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Abstract

In this paper, let Q = {15, T5,Ty, T3, T5,T1, Ty} be a subsemilattice of X —
semilattice of unions D where Tg C Ty, C T3 C Ty C Ty, Ty C Ty C T3 C
ThcTy,TscTy,cTs Ty CTy, Ts C Ty C T3 C Ty C Ty, TL\TY # 0,
Tl\TQ 7A @, T5\T6 ?é @, TG\T5 7é Q), T2 U T1 = To’ T6 U T5 = T4, then we
characterize each element of the class ) o(X,7) which is isomorphic to Q by
means of the characteristic family of sets, the characteristic mapping and the
generate set of (). Moreover, we describe the construction of reqular elements
a of Bx(D) satisfying V (D, a) = Q. Additionally, we find the number of these
reqular elements, when X is finite.
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1 Introduction

Representations of partially ordered semigroups by binary relations were first
considered by Zaretskii [1]. In [2] Zareckii proved that a binary relation « is a
regular element of By if and only if V (a) (= V (P(X), «)) is a completely dis-
tributive lattice. Further, criteria for regularity were given by Markowsky [3]
and Schein [4]. Then, Diasamidze proved that, a binary relation « is a regular
element of By iff V(X*, a) C V(D,«) and V(D, «) is complete X I— semilat-
tice of unions in [5]. So, Diasamidze extend Zaretskii’s theorem and give an
intrinsic characterization of regularity since if D = P(X) then Bx(D) = By
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and V (a) (=V (P(X),«)) is a completely distributive lattice. Therefore,
Diasamidze generate systematic rules for understanding the structure of semi-
groups of binary relations and characterization of regular elements of these
semigroups in [5 — 9]. In general, he studied semigroups but, in particular, he
investigates complete semigroups of the binary relations.

In this paper, we take in particular, Q = {7, T, Ty, T3, T, T1, Tp } subsemi-
lattice of X —semilattice of unions D where the elements T’ s, i =0,1,...,6
are satisfying the following properties, Ts C Ty C T3 C Ty C Ty, Tg C Ty C
TsCcTycTy, TsCcTy,CTs CTy CTyIs CTy C T3 C Ty C Ty, T\T) # 0,
Tl\TQ ?é @, T5\T6 ?é @, T6\T5 ?é Q), TQ U T1 = TO, T6 U T5 = T4. We will inves-
tigate the properties of regular element o € Bx (D) satisfying V(D, «a) = Q.
Moreover, we will calculate the number of these regular elements of Bx (D) for
a finite set X.

As general, we also characterize the elements of the class D o(X, 7). This
class is the complete X —semilattice of unions every elements of which are
isomorphic to ). So, we characterize the class for each element of which is
isomorphic to ) by means of the characteristic family of sets, the characteristic
mapping and the generate set of D.

The material in this work forms a part of first author’s PH.D. Thesis, under
the supervision of the second author Dr. Neget Aydin.

2 Preliminaries

We recall various concepts and properties from [5 — 10].

Let X be an arbitrary nonempty set. Recall that the set of all binary
relations on X is denoted by By. The binary operation ”o” on By defined by
for a, B € Bx

(x,2) € vof & (v,y) € aand (y,z) € B, for some y € X

is associative and hence By is a semigroup with respect to the operation ” o”.
This semigroup is called the semigroup of all binary relations on the set X.

Let D be a nonempty subset of P (X) such that it is closed under the union
i.e., UD" € D for any nonempty subset D’ of D. In that case, D is called a
complete X — semilattice of unions. The union of all elements of D is denoted
by the symbol D. Clearly, D is the largest element of D.

The set N(D,D")={Z € D | Z C Z' for any Z' € D'} is all lower bounds
of D' in D. Moreover, if N(D,D’) # () then A(D,D’) = UN(D, D’) belongs
to D and it is the greatest lower bound of D'.

