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Abstract

Flow through a variable permeability Brinkman posolayer with quadratic
permeability function, underlain by a Darcy porolesyer of variable linear
permeability function is analysed. The model fl@mndnstrates the compatibility
between the low-order Darcy law and the Brinkmaoaggpn in the sense that at
the interface between the layers it is possiblerpose equality of the non-zero
shear stresses. A matching procedure is also inited for velocity computation
near the point of singularity associated with tlesulting Cauchy-Euler equation.
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1 I ntroduction

The experiments of Beavers and Joseph, [1], ofidlethrough a channel over a
Darcy porous layer, and their proposing a slip flomndition at the interface,
represents the starting point of a large volumeestarch work devoted to this
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problem. Many excellent reviews on the subject emaéind applications of this
type of flow are available (cf. [3, 8, 16, 17] aihe references therein).

In the study of flow through a channel bounded bparcy porous layer, a
problem arises with the matching condition at thierface between the porous
layer and the channel. At the interface, theretexasshear stress discontinuity, a
permeability discontinuity, and the low-order of rDgs law makes it
incompatible with the Navier-Stokes equations. Tinisompatibility causes an
apparent slip in the fluid velocity at the assunsbédrp interface, and has been
handled with the Beavers and Joseph’s slip comdifib], that was intended to
interpret the enhancement in the volumetric flote ria the channel as a result of
introducing a porous boundary. Conditions at therface between a channel and
a porous layer are important as they influence raagisheat transfer in the flow
domain. This initiated a need for a non-Darcy madegjovern the flow in the
porous layer, and to be compatible with the Na@takes equations.

While much research has been devoted to the asabfsiconditions at the
interface between a channel and a porous mediumtrendypes of governing
equations that are best suited for the flow throtighporous layer, [3, 4, 10, 12,
14, 15, 16, 17], recent advances in the field deigth flow through variable

permeability layers, [2, 5, 6, 7, 9, 13], and tinalgsis of the transition layer that
is associated with Brinkman’s equation and propdsgdield and Koznetsov,
[11].

Brinkman’s equation with variable permeability, ,[Flas been of great utility in
the analysis of a transition layer between a Darosous layer and a channel
through which the flow is governed by Navier-Stokegiations, [11]. However,
most of the work carried out on analysis of flow time transition layer has
assumed a Brinkman layer with variable permeabilitglerlain by a constant
permeability Darcy layer. Little to no work has pided analysis of the problem
of variable permeability porous layer bounding anBman layer of variable
permeability. This gives rise to the current wankwhich we provide analysis of
the more general situation wherein the Darcy layesf variable permeability in
order to capture naturally occurring porous laydrdifferent permeability. We do
not consider the Brinkman layer as a transitioretay this work; rather, we
consider flow through a two-layer composite confagion, shown irFig. 1, one
Darcy and one Brinkman layer, both possessing baipermeability and both
bounded by solid, impermeable walls on oppositeesidThe common side
between layers is an assumed sharp interface omrhwhie will assume
permeability, velocity, and shear stress continuity

2 Problem Formulation

Consider the steady, unidirectional flow of a visedluid through the porous
layers shown irFig. 1, and termed Darcy layer (the lower porous layeengh
Darcy’s law is valid) and Brinkman layer (the uppporous layer where
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Brinkman’s equation is valid). Flow in both layessdriven by the same constant
pressure gradient, and each layer is of variablengability. The layers are
bounded by solid, impermeable walls w&-D and aty =D, and the interface

between the layers is an assumed sharp interfacated ay = 0.

y=1

‘ ‘ Thin layer of thickness &

y=1-6

Brinkman layer ‘

y=0

Darcy layer

y=D

Fig. 1. Representative Sketch

In the upper layeQ<y<D, the flow is governed by Brinkman’s unidirectibna
flow equation

du 1

Rl = (1
AN @

and in the lower layer,-—D<y< 0 the flow is governed by Darcy’s
unidirectional flow equation

v=RK(y) -(2)

