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Abstract
In this paper, let Q = {T6, T5, T4, T3, T2, T1, T0} be a subsemilattice of X−

semilattice of unions D where T6 ⊂ T4 ⊂ T3 ⊂ T1 ⊂ T0, T6 ⊂ T4 ⊂ T3 ⊂
T2 ⊂ T0, T5 ⊂ T4 ⊂ T3 ⊂ T1 ⊂ T0, T5 ⊂ T4 ⊂ T3 ⊂ T2 ⊂ T0, T2\T1 6= ∅,
T1\T2 6= ∅, T5\T6 6= ∅, T6\T5 6= ∅, T2 ∪ T1 = T0, T6 ∪ T5 = T4, then we
characterize each element of the class

∑
8(X, 7) which is isomorphic to Q by

means of the characteristic family of sets, the characteristic mapping and the
generate set of Q. Moreover, we describe the construction of regular elements
α of BX(D) satisfying V (D,α) = Q. Additionally, we find the number of these
regular elements, when X is finite.
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1 Introduction

Representations of partially ordered semigroups by binary relations were first
considered by Zaretskii [1]. In [2] Zareckii proved that a binary relation α is a
regular element of BX if and only if V (α) (= V (P (X), α)) is a completely dis-
tributive lattice. Further, criteria for regularity were given by Markowsky [3]
and Schein [4]. Then, Diasamidze proved that, a binary relation α is a regular
element of BX iff V (X∗, α) ⊆ V (D,α) and V (D,α) is complete XI− semilat-
tice of unions in [5]. So, Diasamidze extend Zaretskii’s theorem and give an
intrinsic characterization of regularity since if D = P (X) then BX(D) = BX
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and V (α) (= V (P (X), α)) is a completely distributive lattice. Therefore,
Diasamidze generate systematic rules for understanding the structure of semi-
groups of binary relations and characterization of regular elements of these
semigroups in [5− 9]. In general, he studied semigroups but, in particular, he
investigates complete semigroups of the binary relations.

In this paper, we take in particular, Q = {T6, T5, T4, T3, T2, T1, T0} subsemi-
lattice of X−semilattice of unions D where the elements Ti’ s, i = 0, 1, . . . , 6
are satisfying the following properties, T6 ⊂ T4 ⊂ T3 ⊂ T1 ⊂ T0, T6 ⊂ T4 ⊂
T3 ⊂ T2 ⊂ T0, T5 ⊂ T4 ⊂ T3 ⊂ T1 ⊂ T0,T5 ⊂ T4 ⊂ T3 ⊂ T2 ⊂ T0, T2\T1 6= ∅,
T1\T2 6= ∅, T5\T6 6= ∅, T6\T5 6= ∅, T2 ∪ T1 = T0, T6 ∪ T5 = T4. We will inves-
tigate the properties of regular element α ∈ BX(D) satisfying V (D,α) = Q.
Moreover, we will calculate the number of these regular elements of BX(D) for
a finite set X.

As general, we also characterize the elements of the class
∑

8(X, 7). This
class is the complete X−semilattice of unions every elements of which are
isomorphic to Q. So, we characterize the class for each element of which is
isomorphic to Q by means of the characteristic family of sets, the characteristic
mapping and the generate set of D.

The material in this work forms a part of first author’s PH.D. Thesis, under
the supervision of the second author Dr. Neşet Aydın.

2 Preliminaries

We recall various concepts and properties from [5− 10].
Let X be an arbitrary nonempty set. Recall that the set of all binary

relations on X is denoted by BX . The binary operation ”◦” on BX defined by
for α, β ∈ BX

(x, z) ∈ α ◦ β ⇔ (x, y) ∈ α and (y, z) ∈ β, for some y ∈ X

is associative and hence BX is a semigroup with respect to the operation ” ◦ ”.
This semigroup is called the semigroup of all binary relations on the set X.

Let D be a nonempty subset of P (X) such that it is closed under the union
i.e., ∪D′ ∈ D for any nonempty subset D′ of D. In that case, D is called a
complete X− semilattice of unions. The union of all elements of D is denoted
by the symbol D̆. Clearly, D̆ is the largest element of D.

The set N(D,D′) = {Z ∈ D | Z ⊆ Z ′ for any Z ′ ∈ D′} is all lower bounds
of D′ in D. Moreover, if N(D,D′) 6= ∅ then Λ(D,D′) = ∪N(D,D′) belongs
to D and it is the greatest lower bound of D′.

Let D̃ and D′ be some nonempty subsets of the complete X− semilattices
of unions. We say that a subset D̃ generates a set D′ if any element from D′

is a set-theoretic union of the elements from D̃.
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Further, let x, y ∈ X, Y ⊆ X, α ∈ BX , T ∈ D, ∅ 6= D′ ⊆ D and t ∈ D̆. We
use the notations:

yα = {x ∈ X | (y, x) ∈ α} , Y α =
⋃
y∈Y

yα,

V (D,α) = {Y α | Y ∈ D} , Dt = {Z ′ ∈ D | t ∈ Z ′} ,
D′T = {Z ′ ∈ D′ | T ⊆ Z ′} ,

..

D
′
T = {Z ′ ∈ D′ | Z ′ ⊆ T} .

