [14]. The aim of
such modeling is not only to understand the natfirearious diseases and their
time courses, but also to develop efficient regifioesdrug treatments, including
the highly successful combination therapies ([23]{ [15]; [22]). Stochastic
models have also proven to be useful, especiallyeiermining probabilities of
detection of the virus ([9]; [17]; [7]; [20]).

These processes have been translated into a baslel rfor viral population
growth, consisting of three differential equatiamich govern the evolution of
the numbers or densities of uninfected host celfscted cells and virus particles.
The elementary properties of such systems of empumtare well understood in
constituting a special case and their numericalitgol proceed routinely with
software such as Mat lab and Mathematica, becéesmtected cells are those of
the immune system itself, dynamical models for HIVWsually consist of systems
of differential equations which range from the sienfpvo-component models [1],
to three-component [6]and four-component model4]([]10]) and possibly as
many as ten components[4]. The basic componentsistoof the densities (in
units, for example, of numbers per cubic mm of plasof uninfected (activated)
CDA4+T cells, infected such cells and HIV-1 virions.

In a previous communication [18],they are invesidathe nature of equilibrium
points in two, three or four components models amduded certain drug
treatments in the four-component case. The solsitioh such systems of
differential equations exhibit similar overall bef@. For example, the three
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model has just two equilibrium points. One of thaina zero level of infection and
is either an asymptotically stable node or a sagdiat. The other equilibrium
point is at nonnegative values of infection andntested CD4+ T-cells; with
standard parameter values is an asymptoticallyestghral point. Phase portraits
of such studied were given ifi8], where they complemented an analytical
approach with numerical examples to ascertain géraasses of behaviors of
solutions.

The two-component model is also particularly inigeged in[19] by addressing
the question of the occurrence of solutions withqakc behavior, corresponding
to a continually recurring disease process. Suglsiigations have previously
been carried out for classical competition modéldhe Lotka—Volterra typg21].
They report that the obtained results may alsoyagpalitatively to the three or
four components models where the analysis is adgeddly more complicated.

In this paper we represent full mathematical analgé three-component model
by general discussion the equilibrium and stabititythis model; moreover we
discuss controllability by adding drugs for this aed Finally we compare the
numerical solutions using simulation results forgpaeters.

2 The Mathematical Model of HIV

Let x(t) denoted plasma densities of uninfected CD4+T Mhelpells at

timet,y(t) represented densities of infected CD4+T helperscalhdv(t)is

densities of free virus as shown in the followirgufe.

The differential equations which describe the mathigcal model can be
constructed as follow:

dx(t)
e s — ux(t) — fx(t)v(t)
dy(t) _
5 = Px@®Ov®) —ay(@® e
d
I;E:t) = cy(t) —yv(t)

Wheres is the rate of production of CD4+T cellss the rate of theirdeaif,is the
rate of infection of CD4+T cells by virusjs the rate of disappearance of infected
cells¢ is the rate of production of virus by infectedi€@nd y is the rate death of
virus particles.

3  The Stability for HIV Model

The studying of the above system for the patieqtuires the knowledge ofthe
stability about its equilibrium points. The equiliom points for HIV model can
be obtained by solving equations

dx dy dv

a0 (2)
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Then the equilibrium points are:
a sk—oau sk—au

S
Pl_(; ,0,0>andP2—<E, ak ) aﬁ ) (3)
wherée = %
We use the Jacobian matrix metfidg] to discuss the stability of the HIV system
then the Jacobianmatrix is
—U— :Bve 0 _.Bxe
Je = BVe —a  Px, (4)
0 c -y
Which take the following form at the first equilibm poini(P;)in(3)

oy

U
]1=k0 _a El (5)
U
0 c -y

Then the eigen valuesjofire

—(a + a+y\*> cfs
M=—u, ,12=M+j< y) + 'i — ayandA;

2 2

_ —(a2+ ¥) B <a -2}- y) N cis —ay )

The real model require that the values of 1,8 ,a,candy are usually greater
than zera; > ywith respect to(t),f > awith respect to(t),s > uwith respect

tox(t), according the natural of them, then we can dééﬁu:— ay > 0.
i.e

—(a+ a+y\> cBs
A1=—#<0112=M+\/( y)+'i—ay>0 and

2 2
Agz_(“;y)—J(a;V) +Cﬁs—ay<o %)