:ueff

where Q :&, R= —%, g= , p, <0 is the constant pressure gradieat,

lueff
is the fluid viscosity coefficient, angd.,, is the effective viscosity of fluid in the

Brinkman layerk, (y) is the variable permeability in the Darcy layard&, (y) is

the variable permeability in the Brinkman layer.uBtjons (1) and (2) are to be
solved subject to the following conditions:
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Conditions at the interface, y = 0, are the following velocity continuity,
permeability continuity, and continuity of the nahrcomponent of shear stress,
respectively,

_ k. 980
U(O)—V(O),kl(o)—kz(o),z9dy(0) Oly(0)- -(3)

Conditions at the solid walls are the no-slip conditions and vanishing
permeability, respectively, namely

u(D) =0,v(-D) =0, k(-D) =0, k,(D) =0. ..(4)

3 M ethod of Solution

Assume that the permeability(y) in the Darcy layer to be an increasing linear
function ofy, that reaches a maximum valde,,, , at y = 0, and in the Brinkman
layer a quadratic permeability functiok,(y), written as

() = 252 andk, (y) = (a+ by ..(5)

then the velocity profile in the Darcy layer is aioted from (2) as

w(y) = R% ...(6)

and a shear stress in the lower layer and at teace given by

LUSELY ()
dy D

Condition (3) thus yields the following expression velocity at the interface:
u(©) =v(0) =u =RK__,. ...(8)

Using (3) and (4) gives Brinkman permeability fuant

JK JK
a=fk_ , b=—2 =4V m andkz(y):(;/kmaxi%y)z. ..(9)

D D

A K
Choosing k2(y):(,/kmax—%y)2 and IettingY=1—%, equation (1) is

transformed into the Cauchy-Euler inhomogeneoumary differential equations
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,d’u _ D?
avz ok

u=QD?Y?, ...(10)

General solution to (10) is given by

my m, 2
_ y y y
—¢c|1-L 1-Y -1, (11
- Cl[ D} ”’Z[ D} +C[ D} ()
Where
D2
1+ [1+4 1- [1+d o )
QD ..(12)
(2 m)d+m,)

andc, andc, are determined using conditions (3) and (4) akd the values:

Rk, [m, + =]+ Cl2-m) Ro[m + ] +C[2-m]
and c, = : ...(13)
[m, —m] [m —-my]

Clz

Shear stress in the upper layer is obtained frdih fhd takes the form

m-1 m,-1
u'(y) = —ﬂ[l—l} - &M [1—1} —5[1—1} ..(14)
D D D | D D” D

and has the following value at the interface, y =0

dug=-Gm_cm _2C ...(15)
D D D

Solution to the given problem is thus completeltedmined and can be expressed
in dimensionless form using the following dimensess variables:

R .t _K(y)_ D

Y e Tt T pX)Dz K (M="5=k (YD) =k (¥);

k* max — kmz;x . 1.60
D

The dimensionless porous layers span the followdimgensionless lengt :
Darcy layer: —1<y < @nd 0<y < 1 for Brinkman layer. Dimensionless
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velocity profiles in the Brinkman and Darcy layease given by the following
eqguations, respectively

* k*max[ﬂm*z +1] 1 [ *]mxl
U - * * + * * * 1_y
Imz-mi]  J(Mi1-2)[m2—-mi]

K max[IM 1 +1] 1 e 1 P
+{ Igm1-m?] +19‘(m*2—2)[m*1—m*z]}[:L y] {ﬁ(z—m*l)(z—m*z)}[l y]
..(17)

V* = k*l(y*) = k*max(1+ y*) (18)

1+ [1+ 4 1-.[1+ 4
m*l - l9k max l9k max . (19)
2 2

Dimensionless permeability distributions in the é&vand upper layers are given
respectively by

andm: =

k*l(y) = k*max(1+ y*) and k*Z(y*) = k*max(l_ y*)z (20)

while the dimensionless velocity and shear strasgha interface are given,
respectively, by

ui* = k*max (21)

dU* k*max
— (O = . ...(22
dy ©) 3 (22)