Let D and D’ be some nonempty subsets of the complete X — semilattices
of unions. We say that a subset D generates a set D" if any element from D’
is a set-theoretic union of the elements from D.



Regular Elements of the Complete Semigroups of... 29

Further, let z,y € X, Y C X, 0 € Bx,T€ D, 0 # D' C D and t € D. We
use the notations:

ya={ze€X|(yz)€a} , Ya=|Jyo,
yey

V(D,a)={Ya|YeD} ,D={Z'eD|teZ},
!
D,={ZeD|TCZ} ,D,={Z'eD |Z CT}.

Let X* = P(X)\{0}, a € Bx, Y ={y € X | ya =T} and

V(X* a), if 0 ¢ D,
Vial =< V(X*a), if ) e V(X* ),
V(X*,a)U{0}, if 0 ¢ V(X* «) and ) € D.

In general, a representation of a binary relation « of the form

a= |J (¥ xT)

TeV[a]

is called quasinormal. Note that, if & € Bx has a quasinormal representation,
then X = U Y and YPNYpR #0 for T,7" € V(X*, «) which T # T.
TeV(X*,a)
In particular, let f be an arbitrary mapping from X into D then Bx (D)
denotes the set of all binary relations of the form

ar = |J (z} x f(2)).

rzeX

It is easy to prove that By (D) is a semigroup with respect to the operation
of multiplication of binary relations, which is called a complete semigroup of
binary relations defined by an X —semilattice of unions D. Diasamidze intro-
duced this structure and investigated their properties [6].

If oofoa=aforsome f € Bx(D) then a binary relation « is called a
regular element of Bx (D).

A complete X —semilattice of unions D is called ” X I — semilattice of unions”
9] if it satisfies the following two conditions

1. A(D,Dy) € D for any t € D,

2. Z = UA(D, D) for any nonempty element Z of D.

tez

In [9] they show that, § is a regular element of Bx (D) iff V' [5] = V(D, )
is a complete X I—semilattice of unions.
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Let D’ be an arbitrary nonempty subset of the complete X —semilattice
of unions D. A nonempty element T € D’ is a nonlimiting element of D’ if
T\U(D',T) = T\ U (D'\D}) # 0. A nonempty element 7' € D’ is a limiting
element of D" if T \I(D',T) = 0.

The family C(D) of pairwise disjoint subsets of the set D = UD is the
characteristic family of sets of D if the followings hold

a) ND e C(D),

c) There exists a subset Cz(D) of the set C'(D) such that Z = UC%(D) for
all Z € D.

A mapping 0 : D — C(D) is called characteristic mapping if Z = (ND) U
U 6 (Z') for all Z € D.
Z'eD
The existence and the uniqueness of characteristic family and characteristic
mapping is given in Diasamidze [7]. Moreover, it is shown that every Z € D
can be written as
U o

TeQ(Z)

where Q (Z) =Q\{T' € Q| Z C T}.
A one-to-one mapping ¢ between two complete X — semilattices of unions
D’ and D" is called a complete isomorphism if p(UD;) = , UD o(T") for each
'eDy

nonempty subset D; of the semilattice D’. Also, let a € Bx(D). A complete
isomorphism ¢ between X I —semilattice of unions () and D is called a complete
a— isomorphism if Q = V(D,«a) and (@) = O for ) € V(D, o) and o(T)a =T
for any T' € V(D, ).

Let @ and D’ are respectively some X1— and X — subsemilattices of the
complete X — semilattice of unions D. Then

R, (Q,D") = {a € Bx(D) | a regular, ¢ complete o — isomorphism}

where ¢ : Q — D’ complete isomorphism and V(D,a) = Q. Besides, let us
denote

RQ,D)= |J RyQD)and R(D')= |]J R@Q, D).
0e®(Q,D’) Q' eQQ)

where

Q(Q,D)={¢|p:Q — D"is a complete a—isomorphism for any o € Bx (D)}
Q(Q)={Q" | Q' is XI—subsemilattices of D which is complete isomorphic to Q}
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Theorem 2.1. /8, Theorem 10] Let o and o be binary relations of the semi-

group Bx (D) such that « oo oa = «. If D(«) is some generating set of the

semilattice V (D, a)\ {0} and o = U (Y xT) is a quasinormal represen-
TeV(D,a)

tation of the relation «, then V (D, «) is a complete X I— semilattice of unions.