Let X∗ = P (X)\{∅}, α ∈ BX , Y
α
T = {y ∈ X | yα = T} and

V [α] =


V (X∗, α), if ∅ /∈ D,
V (X∗, α), if ∅ ∈ V (X∗, α),
V (X∗, α) ∪ {∅} , if ∅ /∈ V (X∗, α) and ∅ ∈ D.

In general, a representation of a binary relation α of the form

α =
⋃

T∈V [α]

(Y α
T × T )

is called quasinormal. Note that, if α ∈ BX has a quasinormal representation,

then X =
⋃

T∈V (X∗,α)

Y α
T and Y α

T ∩ Y α
T ′ 6= ∅ for T, T ′ ∈ V (X∗, α) which T 6= T ′.

In particular, let f be an arbitrary mapping from X into D then BX(D)
denotes the set of all binary relations of the form

αf =
⋃
x∈X

({x} × f(x)) .

It is easy to prove that BX(D) is a semigroup with respect to the operation
of multiplication of binary relations, which is called a complete semigroup of
binary relations defined by an X−semilattice of unions D. Diasamidze intro-
duced this structure and investigated their properties [6].

If α ◦ β ◦ α = α for some β ∈ BX(D) then a binary relation α is called a
regular element of BX(D).

A completeX−semilattice of unionsD is called ”XI− semilattice of unions”
[9] if it satisfies the following two conditions

1. Λ(D,Dt) ∈ D for any t ∈ D̆,

2. Z =
⋃
t∈Z

Λ(D,Dt) for any nonempty element Z of D.

In [9] they show that, β is a regular element of BX(D) iff V [β] = V (D, β)
is a complete XI−semilattice of unions.
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Let D′ be an arbitrary nonempty subset of the complete X−semilattice
of unions D. A nonempty element T ∈ D′ is a nonlimiting element of D′ if
T\l(D′, T ) = T\ ∪ (D′\D′T ) 6= ∅. A nonempty element T ∈ D′ is a limiting
element of D′ if T \l(D′, T ) = ∅.

The family C(D) of pairwise disjoint subsets of the set D̆ = ∪D is the
characteristic family of sets of D if the followings hold

a) ∩D ∈ C(D),

b) ∪C(D) = D̆,

c) There exists a subset CZ(D) of the set C(D) such that Z = ∪CZ(D) for
all Z ∈ D.

A mapping θ : D → C(D) is called characteristic mapping if Z = (∩D) ∪⋃
Z′∈D̂

θ (Z ′) for all Z ∈ D.

The existence and the uniqueness of characteristic family and characteristic
mapping is given in Diasamidze [7]. Moreover, it is shown that every Z ∈ D
can be written as

Z = θ(Q̆) ∪
⋃

T∈Q̂(Z)

θ (T ) ,

where Q̂ (Z) = Q\ {T ∈ Q | Z ⊆ T}.
A one-to-one mapping ϕ between two complete X− semilattices of unions

D′ and D′′ is called a complete isomorphism if ϕ(∪D1) = ∪
T ′∈D1

ϕ(T ′) for each

nonempty subset D1 of the semilattice D′. Also, let α ∈ BX(D). A complete
isomorphism ϕ between XI−semilattice of unions Q and D is called a complete
α− isomorphism if Q = V (D,α) and ϕ(∅) = ∅ for ∅ ∈ V (D,α) and ϕ(T )α = T
for any T ∈ V (D,α).

Let Q and D′ are respectively some XI− and X− subsemilattices of the
complete X− semilattice of unions D. Then

Rϕ (Q,D′) = {α ∈ BX(D) | α regular, ϕ complete α− isomorphism}

where ϕ : Q → D′ complete isomorphism and V (D,α) = Q. Besides, let us
denote

R(Q,D′) =
⋃

ϕ∈Φ(Q,D′)

Rϕ(Q,D′) and R(D′) =
⋃

Q′∈Ω(Q)

R(Q′, D′).

where

Φ (Q,D′) = {ϕ | ϕ : Q→ D′ is a complete α−isomorphism for any α ∈ BX(D)}
Ω (Q) = {Q′ | Q′ is XI−subsemilattices of D which is complete isomorphic to Q}
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Theorem 2.1. [8, Theorem 10] Let α and σ be binary relations of the semi-
group BX(D) such that α ◦ σ ◦ α = α. If D(α) is some generating set of the

semilattice V (D,α)\ {∅} and α =
⋃

T∈V (D,α)

(Y α
T ×T ) is a quasinormal represen-

tation of the relation α, then V (D,α) is a complete XI− semilattice of unions.
Moreover, there exists a complete α−isomorphism ϕ between the semilattice
V (D,α) and D′ = {Tσ | T ∈ V (D,α)} , that satisfies the following conditions:

a) ϕ (T ) = Tσ and ϕ (T )α = T for all T ∈ V (D,α)

b)
⋃

T ′∈
..
D(α)T

Y α
T ′ ⊇ ϕ(T ) for any T ∈ D(α),

c) Y α
T ∩ ϕ(T ) 6= ∅ for all nonlimiting element T of the set D̈ (α)T ,

d) If T is a limiting element of the set D̈ (α)T , then the equality ∪B (T ) = T

is always holds for the set B (T ) =
{
Z ∈ D̈ (α)T | Y α

Z ∩ ϕ(T ) 6= ∅
}

.