Consequently the system is unstable at this point.
At the second equilibrium poiP,/.takes the form

sk —a
_SE _V\
a c
J2. = | sk ay )
a c
0 c -y

The characteristic equation/gfat this point is
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3 sk , Sk
A +<7+a+y>l +7(a+y)l+ask—ayu=0 9

We will studythe stability by using the method ktirwitz[8], where the eigen
values cannot be obtained as similar as the alase c

Then we defined that =1 ,a, = %+ a+vy,a = %(a + y)anda, = ysk —
ayu , and from (9)Hurwitz matrixdbecomes

Sk+ + 1 0
ety \
H= sk sk (10)
ysk — ayp 7(a+y) ;+a+y/
0 0 ysk — ayu

Depending on the natural values of the variousmatars as mentioned above
then

sk
A1=7+a+y>0,

sk
—taty 1 SK SK
A, = <k =(7+a+y)7(a+y)—ysk+ayu
ysk — ayp F+(a+)/)
SK\? sk
=(?) (a+y)+ ska+ V?(a+}/)+0€l’#>0'
sk
?+0(+]/ 1 0
andA; = sk sk = (ysk — ayu)A
3 ysk — ayu ;(a+y) ?+a+y (v YA,
0 0 ysk —ayu
> 0 (11)

Then the system is asymptotically stable-Hayr witz analysis

4  Controllability dueto Drugs

The controllability study of such system requirea must insert input/ (drugs)
in the previous model. General, there are two kimiddrugs , the first is Revere
Transcription Inhibitor RTI with drug efficacy/y which block the revere
transcription of HIV from RNA to DNA,then the modetécomes

d
J;(tt) =5 — ux(t) — (1 — Up) Bx(t)v(t)

d
O - a-vppren® —ay© (2
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dv(t)
dt

= cy(t) —yv(0)

Which can be written in the linearized form[5]

X' =AX + BU (13)
—u—PBvy 0 —PBx
such that the state evolution matrixdis= By —a  PBxy |,
0 c -y
Bvoxo
the control gain matrix B = [ —pv,x, | and inputy = Uy
0

General, a system with state vecatdB)of three dimensions is controllable if the

controllability matrix
C = (B,AB, A%B) (14)

has column rank 3 (i.e. three linearly independents
In our casé€l4) can be reduced to

1 —(u+Bvy) M B%ve® + 2uBv, + cBxg
0 a—p W + pBvy — afry — a®
0 0 H—a)H—Y)

Then, the following cases are obtained:

1-If u # aandu # ywhich means the death rate of uninfected celleqatl the

death rate of infected cells and the death ratenoffected cells not equal the
1 0 0

death rate of free virus, this matrix reducgsoto 1 0) with rank = 3 and
0 0 1

the system is controllable.

2- If u = aoru = ywhich means the death rate of uninfected cells laheadeath
rate of infected cells or the death rate of unitddccells equal the death rate
of free virus the system is uncontrollable because

1 0 —yu—PByvo+chxo

—y —u—Bv, |with rank

atu = aandu # ythe matrix reduces éo 1
0 O 0
=2,
1 0 —au—afvy+cPx
atu = yandu # a the matrix reduces <c6) 1 —a—u—Pv, )With rank
0 0 0
=2,

finallyu = yandu = a the matrix reduces to
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0 1 —2u — Bvy

0 0 0
WhileUy, is still exist, we add the second type of drugsnaly protease inhibitor
Pl with drug efficacyUp, which inhibits the production of new composition
ofHIVby cutting protein chains then the system cented to

1 0 —u?—Buvy + chxo
with rank = 2.

dx(t)
7r =S T = (A= Ur)Bx(0)v(t)

DO _ (1~ U — ay (o) (15)

dt

d
T (- Uy —yo)

Which can be written in the linearized form of egjpia (13)such that,
—u—pPvy, O —ﬁxo)

the state evolution matrixAs= < By —a fx
0 c -y
Bxovo 0 U
thecontrol gain matrix B = (—,onvo 0 ) , and input = (UR) _
0 —CYo P

Then controllability matrixX14) can be reduced to
Bxovo[W? + B2ve® + 20Bv, + cBxo]  —Bexoyo(M+y + ﬁ”o)\
—cyo(cBxo +v?) }
Bexgyo(a — W)

Bxovo 0 —Bxovo (U + Bvo)Bcxoy,

k 0 —CYo —Bcxov, YCYo Bxovolcfvy + c(a + )]

0 0 Bxovo(a — W) 0 Bxovol(M— @) (U + a + Bvy)]