Moreover, there exists a complete a—isomorphism ¢ between the semilattice
V(D,a) and D' ={To | T € V(D,«a)}, that satisfies the following conditions:

a) o(T)=To and p (T)a =T for all T € V(D, «)

) |J Y& 2e(T) for any T € D(),

T'eD(a)p
c) YN o(T) # 0 for all nonlimiting element T' of the set D (),

d) IfT is a limiting element of the set D (a)p , then the equality UB (T') =T
is always holds for the set B (T') = {Z €D (), | Y§ne(T) # (Z)}.

On the other hand, if « € Bx(D) such that V(D,«) is a complete X I—
semilattice of unions. If for a complete a—isomorphism ¢ from V(D,«) to a
subsemilattice D' of D satisfies the conditions b) — d) of the theorem, then «
is a reqular element of Bx (D).

Theorem 2.2. [9, Theorem 1.18.2] Let D; = {Ty,...,T;}, X be finite set and
0 Y C X. If f is a mapping of the set X, on the D;, for which f(y) = T;
for some y € Y, then the numbers of those mappings [ of the sets X on the
set D; can be calculated by the formula s = jIX\Y. (51— (5 — 1)) .

Theorem 2.3. [9, Theorem 6.3.5] Let X is a finite set. If ¢ is a fized element
of the set ®(D, D") and |Q2(D)| = mo and q is a number of all automorphisms
of the semilattice D then |R(D')| =mg-q- |R,(D,D")|.

3 Results

Let X be a finite set, D be a complete X —semilattice of unions and ) =
{Ts,T5,Ty, T3, T5,T1,To} be a X—subsemilattice of unions of D satisfies the
following conditions

Te C Ty CT3C Ty Cly,
TeCcT,CT3CT, CTy,
Ts Cc Ty Cc 13 C 11 C Ty,
Ts C Ty, C15 C 1y Cy,
TAT, # 0, T\T, # 0,
T\Ts # 0, To\Ts # 0,
TUT, =Ty, T UTs = T
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The diagram of the @) is shown in Figure 3.1.

To

T T,

T3

Ta

Ty T,

Figure 3.1

Let C(Q) = {Fs, Ps, Py, P, Py, P1, Py} be characteristic family of sets of () and
0:Q — CQ), 0(T;) = Pi(i =0,1,...,6) be characteristic mapping. Then,
by the definition of characteristic family and characteristic mapping for each
element 7; € () we can write

T,=0Qu |J 0(T).(i=0.1,...,6)

TeQ(T)

where Q(T}) = Q\{Z € Q| T, C Z},Q = UQ = Ty and 6(Q) = 0 (Ty) = P.
Accordingly, we get

To=PoU | J 0(T) = Py U P UP,UPUPUP5UP,

TeQ(Ty)

Ty=Pu |J 6(T) = Py UP,UPsUP,UP5UPs,
TeQ(Ty)

Ty=PoU |J 6(T) = Py U P UPUPUP;5UP,
TeQ(Tz)

T3=PoU | 6(T) =Py UP,UP;UP, (3.1)
TeQ(Ts)

T,= Pou | J 6(T) = PUPsUPs,
TeQ(Ts)

Ts=Pou | J 6(T) = PyuPs,
TeQ(T5)

Ty= Py | J 6(T) = P,uPs.
TeQ(Te)

Firstly, let us determine that in which conditions () is X 1— semilattice of
unions. Then, we specify the greatest lower bounds of the each semilattice Q); in
Q for t € Ty. Since Ty = Py U P, U P,UP3UP,UPsUPg and P; (i = 0,1,...,6)
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are pairwise disjoint sets, by Equation (3.1) and the definition of Q);, we have