On the other hand, if α ∈ BX(D) such that V (D,α) is a complete XI−
semilattice of unions. If for a complete α−isomorphism ϕ from V (D,α) to a
subsemilattice D′ of D satisfies the conditions b) − d) of the theorem, then α
is a regular element of BX(D).

Theorem 2.2. [9, Theorem 1.18.2] Let Dj = {T1, . . . , Tj}, X be finite set and
∅ 6= Y ⊆ X. If f is a mapping of the set X, on the Dj, for which f(y) = Tj
for some y ∈ Y, then the numbers of those mappings f of the sets X on the
set Dj can be calculated by the formula s = j|X\Y | ·

(
j|Y | − (j − 1)|Y |

)
.

Theorem 2.3. [9, Theorem 6.3.5] Let X is a finite set. If ϕ is a fixed element
of the set Φ(D,D′) and |Ω(D)| = m0 and q is a number of all automorphisms
of the semilattice D then |R(D′)| = m0 · q · |Rϕ(D,D′)| .

3 Results

Let X be a finite set, D be a complete X−semilattice of unions and Q =
{T6, T5, T4, T3, T2, T1, T0} be a X−subsemilattice of unions of D satisfies the
following conditions

T6 ⊂ T4 ⊂ T3 ⊂ T1 ⊂ T0,
T6 ⊂ T4 ⊂ T3 ⊂ T2 ⊂ T0,
T5 ⊂ T4 ⊂ T3 ⊂ T1 ⊂ T0,
T5 ⊂ T4 ⊂ T3 ⊂ T2 ⊂ T0,
T2\T1 6= ∅, T1\T2 6= ∅,
T5\T6 6= ∅, T6\T5 6= ∅,
T2 ∪ T1 = T0, T6 ∪ T5 = T4.
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The diagram of the Q is shown in Figure 3.1.

Figure 3.1

Let C (Q) = {P6, P5, P4, P3, P2, P1, P0} be characteristic family of sets of Q and
θ : Q → C(Q), θ (Ti) = Pi(i = 0, 1, . . . , 6) be characteristic mapping. Then,
by the definition of characteristic family and characteristic mapping for each
element Ti ∈ Q we can write

Ti = θ(Q̆) ∪
⋃

T∈Q̂(Ti)

θ (T ) , (i = 0, 1, . . . , 6)

where Q̂ (Ti) = Q\ {Z ∈ Q | Ti ⊆ Z} , Q̆ = ∪Q = T0 and θ(Q̆) = θ (T0) = P0.

Accordingly, we get

T0= P 0∪
⋃

T∈Q̂(T0)

θ(T ) = P0 ∪ P1 ∪ P 2∪P 3∪P 4∪P 5∪P 6,

T1= P 0∪
⋃

T∈Q̂(T1)

θ(T ) = P0 ∪ P 2∪P 3∪P 4∪P 5∪P 6,

T2= P 0∪
⋃

T∈Q̂(T2)

θ(T ) = P0 ∪ P1 ∪ P 3∪P 4∪P 5∪P 6,

T3= P 0∪
⋃

T∈Q̂(T3)

θ(T ) = P0 ∪ P 4∪P 5∪P 6,

T4= P 0∪
⋃

T∈Q̂(T4)

θ(T ) = P 0∪P 5∪P 6,

T5= P 0∪
⋃

T∈Q̂(T5)

θ(T ) = P 0∪P 6,

T6= P 0∪
⋃

T∈Q̂(T6)

θ(T ) = P 0∪P 5.

(3.1)

Firstly, let us determine that in which conditions Q is XI− semilattice of
unions. Then, we specify the greatest lower bounds of the each semilatticeQt in
Q for t ∈ T0. Since T0 = P0 ∪ P1 ∪ P 2∪P 3∪P 4∪P 5∪P 6 and Pi (i = 0, 1, . . . , 6)
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are pairwise disjoint sets, by Equation (3.1) and the definition of Qt, we have

Qt =



Q , t ∈ P0

{T0, T2} , t ∈ P1

{T0, T1} , t ∈ P2

{T0, T1, T2} , t ∈ P3

{T0, T1, T2, T3} , t ∈ P4

{T0, T1, T2, T3, T4, T6} , t ∈ P5

{T0, T1, T2, T3, T4, T5} , t ∈ P6

. (3.2)

So, by Equation (3.2) and the definition of N(Q,Qt),

N(Q,Qt) =



∅ , t ∈ P0

{T2, T3, T4, T5, T6} , t ∈ P1

{T1, T3, T4, T5, T6} , t ∈ P2

{T3, T4, T5, T6} , t ∈ P3

{T3, T4, T5, T6} , t ∈ P4

{T6} , t ∈ P5

{T5} , t ∈ P6

(3.3)

are obtained. From the Equation (3.3) the greatest lower bounds for each
semilattice Qt, we get

∪N(Q,Qt) = Λ(Q,Qt) =



∅ , t ∈ P0

T2 , t ∈ P1

T1 , t ∈ P2

T3 , t ∈ P3

T3 , t ∈ P4

T6 , t ∈ P5

T5 , t ∈ P6

. (3.4)