Then, the following cases are obtained:
If u # aandu + ywhich means the death rate of uninfected cellseqoial

1_
the death rate of infected cells, this matrix reguo
1 0 0 2 —au—aPvy+cpx, —2
2 Vo
01 0 —y _ﬁyvox;’fﬁ“%x‘) y? |with rank = 3
0
001 0 —a —pu— B, 2o
Vo

and the system is controllable .
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2- If u=aandu #y which means the death rate of uninfected celisaleq
the death rate of infected cells, this matrix rexsu

c cly+u+pv
/1 0 —u—fvy =2 u?+2Buvy +BPVE +cBry - Gru+h O)yo\
4 Vo
VoX —Byvoxy — Buvyxy — B?vix
0 1 Broxg —y Byvoxo — Buvexo — Bv5xo V2 + By
Yo Yo
0 0 0 0 0 0

with rank = 2and the system is uncontrollable .

5 Observability and Output Controllability

The concept of observability is useful in solvirge tproblem of reconstructing
immeasurable state variables from measurable Jasab the minimum possible
length of time. Consequently it becomes necessargrder to construct the
control signals.

Such that complete state controllability in neittmacessary nor sufficient for
controlling the output of the system.

Then, the previoug13) with suitable system output equations, that reter
observable items in the previous input controligpiinodel (the model of Revere
Transcription Inhibitor RTI input with drug efficadJ; which block the revere
transcription of HIV from RNA to DNA and output ofy,(t)and y,(t) for
uninfected cells and free virus respectively), lmees

y1 () = x(t)
y2(t) = v(t) (16)
added to systerfi2) .
The linearized form [5] ofthe new systdi2), (16) is
X =AX +BU (17)
Y =CX (18)
—u—Bvy 0 —PBx
such that the state evolution matrixAs= B, —-a  Bxy |,
0 c -y
Broxo
the control gain matrix is8 = [ —Bvyx, | , input U = Ug
0
... (1 0 0
and output matrix i = (0 0 1)

General, a system with state veatd7) and output vectof18) is observable if
the observability matrix
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o 20)

V = (C,CA, CA?)T (19)
has rank 4 (i.e. four linearly independents) [3].
In our case
1 0 0
0 0 1 \
| —u- Bvo 0 |
I

V= 0 c y
k(—# —Bro)®  —cBxo  Brxo — B(—i — Bro)xo /
cBv, —ca —cy Y2+ cfx,

which has rank = 3 and the system is observalalethe behavior ofx(t) = y,
and v(t) = y, can be observed during a period of treatment.

While, to control the output rather than the statdhe system, a linearized of
(12), (16) with state vecto(17) and output vectof18) is output controllable if
the output controllability matrix

0C = (CB,CAB, CA%B) (21)

has rank 2 (i.e. two linearly independen8) which can be written in the form

(ﬁvoxo Boo(—p = Bvo)xo  Buo(—k = Bro)*xo + Cﬁ2v0x5> (22)

0 —cBvyxg —B(—ca — cy)voxg + cB2vix,

The output controllability matrix22) is generally has rank = 2 which means that
the system is output controllable.

i.ethe control system for one drug in case 1. is al#put control indeed in case
2. the system is output control while the systeoisiplete state uncontrollable.
The discussion of output controllability for twoudis model is easy to apply as
above.

6 Numerical Results

Using atypical parametess= 0.272 , = 0.00136, B =0.027, o = 0.003,
c = 50 and y = 2given in[3]hence the equilibrium poir3)are:

pP; =(200,0,0) ,
P, = (0.004444444444449319,90.66465185185184,2266.6162962962962)

The eigen values @b) or (7)corresponding B, are{-17.4635,15.4605,-0.00136},
which is exactly unstable as mentioned above.

The eigen values correspondingPbare{-61.2001,-1.9999,-0.00300008}which it
is easily deduced in this case and its asymptdtisghble. On other hand, using
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P,and the method oHurwitz we find that\; = 63.203,A, = 7747.28,A; =
2844.74which satisfy(14)and confirm the system is asymptotically stable.
Near unstable first equilibrium poitin(3) assuming a200,0,1) the

54 —0.153144 1458.00434316384
controllability matrix(14) is| —5.4 0.162 —1458.0046208879999
0 —-270 548.1

with rank = 3,observability matrig0) is

1 0
[ o o 1)
' _0'002836 500 _524 iwith rank = 3
0.0008042896 —-270 10. 95314-4-/
1.35 —100.15 274

and output controllability matrig22) is

(5.4 —0.153144 1458.00434316384

0 270 481 )With rank = 2

hence the system is controllable , observable atulio controllable.
while fora = 0.00136 = u and all other parameters as above the contrbtiabi

