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Abstract 

     In this paper, we have unique fixed point theorem using S-contractive 
mappings in complete metric space. We supported our result by some examples. 
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1      Introduction 

It is well known that Banach's contraction mapping theorem is one of the pivotal 
results of functional analysis. A mapping T:X→X where (X,d) is a metric space, 
is said to be a contraction if there exist 0 ≤  k < 1 such that 
  
 d (Tx, Ty) ≤ k d(x, y)  for all  x, y, ∈ X    (1.l) 
 
If the metric space (X, d) is complete then the mapping satisfying (1.1) has a 
unique fixed point which established by Banach (1922). The contractive definition 
(1.1) implies that. T is uniformly continuous. It is natural to ask if there is 
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contractive definition which do not force T to be continuous. It was answered in 
affirmative by Kannan [5] who establish a fixed point theorem for mapping 
satisfying.  
 
 d(Tx, Ty) ≤ k [d(x, Tx) + d(y, Ty)]      (1.2) 
  
for all x, y ∈ x and 0 ≤ k < ½ 
The mapping satisfying (1.2) are called Kannan type mapping. It is clear that 
contractions are always continuous and Kannan mapping are not necessarily 
continuous.  
There is a large literature dealing with Kannan type mapping and generalization 
some of which are noted in [2, 4, 6, 7] 
A similar contractive condition has been introduced by Shukla's we call this con-
traction a S-contraction. 
 
Definition 1.1. S-contraction  
 
Let T : X → X where (X, d) is a complete metric space is called a S-contraction if 
there exist 0 ≤ k < 1/3 such that for all x, y ∈ X the following inequality holds: 
  

d(Tx, Ty) ≤ k [d(x, Ty) + d(Tx, y) + d (x, y)]    (1.3) 
 
A weaker contraction has been introduced in Hilbert spaces in [1].  
 
Definition 1.2. Weakly contractive mapping 
  
A mapping T: X → X where (X,d) is a complete metric space is said to be weakly 
contractive [3] if 
 
 d(Tx, Ty) ≤ d(x, y) - ψ [d (x, y)]      (1.4) 
 
where x, y ∈ X, ψ : [0, ∞)→ [0, ∞)  is continuous and non decreasing  
 
 ψ (x) = 0 iff x = 0 and ∞=ψ

∞→
)x(lim

x
 

If we take ψ(x) = kx where 0 ≤ k < 1 then (1.4) reduces to (1.1)  
 
Definition1.3. Weak S-contraction  
 
A mapping T : X → X where (X, d) is a complete metric space is said to be weakly 
S-contractive or a weak S-Contraction if for all x, y ∈ X such that 
 
 d(Tx, Ty) ≤ 1/3[d(x, Ty)+d (Tx, y)+d(x,y)] 
    -ψ [d(x, Ty),d(Tx, y),d(x,y)]    (1.5) 
 
where  ψ : [0, ∞)3 → [0, ∞) is a continuous mapping such that 
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ψ (x, y, z) = 0 iff x = y = z = 0 and ∞=ψ

∞→
)x(lim

x
 

 
If we take ψ (x, y, z) = k (x + y + z) where 0 ≤ k < 1/3 then (1.5) reduces to (1.3). 
i.e. weak S-contractions are generalization of S-Contraction. The next section we 
established that in a complete metric space a weak S-contraction has a unique 
fixed point. At the end of the next section we supported some examples.  
 
 

2 Main Results 
 
Theorem 2.1. Let T : X → X, where (X, d) is a complete metric space be a weak 
S-contraction. Then T has a unique fixed point. 
 
Proof. Let xo ∈ X and n ≥ 1, xn+1 = Txn.     (2.1) 
If xn = xn+l = Txn  
then  xn is a fixed point of T.  
So we assume xn ≠ xn+1 
Putting x = xn-l and y = xn in (1.5) we have for all n = 0, 1,2, ....... 
 