(@ te PR
{T6, T} te P
{To, T\ } t e Py
Qt = {To,Tl,TQ} ,T € P; . (32)
{To, T, T5, T3} te Py
{To, T, Ty, T3, Ty, T} ,t € Ps
L {To,Tl,TQ,Tg,T4,T5} ,t € FPg

So, by Equation (3.2) and the definition of N(Q, @),

(0 te b,
{T2aT37T47T57T6} 7t € Pl
{TlaT37T47T57T6} 7t € PQ

N(Q, Qt) = {Tg, T4,T5,T6} ,t e P3 (33)
{T5, Ty, Ts, Ts} ,te Py
{Ts:} te by
L {75} ,t € Py

are obtained. From the Equation (3.3) the greatest lower bounds for each
semilattice ();, we get

() .te P
T, ,teh
Ty ,te by
UN(Q, Q1) = MQ, Q1) = T ,t€P5 . (3.4)
Ty ,te Py
Ty ,te P
15 ,te Py

If t € Py then A(D,D;) = 0 ¢ D. So, it must be Py = (. Thus using the
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Equations (3.1) and (3.4), we have

teTs =P =Ty =NQ,Qy), (3.5)
tels =P =T = AMQ,Qy),
teTy=PUFP = = AQ,Q) € {15, Ts}

=Ty =T5UTs = UA(QaQt)J

teTy
teTs=PUPUF; = = ANQ,Qy) € {T35,T5, 15}
=Ty =TUTUTs = | JAQ. Q).
teTs
teTy=PUP,UP,UPUF; = AQ, Q) = {15, T5,T5, T}
:>T2=T2UT3UT5UT6=UA(Q7Q1;)7
teTy
teTh =P UP,UPUPUF; = AQ,Q) ={11,T5,T5, T}
:>T1:T1UT3UT5UT6:UA(Qth)a
teTly
teTy=TUT = ANQ,Q) ={T",T>,T5,T5,Ts}
=To=TTUT,UT3UT5sUTs = UAQQt

teTy

Lemma 3.1. Q is XI— semilattice of unions if and only if T N Ts = 0.

Proof. =: Let (Q be a XI— semilattice of unions. Then Py = () by Equation
(3.4) and Tg = Ps5, T5s = Ps by Equation (3.1), we have T N T5 = () since Py
and Ps; are pairwise disjoint sets.

<: Let T N T5 = () holds. From Equation (3.1), we obtain Py = ). Using
the Equations (3.4) and (3.5), we have @) is X I— semilattice of unions. O

Lemma 3.2. If Q) is XI— semilattice of unions then
{15, Ts, (Ty N To) \Ty, T\ T3, To\ T, X\ T }

s a partition of the set X.

Proof. Considering the (3.1) with Py = 0, straightforward to see that {Tg, T,
(Ty NTy) \Ty, Th\Ts, To\T1, X\Tp} is a partition of the set X. 0

Lemma 3.3. Let G = {15, T5, Ty, T3, T2, Ty } be a generating set of Q. Then
the elements Ty, Ty, T5, T, Ty are nonlimiting elements of the sets GTG, GTS,
GTS, GTQ, GT1 respectively and Ty is a limiting element of the set GT4
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o/
Proof. Definition of D, yield the following equations

CIYTG = {Tﬁ}>

qu = {T5}7

Gr, = {Ts, 15, T4},

Gry, ={Ts, 15,11, T3},
Gr, ={Ts, 15,14, T3, 1>},
Gr, ={Ts,T5, Ty, T3, 11} .