54 —0.153144 1458.00434316384
matrix(14) takes formp —5.4  0.153144 —1458.00434316384

0 —270. 547.6572
with rank = 2,

1 0
[ o o 1)
- . .1 —0.02836 0 —5.4 I
observability matrix20) is 0 50 _o |
0.0008042896 —-270 10. 953144/

1.35 —100.068 274
with rank = 3

and output controllability matrig22) is

(5.4 —0.153144 1458.00434316384

0.  —270. 547.6572 )W'th rank =2

and foy = 0.00136 = u and all other parameters as first case the dtattiiity

54 —0.153144 1458.00434316384
matrix(14) takes form —5.4 0.162 —1458.0046208879999
0 —270. 8.467200000000002

with rank = 2, observability matrig0) is
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1 0 0
/ 0 0 1 \

| —0.02836 0 _54 | _
0 50 000136 |Withrank =3
0.0008042896 —270 0.160488
1.35 —0.218 270.0000018496
and output controllability matrig22) is
54 —0.153144 1458.00434316384\ . _
( 0.  —270. 8.467200000000002)W'th rank =2

hence the system is observable and output coritellas first case but not
complete state controllable.

The numerical solutions of the original ordinaryffetiential equations model
through 400 days at the first equilibrium palt= (200,0,0) and the second
equilibrium point

P, = (0.004444444444449319, 90.66465185185184,2266.6162962962962) is
represented in figure 1, and figure 2respective$ydlear that there is no change
in the behavior of uninfected and infected celld &ee virus through that time (
the steady state equilibrium cases).

200F—t - R — R I e edadadadacdacatalatdedadadadac ool

2000

150-

<<x
[
Frr

1500:* — gi;

celle.virus
=
o
o
cells.virus

1000+

50 I
| 500+

Lo T T S
0 100 200 300 0 100 200 300 400
days intime days intime

Fig.1 Fig.2

To consider the behavior of the numerical solutiohthe same model at near the
first equilibrium pointP;, we choose the initial point at= 200, y = 0 and
v = 1 which represents an early virus patient .



Figure 3 shows that the uninfected
cellsx(t) which begin at 200 and
decay to zero through 12 hours, the

infected cellsy(t) growth to 200 at
the same time such that the number

of virusv(t) is increases rapidly to
reach at 5000 in three days without

any drugs.

---------------------------

500(f

4000~

3000+

cells.virus

2000+

1000+

10
daysintime

Fig.3

Figure 4 represent the same patient
by using one kind of medication RTI
with drug efficacy/; = 0.98 , where
the number of virus growth to the
same maximum number through 10
days and decays when the time
increases, while the uninfected and
infected cells have the previous
behavior without changing in time
which is longer than the case without

drugs.
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The case of the patient will be improved when osiegitwo kinds of medication
RTI with drug efficac@g and PI with drug efficacyypas shown in figure 5,
figure 6 and figure 7 by increasing the valuedJpfandUp respectively. The
observation time is increasing to reach 200 daysigare 7 with maximum
number of virus less than 100 and the number efcted cells not reached to 200.

Fig.5represents of(t), y(t) andv(t)
count witlUg = 0.8 andJp = 0.8

aisie

Fig.6represents at(t), y(t) andv(t)
count withUg = 0.9 andJp = 0.9
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The behavior of uninfected and
infected cells and free virus through
time changes according to the
efficacy of drugs which shows the
concept of controllability.

The study of patient near the second
equilibrium pointP, is not interested
where the patient may be dead,

‘ ‘ ] according to the controllability
’ L i conceptwhich has no real meaning
with this case

Fig.7represents af(t),y(t) andv(t)
count withUg = 0.98 andJp = 0.98

7 Conclusions

The three-component HIV model which includes urstdd CD4+T helper cells,
infected cells and virions is generally investigatauch thaP; is an unstable

saddle point an&, is either and a node or spiral pointdif < C—ES otherwisep, is

at unphysical values aril is an asymptotically stable node or spiral poirte
control theory concept of controllability, obseruap and output controllability
of non-linear system is applied to this model; veednillustrated the effects of
two treatments of drugs (reverse transcriptionbitbr and protease inhibitor)
could be eliminated the virus within the numerisalution of the model. Finally,
all computations are performed by mathematica nogr
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