4 Results and Discussion

The dimensionless equations (17) to (22), abowedapendent on the parameters
lueff
Y7

viscosity. In the absence of concrete experimewtaltheoretical evidence
supporting its value, we will take the full rangevalues 4 =0.5, 0.95, 1, 1.05,

and 1.5The parametet maxis the dimensionless permeability at the interféicis.
in fact the dimensionless Darcy numbBa, which has a maximum value of
unity. In this analysis we take the following rangievalues fork max: 1, 0.1,
0.01, 0.001, 0.0001, and 0.00001.

K max @and g . The parametes = is the ratio of effective viscosity to the fluid
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Using the above values &f max and 9, we provide the following data for velocity
and shear stress at the interface, velocity psfé@d permeability distributions in
the layers.

4.1 Velocity and Shear Stressat the Interface

Equation (21) provides an expression for the dinogmsss velocityui* at the

interface in terms of the dimensionless permegthlifax. It is clear and expected

that as k' ma decreases, the dimensionless velocity at thefauerdecreases.
Furthermore, this dimensionless velocity is indejeem ofy . Dependence of the
dimensional velocity at the interface on viscospiyessure gradient and on the
dimensional permeability at the interface is givéy equation (8), or

u :—&k

which shows its increase with increasing permiggband

max?

magnitude of pressure gradient, and its decreaseimgreasing fluid viscosity,
U . For a givenu,, , an increase inu results in a decreasedn We can then

conclude that the dimensional velocity at the iais® decreases with
decreasing .

Equation (21) gives an expression for the dimenegsnormal component of

velocity derivative at the interface. While the esgsion 79%(0) IS given
y

byk max, hence has the same values as the dimensionlesityat the interface,
its dimensional expression shows its dependencth@mpressure gradient, fluid
viscosity and depth of the lower porous layer. Magte of this term is inversely
proportional to the depth of the lower porous layer fact, in the limit aD
approaches infinity, shear stress at the interigmeroaches zero (the value of
shear stress at the interface as given by Darawsnith constant permeability).

4.2 Dimensionless Permeability Distribution

Equation (20) gives the expressions of the dimehsss permeability
distributions in the Darcy and Brinkman layers,pegively. The linear profile
starts at zero on the lower bounding wall, anddases till it reachek max at the
interface. In the upper layer, the dimensionlessnpability profile is parabolic
with a maximum value at the interface and fallzéoo on the upper boundary.
Graphs of the two permeability profiles are showrkigure 2 for the range of

K'max (Darcy number) of 0.1 and 1.
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Fig. 2. Permeability Distribution in the Two Layers

kE*max=1 ----- k*max=0_1 |

4.3 Velocity Profilesin the Porous Layers

Dimensionless velocity profiles in the upper andvdo layers are given,
respectively, by equations (17) and (18). While pinefile in the lower layer is
dependent ork max, the profile in the upper layer depends on bithx and 3.
The values of the velocity in the upper layer beeasymptotically large as we
get close to the upper boundatgherent in the Cauchy-Euler equation is the
ordinary point of singularity (zero of the coeféait of the highest derivative).
Boundary conditions do not remove this singularitiierefore, solution is valid
near the point of singularity. We therefore folldine steps below to generate

velocity values near the upper wall. Taking thetliof u” asy” - 17, we obtain:

lim u=0= cly[irpl[l— yI* +e, y|*irpl[1_j;W * lim ch-yf. (23)
Noting thaty[i[rl_[l— y*]m* =0, yIjrqu_ C[l— y*]2 =0 and y[im_m =400,

We need

Therefore, neay” = ,Jwe haveu = q[l— y*]ml + C[l— y*]z. ...(24)
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Velocity computations thus proceed as follows:

1) Use equation (17) to calculate the velocity upte edge of boundary
layer.