 d(xn, xn+l) = d(Txn-l, Txn) 
 ≤ 1/3 [d(xn-l, Txn) + d(Txn-1, xn) + d(xn-l, xn)] 
 - ψ [d(xn-l, Txn), d(Txn-1, xn), d(xn-l, xn)] 
 = 1/3 [d(xn-1, xn+1) + d (xn, xn) + d(xn-l, xn)] 
 - ψ [d(xn-l, xn+1), d(xn, xn), d(xn-1, xn)] 
 = 1/3 [d(xn-1, xn+1) + d (xn-1, xn)] - ψ [d(xn-l, xn+1), 0, d(xn-1, xn)] 
 ≤ 1/3 [d(xn-1, xn) + d (xn, xn+1) + d(xn-l, xn)] 
 - ψ [d(xn-l, xn) + d(xn, xn+1), 0, d(xn-1, xn)]    (2.2) 
 2/3 d(xn, xn+1) ≤ 2/3 d(xn-1, xn) - ψ [d(xn-1, xn) + d(xn, xn+1), d(xn-1, xn)] 
 ≤ 2/3 d(xn-1, xn) 
 d(xn, xn+1) ≤ d(xn-1, xn)       (2.3) 
 
i.e. {d(xn, xn+1)} is a monotone decreasing sequence of (2.3) decreasing 
sequence of non-negative real numbers and hence is convergent. 
i.e. 

∞→n
lim  d(xn, xn+1) is exist. 

let  d(xn, xn+1) → r as n → ∞      (2.4) 
We next prove that r = 0. 
 
 d(xn, xn+l) = d(Txn-l, Txn) 
 ≤ 1/3 [d(xn-l, Txn) + d (Txn-l, xn) + d(xn-l, xn)] 
 - ψ [d(xn-1, Txn), d(Txn-1, xn), d(xn-1, xn)] 
 = 1/3 [d(xn-l, xn+1) + d (xn, xn) + d(xn-l, xn)] 
 - ψ [d(xn-1, xn+1), d(xn, xn), d(xn-1, xn)] 
 ≤ 1/3 [d(xn-l, xn+1) + d (xn-1, xn)]     (2.5) 
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taking n → ∞ in (2.5) we have by (2.4). 
 
 

∞→n
lim  d(xn, xn+1) ≤ 1/3 

∞→n
lim  [d(xn-1, xn+1) + d(xn-1, xn)] 

 r ≤ 1/3 [
∞→n

lim  d(xn-1, xn+1) + r]  

 2r ≤ 
∞→n

lim  d(xn-1, xn+1)       (2.6) 

 
Since d(xn-1, xn+1) ≤ d(xn-1, xn) + d(xn, xn+1) 
taking limit as n → ∞ in above we have by (2.4) 
 
 

∞→n
lim  d(xn-1, xn+1) ≤ 2r      (2.7) 

 
from (2.6) and (2.7) 
 
 

∞→n
lim  d(xn-1, xn+1) = 2r 

 
Again taking n → ∞ in (2.2) 
 
 

∞→n
lim  d(xn, xn-1) ≤ 1/3 [

∞→n
lim  d(xn-1, xn) + d(xn, xn+1) + d(xn-1, xn)]  

 - ψ [
∞→n

lim  {d(x n-1, xn) + d(xn, xn+1)}, 
∞→n

lim  d(xn-1, xn)] 

 r ≤ 1/3 [r + r + r] - ψ (2r, r, 0) 
 r ≤ r - ψ (2r, r, 0) 
 
or ψ (2r, r, 0) ≤ 0 which is contraction unless r = 0  
Thus we have established that  
 
 d(xn, xn+l) → 0 as n → ∞       (2.9) 
 
Next we show that {xn} is a Cauchy sequence. If otherwise, then there exist ∈ > 0 
and increasing sequences of integers {m(k)} and {n(k)} such that for all integers 
'k', 
 n(k) > m(k) > k, 
 d(xm(k), xn(k)) ≥ ∈       (2.10) 
 
and  d(xm(k), xn(k)-1) < ∈       (2.11) 
 
Then,  

∈ ≤ d(xm(k), xn(k)) = d(Txm(k)-l Txn(k)-l) 
≤ 1/3 [d(xm(k)-l, Txn(k)-l) + d (Txm(k)-l, xn(k)-l) +(d(xm(k)-l, xn(k)-l)] 
- ψ [d(xm(k)-l, Txn(k)-l) + d(Txm(k)-l, xn(k)-l), d(xm(k)-l, xn(k)-l)]    
= 1/3 [d(xm(k)-l, xn(k)) + d (xm(k), xn(k)-l) +(d(xm(k)-l, xn(k)-l)] 
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- ψ [d(xm(k)-l, xn(k)), d(xm(k), xn(k)-l),  d(xm(k)-l, xn(k)-l)]   (2.12)  
 