If t ∈ P0 then Λ(D,Dt) = ∅ /∈ D. So, it must be P0 = ∅. Thus using the
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Equations (3.1) and (3.4), we have

t ∈ T6 = P5 ⇒ T6 = Λ(Q,Qt), (3.5)

t ∈ T5 = P6 ⇒ T5 = Λ(Q,Qt),

t ∈ T4 = P5 ∪ P6 ⇒ ⇒ Λ(Q,Qt) ∈ {T5, T6}
⇒ T4 = T5 ∪ T6 =

⋃
t∈T4

Λ(Q,Qt),

t ∈ T3 = P4 ∪ P5 ∪ P6 ⇒ ⇒ Λ(Q,Qt) ∈ {T3, T5, T6}
⇒ T3 = T3 ∪ T5 ∪ T6 =

⋃
t∈T3

Λ(Q,Qt),

t ∈ T2 = P1 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ⇒ Λ(Q,Qt) = {T2, T3, T5, T6}
⇒ T2 = T2 ∪ T3 ∪ T5 ∪ T6 =

⋃
t∈T2

Λ(Q,Qt),

t ∈ T1 = P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ⇒ Λ(Q,Qt) = {T1, T3, T5, T6}
⇒ T1 = T1 ∪ T3 ∪ T5 ∪ T6 =

⋃
t∈T1

Λ(Q,Qt),

t ∈ T0 = T2 ∪ T1 ⇒ Λ(Q,Qt) = {T1, T2, T3, T5, T6}
⇒ T0 = T1 ∪ T2 ∪ T3 ∪ T5 ∪ T6 =

⋃
t∈T0

Λ(Q,Qt).

Lemma 3.1. Q is XI− semilattice of unions if and only if T6 ∩ T5 = ∅.

Proof. ⇒: Let Q be a XI− semilattice of unions. Then P0 = ∅ by Equation
(3.4) and T6 = P5, T5 = P6 by Equation (3.1), we have T6 ∩ T5 = ∅ since P6

and P5 are pairwise disjoint sets.

⇐: Let T6 ∩ T5 = ∅ holds. From Equation (3.1), we obtain P0 = ∅. Using
the Equations (3.4) and (3.5), we have Q is XI− semilattice of unions.

Lemma 3.2. If Q is XI− semilattice of unions then

{T6, T5, (T1 ∩ T2) \T4, T1\T2, T2\T1, X\T0}

is a partition of the set X.

Proof. Considering the (3.1) with P0 = ∅, straightforward to see that {T6, T5,
(T1 ∩ T2) \T4, T1\T2, T2\T1, X\T0} is a partition of the set X.

Lemma 3.3. Let G = {T6, T5, T4, T3, T2, T1} be a generating set of Q. Then
the elements T6, T5, T3, T2, T1 are nonlimiting elements of the sets G̈T6 , G̈T5 ,
G̈T3 , G̈T2 , G̈T1 respectively and T4 is a limiting element of the set G̈T4 .
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Proof. Definition of
..

D
′
T , yield the following equations

G̈T6 = {T6} ,
G̈T5 = {T5} ,
G̈T4 = {T6, T5, T4} ,
G̈T3 = {T6, T5, T4, T3} ,
G̈T2 = {T6, T5, T4, T3, T2} ,
G̈T1 = {T6, T5, T4, T3, T1} .

(3.6)

Now we get the sets l(G̈Ti , Ti), i ∈ {1, 2, . . . , 6} ,

l(G̈T6 , T6) = ∪(G̈T6\ {T6}) = ∅,
l(G̈T5 , T5) = ∪(G̈T5\ {T5}) = ∅,
l(G̈T4 , T4) = ∪(G̈T4\ {T4}) = T4,

l(G̈T3 , T3) = ∪(G̈T3\ {T3}) = T4,

l(G̈T2 , T2) = ∪(G̈T2\ {T2}) = T3,

l(G̈T1 , T1) = ∪(G̈T1\ {T1}) = T3.

Then we find nonlimiting and limiting elements of G̈Ti , i ∈ {1, 2, . . . , 6}.

T6\l(G̈T6 , T6) = T6\∅ = T6 6= ∅
T5\l(G̈T5 , T5) = T5\∅ = T5 6= ∅
T4\l(G̈T4 , T4) = T4\T4 = ∅
T3\l(G̈T3 , T3) = T3\T4 6= ∅
T2\l(G̈T2 , T2) = T2\T3 6= ∅
T1\l(G̈T1 , T1) = T1\T3 6= ∅

So, the elements T6, T5, T3, T2, T1 are nonlimiting elements of the sets G̈T6 , G̈T5 ,
G̈T3 , G̈T2 , G̈T1 respectively and T4 is a limiting element of the set G̈T4 .

Note that, if α ∈ BX(D) is regular then from the definition of the set
BX(D) there is a mapping f from X into D such that

α =
⋃
x∈D

({x} × f(x)) .

Thus, f(x) ∈ D. Besides, we know that α ∈ BX(D) is regular iff V (D,α) is
XI− semilattice of unions where V (D,α) = V [α]. For this reason, there is a
XI− subsemilattice D′ ⊂ D and V (D,α) = D′ = V (D′, α) . So we can write
α as,

α =
⋃

T∈V [α]

(Y α
T × T ) =

⋃
T∈D′

(Y α
T × T ) .