Now we get the sets [(G1,,T;), i € {1,2,...,6},
(Gr,, Ts) = U(GR\{Ts}) =0,
(G, T5) = U(GR\{T5}) =0,
UGr, Ty) = UG \{Tu}) =Ti,
(G, Ts) = U(GR\{T3}) =T,
(Gr,, T2) = UGR\{T2}) =Ts,
(Gr,T) = UGR\{Th}) =T

Then we find nonlimiting and limiting elements of GTi, ie{l,2,...,6}.
T\[(Gry, Te) =Te\D  =Ts#0

TN\UGr, T5) =T5\0 =T5#0

T4\Z(GT4, T4) == T4\T4 - @

T\(Gr,, T3) =T\ #0

D\UGr,, Tr) =T\Tz #10

TN\(Gp, Ty) =Ti\Ts #10
So, the elements Ty, T5, T3, T3, T1 are nonlimiting elements of the sets G’Tﬁ, GT5,
@Tg, G’TQ, GTl respectively and T} is a limiting element of the set GT4. O

Note that, if @ € Bx(D) is regular then from the definition of the set
Bx (D) there is a mapping f from X into D such that

o= | ({} x f(a)).
zeD
Thus, f(z) € D. Besides, we know that a@ € Bx (D) is regular iff V (D, a) is
X I— semilattice of unions where V (D, a) = V [a]. For this reason, there is a
X 1— subsemilattice D' C D and V (D,a) = D' =V (D', a). So we can write
« as,
a= |J % xT)= ] (¥ xT).
TEV][a] TeD'

In particular, let us determine the properties of regular elements a €
6

By (D) such that o =_J(Y{xT;) where V(D, ) = Q.

1=0
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Theorem 3.4. Let o € Bx(D) be a quasinormal representation of the form

6

o = JvexTy)

=0

such that V(D,«a) = Q. a € Bx(D) is a reqular iff for some complete o-
isomorphism ¢ : Q — D" C D, the following conditions are satisfied:

1/60[2 @(Tb)a

Yzf)ag 80(T5)7

Yo UY2 UYPUYSD Ty,
Yo UYS UYP UYS UYP 2 o(T,), (3.7)
YAUY2UYSUYSUYR D o(T)),

Yirne(Ty) # 0, Yyne(T,) # 0,

Yinp(Ts) # 0.

Proof. Let G = {Tg,T5,Ty, T3, To, T} be a generating set of Q.

=: Since a € Bx (D) is regular and V (D, a) = @, Q is XI—semilattice of
unions. From Theorem 2.1, there exits a complete isomorphism ¢ : Q — D’.
Considering Theorem 2.1 (a), ¢ (T)a = T for all T € V(D,«). So, ¢ is
complete a-isomorphism. Applying the Theorem 2.1 (b) we have

Yg o @(Tﬁ)v Yo W(Ts)a

YUY UY 2 o(T,),

YUY UYEUYSD o(Ty), (3.8)
YUY UYSUYSUYS 2 o(Ty),
YoUYruYpuYsuYe D o(T).

By using ¢ is complete a-isomorphism, YUY UY,® D o(T) U p(T5) = o(1y)
always ensured. Moreover, considering that the elements T, T5, T3, T2, T are
nonlimiting elements of the sets G, G, Gy, Gr,, G, respectively and using
the Theorem 2.1 (c), following properties

}qamgp(Tl) 7é (2)7 Ygﬂ(p( ) # @, (3 9)
)gaﬂgo(Tg) 7£ Q)v Y(;m@( ) 7£ ®7 Y ﬂgp( 6) 7é @ ‘

are obtained. From YD ¢(T) and Y2 o(T's), Y¢Ne(T) #0 and YNp(T's) # 0
always ensured. Thus there is no need the condition Y* UY* U Y 2 o(T)),
YaNp(Ty) # 0 and YNe(Ts) # 0. Therefore, there exist an a—isomorphism
© which holds given conditions.