2) Use equation (24) to calculate the velocity frone #dge of boundary
layer to the upper boundary.

In order to calculate the limits of the boundaryela we use definition of the
boundary layer thicknes®),, as square root of the permeability, namely

F=K2(y) =K mx (L= Y). ...(25)

Now, ¥y 20= Y 2VKmax(—Y) =vVK max = Y VK max OF

y* (1+ \/k*max) = \/k*max .

V k* max
L+ VK max)

Critical values ofy’ for different k™ maxare listed inTable 1 below. Therefore, we
use equation (17) to calculate the velocity uphe tritical value ofy’, and
equation (24) to calculate the velocity fgr <y < . 1

Hencey > ...(26)

Table 1: Critical Values ofY for different K’ max

K’ max critical y' (inequality (26)) | & = /K ax (1= V')
1 0.5 0.5

0.1 0.2402 0.2402

0.01 0.0909 0.0909

0.001 0.0306 0.0306

0.0001 0.0099 0.0099

While the above decomposition of the flow domaimemss reasonable it does

V k* max

however result in a jump in the velocityygt ————, as can be seen in
@+ VK max)

Figs. 3 and4, below, which illustrate the velocity profiles #r=1and different
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values ofk’max.This points to the need for matching the two sohg at the point
of jump discontinuity, as explained below.

Welocity Profiles

-1

kmax=1 ----- kmax=0.1 — — kmax=_01 |

Fig. 3: Velocity Profilesu” § ), v (y), for 9 =1and different values of

*
k max «

Velocity Profiles
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s ]
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[——8=09----- =1 — — §=1.1|

Fig. 4: Velocity Profilesu” f/ ),v' (y), for k' max=1, and different values of
J
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Figure 1 represents the matching configuration idunstrates three regions in the
flow domain: the lower region where Darcy’s lawwalid; the middle region
where Brinkman’s equation and its solution, givgrelquation (17), are valid, and
the boundary layer region which in which equatid#)(is valid. We can thus state
the velocity profile in the Brinkman layer as folle:

u=u = [1 y] +B[1 y] B3[1 y] when0<y<1-9 ..(27)
=u Bl[l y] B3[1—y*]2, whenl-d<y<1. ...(28)
Where
&:{k}M?m}jﬂ+ N } 29
Imz2-mi]  FMi1-2)[m:—-mj]
B, = {kmﬂﬂml+ﬂ S S } ..J30
Igmi-mz2]  Im2-2)[mi—-m>]
_ 1
&_{ﬂQ—MQQ—MQ}' ...(31)

Now, for velocity continuity ay =1-J we must matchu, with u, by letting

:Bl[l_ y*]m*l—A[l— y*]2 , Wwhenl-d<y<1 ...(32)
And
u (1-8)=u, (1-9). ...(33)
Equations (27)-(33) yield

A=B,-B,J""* ...(34)

=gfi-y|" -(8,-B6") [i-y[  when-s<y<1 .(35)

Now, using (27) and (35), we plot the velocity pled in the upper layer. In
Figures 5 and @ve illustrate the velocity profile in both layers fk max = 0.1 and
1, and J =1. These graphs show the expected decrease in theityein the
upper layer as we move away from the interface,thadcontinuity of velocity at
the edge of boundary layer.
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Fig. 5: Matched Velocity profiles fok max =1,9= 1

Fig. 6: Matched Velocity profiles fok max = 01,9 = 1

5 Conclusion

In this work we considered the flow of a viscousidl through a two-layer

configuration. The flow through one layer is gownby Darcy’'s law with

variable permeability, and the other by a Brinknsaeguation with quadratic
variable permeability. Brinkman’s equation redutes Cauchy-Euler equation.
Solution to this equation becomes excessively lafge small values of

dimensionless maximum permeability. To remedy th&ray jump discontinuity

in the velocity as we approach the upper boundasy,devised a matching
condition that induces velocity continuity at theige of the boundary layer to the
upper solid boundary.
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