In particular, let us determine the properties of regular elements α ∈

BX(D) such that α =
6⋃
i=0

(Y α
i ×T i) where V (D,α) = Q.
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Theorem 3.4. Let α ∈ BX(D) be a quasinormal representation of the form

α =
6⋃
i=0

(Y α
i ×T i)

such that V (D,α) = Q. α ∈ BX(D) is a regular iff for some complete α-
isomorphism ϕ : Q→ D′ ⊆ D, the following conditions are satisfied:

Y α
6 ⊇ ϕ(T 6),
Y α

5 ⊇ ϕ(T 5),
Y α

6 ∪ Y α
5 ∪ Y α

4 ∪ Y α
3⊇ ϕ(T 3),

Y α
6 ∪ Y α

5 ∪ Y α
4 ∪ Y α

3 ∪ Y α
2 ⊇ ϕ(T 2),

Y α
6 ∪ Y α

5 ∪ Y α
4 ∪ Y α

3 ∪ Y α
1 ⊇ ϕ(T 1),

Y α
1 ∩ϕ(T 1) 6= ∅, Y α

2∩ϕ(T 2) 6= ∅,
Y α

3 ∩ϕ(T 3) 6= ∅.

(3.7)

Proof. Let G = {T6, T5, T4, T3, T2, T1} be a generating set of Q.
⇒: Since α ∈ BX(D) is regular and V (D,α) = Q, Q is XI−semilattice of

unions. From Theorem 2.1, there exits a complete isomorphism ϕ : Q → D′.
Considering Theorem 2.1 (a), ϕ (T )α = T for all T ∈ V (D,α). So, ϕ is
complete α-isomorphism. Applying the Theorem 2.1 (b) we have

Y α
6 ⊇ ϕ(T 6), Y α

5 ⊇ ϕ(T 5),
Y α

6 ∪ Y α
5 ∪ Y α

4 ⊇ ϕ(T 4),
Y α

6 ∪ Y α
5 ∪ Y α

4 ∪ Y α
3⊇ ϕ(T 3),

Y α
6 ∪ Y α

5 ∪ Y α
4 ∪ Y α

3 ∪ Y α
2 ⊇ ϕ(T 2),

Y α
6 ∪ Y α

5 ∪ Y α
4 ∪ Y α

3 ∪ Y α
1 ⊇ ϕ(T 1).

(3.8)

By using ϕ is complete α-isomorphism, Y α
6 ∪Y α

5 ∪Y α
4 ⊇ ϕ(T 6) ∪ ϕ(T5) = ϕ(T4)

always ensured. Moreover, considering that the elements T6, T5, T3, T2, T1 are
nonlimiting elements of the sets G̈T6 , G̈T5 , G̈T3 , G̈T2 , G̈T1 respectively and using
the Theorem 2.1 (c), following properties

Y α
1 ∩ϕ(T 1) 6= ∅, Y α

2∩ϕ(T 2) 6= ∅,
Y α

3 ∩ϕ(T 3) 6= ∅, Y α
5∩ϕ(T 5) 6= ∅, Y α

6∩ϕ(T 6) 6= ∅ (3.9)

are obtained. From Y α
6 ⊇ ϕ(T 6) and Y α

5 ⊇ ϕ(T 5), Y α
6 ∩ϕ(T 6) 6=∅ and Y α

5 ∩ϕ(T 5) 6= ∅
always ensured. Thus there is no need the condition Y α

6 ∪ Y α
5 ∪ Y α

4 ⊇ ϕ(T 4),
Y α

5 ∩ϕ(T 5) 6= ∅ and Y α
6 ∩ϕ(T 6) 6= ∅. Therefore, there exist an α−isomorphism

ϕ which holds given conditions.
⇐: V (D,α) is XI−semilattice of unions, because of V (D,α) is equal to

Q . Let ϕ : Q → D′ be a complete α−isomorphism which holds given con-
ditions. So, by Equation (3.7), satisfying Theorem 2.1 (a) − (c). Remem-
bering that T4 is a limiting element of the set G̈T4 , we constitute the set
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B (T4) =
{
Z ∈ G̈T4 | Y α

Z ∩ϕ(T 4) 6= ∅
}
. If Y α

6 ∩ϕ(T 4) = ∅ we have

Y α
6 ∪ Y α

5 ⊇ ϕ(T 6) ∪ ϕ(T 5) = ϕ(T 4)

So, we get Y α
5 ⊇ ϕ(T 4) ⊇ ϕ(T 6), it contradicts with Y α

6 ⊇ ϕ(T 6). Therefore,
T6 ∈ B (T4) . Similarly, if Y α

5 ∩ϕ(T 4) = ∅ then Y α
6 ⊇ ϕ(T 4) ⊇ ϕ(T 5). This

result in a contradiction since Y α
6 ⊇ ϕ(T 6). Therefore, T5 ∈ B (T4) . We have

∪B (T4) = T6 ∪ T5 = T4. By Theorem 2.1, we conclude that α is the regular
element of the BX(D).