<: V(D,«) is XI—semilattice of unions, because of V(D, «a) is equal to
Q@ . Let ¢ : Q@ — D’ be a complete a—isomorphism which holds given con-
ditions. So, by Equation (3.7), satisfying Theorem 2.1 (a) — (¢). Remem-
bering that T, is a limiting element of the set Gp,, we constitute the set
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B(Ty) = {Z € ir, | YEN@(Ty) # 0} 16 YNp(T,) = 0 we have

s UYy 2 ‘P(Tﬁ) U SO(T5) = 90(T4)

So, we get Y D ¢(T,) 2 ¢(T), it contradicts with YD ¢(T's). Therefore,
Ts € B(Ty). Similarly, if Y*Ne(T,) =0 then Y O o(T,) 2 ¢(T). This
result in a contradiction since YD ¢(T's). Therefore, T5 € B (Ty). We have
UB (Ty) = Ty U Ts = Ty. By Theorem 2.1, we conclude that « is the regular
element of the Bx (D). O

Now we calculate the number of regular elements «, satisfying the hypoth-
esis of Theorem 3.4.
Let v € Bx(D) be a regular element which is quasinormal representation
6

of the form « :U(Y;lei) and V (D, «) = Q. Then there exist a complete a—
=0

isomorphism ¢ : Q — D' = {p(Ts), ..., ¢(T1), p(To)} satisfying the hypothesis

of Theorem 3.4. So, a € R,(Q, D'). We will denote o(T;) =T}, i =0,1,...6.

Diagram of the D' = {T6, Ts, Ty, T3, To, Th, TO} is shown in Figure 3.2.

To

7 T
T3
Ty

T T,

Then the Equation (3.7) reduced to below equation.

Ve T,

YeD T,

YeUYPUYPUYSD T,

YEUYAUYPUYSUYR DTy, (3.10)
YEUYLUYPUYSUYR DTy,

VT # 0, YonTs # 0,

YT # 0.

Moreover, the image of the sets in Lemma 3.2 under the a— isomorphism ¢
T, Ts5,(Ty N To)\Ty, T1\T2, To\T1, X\ T

are also pairwise disjoint sets and union of these sets equals X.
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Lemma 3.5. For every a € RSO(C& DQ, there exists an ordered system of dis-
joint mappings which is defined {Tg,T5, (T1 NTo)\Ty, To\T1,T1\To, X\To}.
Also, ordered systems are different which correspond to different binary rela-
tions.

Proof. Let f, : X — D be a mapping satisfying the condition f,(t) = ta for
all t € X. We consider the restrictions of the mapping f, as foa, fia, foa, f3as
f4a and f5a on the sets T& T5, (Tl DTQ)\T4, Tl \TQ, TQ\Tl, X\TO respectively.

Now, considering the definition of the sets Y;*, (i =0,1,...,6) together
with the Equation (3.10) we have

teTe=tc Y =ta="Ts= foult) =Ts, Vt € Tg.
teTs =>te Y =ta=Ts= fia(t) =T, Vt €Ts.

te(TiNT)\Ty =t €T NTy CYLUY S UYLUYS
=t € {T6,T5,T4,T3} . B B
= foult) € {Ts,T5, Ty, T3}, Vt € (T1 NT)\T}y.

Since Y3 N T3 # (), there is an element t; € YN Ts5. Then t;a = Ty and
tl € T3. If tl c T4 then tl € T4 = T5U76 Q Y5°‘UY60‘. Therefore, tla = {T6, T5}
which is in contradiction with the equality t;a0 = T5. So fa,(t1) = T3 for some
t, € 73\74.

teTo\T) =t €Ty CYQUYZUYLUYSUYS
= ta € {T67T57T47T37T2} o
= f3a(t) S {T67T57T47T37T2}7 Vt S TQ\TI'

Also, since Y5 NT, # () there is an element to, toar = Ty and £, € Ty Ifty, €T,
then t, € T; C YUY U YUY SUYS. Therefore, toa € {Tg, Ty, Ty, T3, T1 }
which is in contradiction with the equality toa = Ty. So f34(t2) = Ty for some
ty € TH\T}.

teTi)\Ty =teT) CYLUYSUYLUYSUYY
= ta € {Ts, 15,1y, 15, 11 } o
= f4a(t) - {T6,T5,T4,T3,T1}, VYt € Tl\Tg.