Again  
∈ ≤ d(xm(k), xn(k)) 

    ≤ d(xm(k), xn(k)-1) + d(xn(k)-l, xn(k)) by (2.11),   
    ≤ ∈ + d(xn(k)-1, xn(k)) 
 
taking    k → ∞ is a above inequality and using (2.9) we obtain 
 ∈ ≤ 

∞→k
lim d(xm(k), xn(k)) ≤  ∈ 

and  
∈≤ 

∞→k
lim  d(xm(k), xn(k)-1) + 

∞→k
lim  d(xn(k)-l, xn(k)) ≤ ∈ 

we have 
 

∞→k
lim  d(xm(k), xn(k)) = ∈      (2.13) 

And 
 

∞→k
lim  d(xm(k), xn(k)-1) = ∈       (2.14)  

Similarly 
 

∞→k
lim  d(xm(k)-1, xn(k)) = ∈      (2.15)    

 
taking k → ∞ in (2.12) and using (2.9), (2.13), (2.14) and (2.15)  
we obtain  
 
 ∈ ≤ 1/3 [∈ + ∈ + ∈] - ψ (∈, ∈, ∈) 
 ∈ ≤ ∈ -  ψ (∈, ∈, ∈) 
 ψ (∈,∈, ∈) ≤ 0 which is contraction since ∈ > 0 
 
Hence {xn} is a Cauchy sequence and therefore is convergent in the complete 
metric space (X,d) 
Let xn → z and n → ∞.       (2.16) 
Then 

 d(z, Tz) ≤ d (z, xn+1) + d (xn+1, Tz) 
      = d(z, xn+1) + d(Txn, Tz). 
 ≤ d (z, xn+1) + 1/3 [d (xn, Tz) + d (Txn, z) + d(xn, z)] 
   - ψ [d (xn, Tz), d (Txn, z), d(xn, z)] 

=  d (z, Txn) + 1/3 [d (xn, Tz) + d (Txn, z) + d(xn, z)] 
   - ψ [d (xn, Tz), d (Txn, z), d(xn, z)] 

= d (z, Tz) + 1/3 [d (z, Tz) + d (Tz, z) + d(z, z)] 
   - ψ (d (z, Tz), d (Tz, z), d(z, z)] 

= 2d (z, Tz) - ψ (d (z, Tz), d (Tz, z), d(z, z)) 
   < 2d (z, Tz) 
   - d (z, Tz) < 0 
   d(z, Tz) ≥ 0 
Hence Tz = z 
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Next we establish that the fixed point z is unique. 
Let z1 and z2 be two fixed points of T, 
then 
 d (z1, z2) = d (Tz1, Tz2) 
 ≤ 1/3 [d (z1, Tz2) + d (Tz1, z2) + d(z1, z2)] 
           - ψ (d (Tz1, z2), d (z1, Tz2), d(z1, z2)) 
i.e.  

d(z1, z2) ≤ d (z1, z2) - ψ d(z1, z2), d (z1, z2), d(z1, z2)) 
which by property of ψ is a contradiction unless d(zl, z2) = 0, that is z1 = z2. Hence 
fixed point is unique in S-contraction. 
consider the following example 
 
Example 2.1. Let x = {p, q, r,} and d is a metric defined on X as follows. 
 
(i)  d(p, q) = 2  d(q, r) = 4  d(r, p) = 3 
and T(p) = q  T(q) = q  T(r) = p 
(ii) d(q, r) = 2  d(r, p) = 4  d(p,q) = 3 
 T(q) = r  T(r) = r  T(p) = q 
(iii) d(r, p) = 2  d(p, q) = 4  d(q, r) = 3 
 T(r) = p   T(p) = p  T(q) = r 
where T: X→ x is mapping defined as (i) (ii) and (iii) respectively  
Then (X, d) is a complete metric space.  
Let ψ (a, b, c) = 1/3 min {a, b, c}  
Then T is a weak S-contraction and conditions of theorem are satisfied. Hence T 
must have a unique fixed point.  
It is clear that q, r and p are fixed point of T 
Corresponding mapping of T.   
and if x replace p or q and y replace r then inequality. (1.3) does not holds by 
definition of T in (i)  
Similarly x replace q and r and y replace p then inequality (1.3) does not holds by 
definition of T in (ii)  
and x replace r and p and y replace q then inequality (1.3) does not holds by 
definition of T in (iii)   
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