Now we calculate the number of regular elements α, satisfying the hypoth-
esis of Theorem 3.4.

Let α ∈ BX(D) be a regular element which is quasinormal representation

of the form α =
6⋃
i=0

(Y α
i ×T i) and V (D,α) = Q. Then there exist a complete α−

isomorphism ϕ : Q→ D′ = {ϕ(T6), . . . , ϕ(T1), ϕ(T0)} satisfying the hypothesis
of Theorem 3.4. So, α ∈ Rϕ(Q,D′). We will denote ϕ(Ti) = T i, i = 0, 1, . . . 6.
Diagram of the D′ =

{
T 6, T 5, T 4, T 3, T 2, T 1, T 0

}
is shown in Figure 3.2.

Then the Equation (3.7) reduced to below equation.

Y α
6 ⊇ T 6,
Y α

5 ⊇ T 5,
Y α

6 ∪ Y α
5 ∪ Y α

4 ∪ Y α
3⊇ T 3,

Y α
6 ∪ Y α

5 ∪ Y α
4 ∪ Y α

3 ∪ Y α
2 ⊇ T 2,

Y α
6 ∪ Y α

5 ∪ Y α
4 ∪ Y α

3 ∪ Y α
1 ⊇ T 1,

Y α
1 ∩T 1 6= ∅, Y

α

2∩T 2 6= ∅,
Y α

3 ∩T 3 6= ∅.

(3.10)

Moreover, the image of the sets in Lemma 3.2 under the α− isomorphism ϕ

T 6, T 5, (T 1 ∩ T 2)\T 4, T 1\T 2, T 2\T 1, X\T 0

are also pairwise disjoint sets and union of these sets equals X.
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Lemma 3.5. For every α ∈ Rϕ(Q,D′), there exists an ordered system of dis-
joint mappings which is defined {T 6, T 5, (T 1 ∩ T 2)\T 4, T 2\T 1, T 1\T 2, X\T 0}.
Also, ordered systems are different which correspond to different binary rela-
tions.

Proof. Let fα : X → D be a mapping satisfying the condition fα(t) = tα for
all t ∈ X. We consider the restrictions of the mapping fα as f0α, f1α, f2α, f3α,
f4α and f5α on the sets T 6, T 5, (T 1∩T 2)\T 4, T 1\T 2, T 2\T 1, X\T 0 respectively.

Now, considering the definition of the sets Y α
i , (i = 0, 1, . . . , 6) together

with the Equation (3.10) we have

t ∈ T 6 ⇒ t ∈ Y α
6 ⇒ tα = T6 ⇒ f0α(t) = T6, ∀t ∈ T 6.

t ∈ T 5 ⇒ t ∈ Y α
5 ⇒ tα = T5 ⇒ f1α(t) = T5, ∀t ∈ T 5.

t ∈ (T 1 ∩ T 2)\T 4 ⇒ t ∈ T 1 ∩ T 2 ⊆ Y α
6 ∪Y α

5 ∪ Y α
4 ∪Y α

3

⇒ tα ∈ {T6, T5, T4, T3}
⇒ f2α(t) ∈ {T6, T5, T4, T3} , ∀t ∈ (T 1 ∩ T 2)\T 4.

Since Y α
3 ∩ T 3 6= ∅, there is an element t1 ∈ Y α

3 ∩ T 3. Then t1α = T3 and
t1 ∈ T 3. If t1 ∈ T 4 then t1 ∈ T 4 = T 5∪T 6 ⊆ Y α

5 ∪Y α
6 . Therefore, t1α = {T6, T5}

which is in contradiction with the equality t1α = T3. So f2α(t1) = T3 for some
t1 ∈ T 3\T 4.

t ∈ T 2\T 1 ⇒ t ∈ T 2 ⊆ Y α
6 ∪Y α

5 ∪ Y α
4 ∪Y α

3∪Y α
2

⇒ tα ∈ {T6, T5, T4, T3, T2}
⇒ f3α(t) ∈ {T6, T5, T4, T3, T2} , ∀t ∈ T 2\T 1.

Also, since Y α
2 ∩T 2 6= ∅ there is an element t2, t2α = T2 and t2 ∈ T 2. If t2 ∈ T 1

then t2 ∈ T 1 ⊆ Y α
6 ∪Y α

5 ∪ Y α
4 ∪Y α

3∪Y α
1 . Therefore, t2α ∈ {T6, T5, T4, T3, T1}

which is in contradiction with the equality t2α = T2. So f3α(t2) = T2 for some
t2 ∈ T 2\T 1.

t ∈ T 1\T 2 ⇒ t ∈ T 1 ⊆ Y α
6 ∪Y α

5 ∪ Y α
4 ∪Y α

3∪Y α
1

⇒ tα ∈ {T6, T5, T4, T3, T1}
⇒ f4α(t) ∈ {T6, T5, T4, T3, T1} , ∀t ∈ T 1\T 2.