Simil_arly, 3 € YN T, since Y*n T, # (). Then tza = T} and t3 € T,. If
tz € Ty then t3 € YSUYSUYPUY3UYS. So tza € {15, T5, Ty, T3, To } . However
this contradicts to tsa = T1. S0 faa(t3) = 11 for some t3 € T1\Ts.

6
te X\\To=te X =y =taec Q= falt) €Q, Vt € X\T,.
i=0

Therefore, for every binary relation a € R,(Q,D’) there exists an ordered

SyStem (fOou flaa f2a7 fSaa f4om f5a)'
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On the other hand, suppose that for o, 8 € R, (Q,D’) which o # [, be
obtained fa = (fOom flaa f2a7 f3on f4om f5a) and f,B = (fO,Ba flﬁ? f2,37 f3,37 f4ﬁ>
f58). If fo = fs, we get

fo=fa=fat)=fs(t), tEX = ta=1t3, Vte X = a=0

which contradicts to a # (. Therefore, different binary relations’s ordered
systems are different. n

Lemma 3.6. Let f = (fo, f1, fo, f3, fa, [5) be ordered system from X in the
semilattice D such that

JoT's = {Ts},

fﬂjEL_}{z%}l_ [
for (To NTIONTs = {16, T5, Th, T5} and fo(a) = T3, 3 a € T5\T4,
f3I 22\21 — {Tﬁ, T5,T4,T3,T2}(I’ﬂd fg(b) = T27 dbe Z2\Z1’

far TW\Ty — {15, T5, T2, T3, Ti Yand fa(c) =Th, 3 ¢ € Ti\To,

f5I X\TO —>Q

Then B = U ({z}x f(x)) € Bx(D) is regular and ¢ is a complete B—isomorphism.
zeX

So B € R,(Q,D).

Proof. First we see that V(D, ) = Q. Considering V/(D,3) ={Y3|Y € D},
the properties of f mapping, T3 = U xf and D' C D, we get

CEETZ‘

Ts € Q = TeB=Ts = Ts € V(D, B),

Ts € Q = TsB=Ts = Ts € V(D, B),

Ty €Q=T,B=TsBUT¢S=T;UTs =T, =T, € V(D,p),

T3 € Q= Tsf=((Ts\Ta) UTs) B=Te UTs UT, U Ty =Ts = T3 € V(D, ),
T eQ=Tyf=TsUTsUT, UT3UTy =Ty, =Ty, € V(D, ),
NeQ=TB=TUTsUT,UTsUT, =T, =T, € V(D,p),
TheQ=TB=TsUTsUT,UTs UT, UT, =Ty = Ty € V(D, B).

Hence, @ C V(D, ). Also,

ZeV(D,p)=2Z=Yp, Y €D
=7Z=Yp=Jus=Jrw e

yey yey

since f(y) € @ and @ is closed set-theoretic union. Therefore, V(D, 8) C Q.
Hence V (D, B) = Q.
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Moreover, § = U (Yﬁ X T> is a quasinormal representation since
TeV(X*,8)
() ¢ Q. From the definition of 3, f(z) = xf for all z € X. It is easily seen that

6
V(X*,8) = V(D,§) = Q. Weget 5= J (v x 1)
i=0
On the other hand

teTo=1B=ft)=Ts=>tec Yl =TsCYh,
teTs=t8=ft)=Ty=>te Y =TsCYL,
teTy=(Ts\Ty) UT;UTe = tp = f(t) € {T5,T5, Ty, T3}
=tcyY/uySuy/uyy
=Ty CY UY UY/UY?,
te€Ty=TsUTsU (To\Th) U (T2 NT)\Ta) = t6 = f(t) € {T5,T5, Ty, T3, To}
=teY/uv uyfuvy/uyy
=T, Yy uv/uy/uyyuyy,
teT1=TeUTsU (T\T2) U (T2 NT)\Ta) =t = f(t) € {T5,T5,Ts, T3, T1 }
=teY/uvSuyfuv/uy/
=TscYuyluy/uyfuy!

Also, by using fo(a) = Ty, 3 a € Ts\T4, we obtain YfﬂTg # (). Similarly,
from properties of f3, f4, be seen YQ’B NT5 # () and Ylﬁ NT; # (). Therefore, the
mapping ¢ : Q — D' = {To,Tl,...,Tﬁ} to be defined ¢(T;) = T satisfy
the conditions in (3.10) for 5. Hence ¢ is complete f—isomorhism because of

¢(T)B=TB =T, for all T € V(D,3). By Theorem 3.4, 8 € R,(Q,D'). O

Therefore, there is one to one correspondence between the elements of
R,(Q,D') and the set of ordered systems of disjoint mappings.

Theorem 3.7. Let X be a finite set and Q) be X [— semilattice. If

is a— isomorphic to Q and Q(Q) = my, then

R(Dl> = Mmp- 4 . 4|T$\T4| o 3|TS\T4| . 4|(Tgﬂfl)\73|
<5‘T2\Tl| _ 4‘?2\?1‘) . <5|Tl\72| _ 4‘?1\?2|> A 7‘X\TO|

Proof. Lemma 3.5 and Lemma 3.6 show us that the number of the ordered
system of disjoint mappings (foa, fia: f2as f3a, faas [5q) is equal to |R,(Q, D')],
which o € Bx (D) regular element, V (D, a) = Q and ¢ : Q — D’ is a complete
a—isomorphism.
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From the Theorem 2.2, the number of the mappings foa, fia, foas f3a
fieand fs, are respectively as

171, (4|TS\T4| o 3|T3\T4|> . 4|(72m71)\73|7
<5ITQ\T1| _ 4\@\%\) : (5\71\74 _ Zﬂﬂ\@‘) )
Now, we determine the number of regular elements
|R¢(Q’ D= <4|T3\T4| — 3‘T3\T4‘> -4‘(Tzﬂ71)\T3|.
(5\72\71\ _ 4\@\@\) . (5\Tl\fg| _ Zﬂﬁ\@‘) x|

The number of all automorphisms of the semilattice () is ¢ = 4. These are

i T Ts Ty Ty T, Ty Ty
Q Te Ts Ty Ty Ty T, Ty )’

(T Ts Ty Ts 1o Th To
o\ Ty Ty Ty T3 Ty, Ty Ty )’

(T Ts Ty Ty 1o Th To
R\ T T, T T T, Ty )

S Ts 15 Ty T35 Ty Tv 1o
5 5 T Ty T3 TV Ty Ty )

Therefore by using Theorem 2.3,
RUD) = g 4 (ATATs] _ g FaTul) (Tt 7o)
<5|T2\Tl| _ 4\@\?1\) : (5|TI\T2| _ 4|T1\TQ|) . 7|X\Tol

is obtained. O
Example 1. Let X = {1,2,3,4,5} and
D={{1}, {2}, {12}, {1,2,3}, {1,2,3,4}, {1,2,3,5}, {1,2,3,4,5}}.

D is an X —semilattice of unions since D 1is closed the union of sets. More-
over D satisfies the conditions in (3.1) and {1} N {2} = 0. Then, D is an
X 1—semilattice. Let D = Q. Therefore |Q2(Q)| = 1. Besides, the number of all
automorphisms of Q) is ¢ = 4. By using Theorem 3.7

|R(D)| = 4- <4|TS\T4| - 3|73\T4|> Al (TonTu\Ts |
<5|T2\Tl| _gIT\TH] L (5]T\T2| 4|T1\Tz|> 7| X\Tol

=4 (4 —31) 40 (51 —41) . (5 — 1Y) . 7O
—4

18 obtained.
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