Similarly, t3 ∈ Y α
1 ∩ T 1 since Y α

1 ∩ T 1 6= ∅. Then t3α = T1 and t3 ∈ T 1. If
t3 ∈ T 2 then t3 ∈ Y α

6 ∪Y α
5 ∪Y α

4 ∪Y α
3∪Y α

2 . So t3α ∈ {T6, T5, T4, T3, T2} . However
this contradicts to t3α = T1. So f4α(t3) = T1 for some t3 ∈ T 1\T 2.

t ∈ X\T 0 ⇒ t ∈ X =
6⋃
i=0

Y α
i ⇒ tα ∈ Q⇒ f5α(t) ∈ Q, ∀t ∈ X\T 0.

Therefore, for every binary relation α ∈ Rϕ(Q,D′) there exists an ordered
system (f0α, f1α, f2α, f3α, f4α, f5α).
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On the other hand, suppose that for α, β ∈ Rϕ(Q,D′) which α 6= β, be
obtained fα = (f0α, f1α, f2α, f3α, f4α, f5α) and fβ = (f0β, f1β, f2β, f3β, f4β,
f5β). If fα = fβ, we get

fα = fβ ⇒ fα(t) = fβ(t), ∀t ∈ X ⇒ tα = tβ, ∀t ∈ X ⇒ α = β

which contradicts to α 6= β. Therefore, different binary relations’s ordered
systems are different.

Lemma 3.6. Let f = (f0, f1, f2, f3, f4, f5) be ordered system from X in the
semilattice D such that

f0:T 6 →{T6} ,
f1:T 5 →{T5} ,
f2: (T 2 ∩ T 1)\T 4 →{T6, T5, T4, T3} and f2(a) = T3, ∃ a ∈ T 3\T 4,
f3: T 2\T 1 → {T6, T5, T4, T3, T2}and f3(b) = T2, ∃ b ∈ T 2\T 1,
f4: T 1\T 2 → {T6, T5, T4, T3, T1}and f4(c) = T1, ∃ c ∈ T 1\T 2,
f5: X\T 0 →Q.

Then β =
⋃
x∈X

({x}×f(x)) ∈ BX(D) is regular and ϕ is a complete β−isomorphism.

So β ∈ Rϕ(Q,D′).

Proof. First we see that V (D, β) = Q. Considering V (D, β) = {Y β | Y ∈ D} ,
the properties of f mapping, T iβ =

⋃
x∈T i

xβ and D′ ⊆ D, we get

T6 ∈ Q⇒ T 6β=T6 ⇒ T6 ∈ V (D, β),
T5 ∈ Q⇒ T 5β=T5 ⇒ T5 ∈ V (D, β),
T4 ∈ Q⇒ T 4β= T 5β ∪ T 6β = T 5 ∪ T6 = T4 ⇒ T4 ∈ V (D, β),
T3 ∈ Q⇒ T 3β=

((
T 3\T 4

)
∪ T 4

)
β = T6 ∪ T5 ∪ T4 ∪ T3 = T3 ⇒ T3 ∈ V (D, β),

T2 ∈ Q⇒ T 2β= T6 ∪ T5 ∪ T 4 ∪ T3 ∪ T2 = T2 ⇒ T2 ∈ V (D, β),
T1 ∈ Q⇒ T 1β= T6 ∪ T5 ∪ T 4 ∪ T3 ∪ T1 = T1 ⇒ T1 ∈ V (D, β),
T0 ∈ Q⇒ T 0β = T6 ∪ T5 ∪ T 4 ∪ T3 ∪ T2 ∪ T1 = T0 ⇒ T0 ∈ V (D, β).

Hence, Q ⊆ V (D, β). Also,

Z ∈ V (D, β) ⇒ Z = Y β, ∃Y ∈ D
⇒ Z = Y β =

⋃
y∈Y

yβ =
⋃
y∈Y

f(y) ∈ Q

since f(y) ∈ Q and Q is closed set-theoretic union. Therefore, V (D, β) ⊆ Q.
Hence V (D, β) = Q.
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Moreover, β =
⋃

T∈V (X∗,β)

(
Y β
T × T

)
is a quasinormal representation since

∅ /∈ Q. From the definition of β, f(x) = xβ for all x ∈ X. It is easily seen that

V (X∗, β) = V (D, β) = Q. We get β =
6⋃
i=0

(
Y β
i × Ti

)
.

On the other hand

t ∈ T 6 ⇒ tβ = f(t) = T6 ⇒ t ∈ Y β
6 ⇒ T 6 ⊆ Y

β

6 ,

t ∈ T 5 ⇒ tβ = f(t) = T5 ⇒ t ∈ Y β
5 ⇒ T 5 ⊆ Y

β

5 ,

t ∈ T 3 =
(
T 3\T 4

)
∪ T 5 ∪ T 6 ⇒ tβ = f(t) ∈ {T6, T5, T4, T3}

⇒ t ∈ Y β
6 ∪ Y

β
5 ∪ Y

β
4 ∪ Y

β
3

⇒ T 3 ⊆ Y β
6 ∪ Y

β
5 ∪ Y

β
4 ∪ Y

β
3 ,

t ∈ T 2 = T 6 ∪ T 5 ∪
(
T 2\T 1

)
∪
(
(T 2 ∩ T 1)\T 4

)
⇒ tβ = f(t) ∈ {T6, T5, T4, T3, T2}
⇒ t ∈ Y β

6 ∪ Y
β

5 ∪ Y
β

4 ∪ Y
β

3 ∪ Y
β

2

⇒ T 2 ⊆ Y β
6 ∪ Y

β
5 ∪ Y

β
4 ∪ Y

β
3 ∪ Y

β
2 ,

t ∈ T 1 = T 6 ∪ T 5 ∪
(
T 1\T 2

)
∪
(
(T 2 ∩ T 1)\T 4

)
⇒ tβ = f(t) ∈ {T6, T5, T4, T3, T1}
⇒ t ∈ Y β

6 ∪ Y
β

5 ∪ Y
β

4 ∪ Y
β

3 ∪ Y
β

1

⇒ T 5 ⊆ Y β
6 ∪ Y

β
5 ∪ Y

β
4 ∪ Y

β
3 ∪ Y

β
1 .

Also, by using f2(a) = T3, ∃ a ∈ T 3\T 4, we obtain Y β
3 ∩T 3 6= ∅. Similarly,

from properties of f3, f4, be seen Y β
2 ∩T 2 6= ∅ and Y β

1 ∩T 1 6= ∅. Therefore, the
mapping ϕ : Q → D′ =

{
T 0, T 1, . . . , T 6

}
to be defined ϕ(Ti) = T i satisfy

the conditions in (3.10) for β. Hence ϕ is complete β−isomorhism because of
ϕ (T ) β = Tβ = T, for all T ∈ V (D, β). By Theorem 3.4, β ∈ Rϕ(Q,D′).

Therefore, there is one to one correspondence between the elements of
Rϕ(Q,D′) and the set of ordered systems of disjoint mappings.

Theorem 3.7. Let X be a finite set and Q be XI− semilattice. If

D′ =
{
T 6, T 5, T 4, T 3, T 2, T 1, T 0

}
is α− isomorphic to Q and Ω(Q) = m0, then

R(D′) = m0 · 4 ·
(

4|T 3\T 4| − 3|T 3\T 4|
)
· 4|(T 2∩T 1)\T 3|·(

5|T 2\T 1| − 4|T 2\T 1|
)
·
(

5|T 1\T 2| − 4|T 1\T 2|
)
· 7|X\T 0|

Proof. Lemma 3.5 and Lemma 3.6 show us that the number of the ordered
system of disjoint mappings (f0α, f1α, f2α, f3α, f4α, f5α) is equal to |Rϕ(Q,D′)|,
which α ∈ BX(D) regular element, V (D,α) = Q and ϕ : Q→ D′ is a complete
α−isomorphism.
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From the Theorem 2.2, the number of the mappings f0α, f1α, f2α, f3α,
f4αand f5α are respectively as

1,1,
(

4|T 3\T 4| − 3|T 3\T 4|
)
· 4|(T 2∩T 1)\T 3|,(

5|T 2\T 1| − 4|T 2\T 1|
)
,
(

5|T 1\T 2| − 4|T 1\T 2|
)
, 7|X\T 0|.

Now, we determine the number of regular elements

|Rϕ(Q,D′)|=
(

4|T 3\T 4| − 3|T 3\T 4|
)
· 4|(T 2∩T 1)\T 3|·(

5|T 2\T 1| − 4|T 2\T 1|
)
·
(

5|T 1\T 2| − 4|T 1\T 2|
)
· 7|X\T 0|.

The number of all automorphisms of the semilattice Q is q = 4. These are

idQ=

(
T6 T5 T4 T3 T2 T1 T0

T6 T5 T4 T3 T2 T1 T0

)
,

τ1 =

(
T6 T5 T4 T3 T2 T1 T0

T5 T6 T4 T3 T2 T1 T0

)
,

τ2 =

(
T6 T5 T4 T3 T2 T1 T0

T6 T5 T4 T3 T1 T2 T0

)
,

τ3 =

(
T6 T5 T4 T3 T2 T1 T0

T5 T6 T4 T3 T1 T2 T0

)
.

Therefore by using Theorem 2.3,

R(D′) = m0 · 4 ·
(

4|T 3\T 4| − 3|T 3\T 4|
)
· 4|(T 2∩T 1)\T 3|·(

5|T 2\T 1| − 4|T 2\T 1|
)
·
(

5|T 1\T 2| − 4|T 1\T 2|
)
· 7|X\T 0|

is obtained.

Example 1. Let X = {1, 2, 3, 4, 5} and

D = {{1} , {2} , {1, 2} , {1, 2, 3} , {1, 2, 3, 4} , {1, 2, 3, 5} , {1, 2, 3, 4, 5}} .

D is an X−semilattice of unions since D is closed the union of sets. More-
over D satisfies the conditions in (3.1) and {1} ∩ {2} = ∅. Then, D is an
XI−semilattice. Let D = Q. Therefore |Ω(Q)| = 1. Besides, the number of all
automorphisms of Q is q = 4. By using Theorem 3.7

|R(D)| = 4 ·
(

4|T 3\T 4| − 3|T 3\T 4|
)

4|(T 2∩T 1)\T 3|(
5|T 2\T 1| − 4|T 2\T 1|

)
·
(

5|T 1\T 2| − 4|T 1\T 2|
)
· 7|X\T 0|

= 4 · (41 − 31) · 40 · (51 − 41) · (51 − 11) · 70

= 4

is obtained.
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