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Abstract

In this paper, we introduce the notion of B-vy-g.closed sets and some weak
separation azioms. Also we show that some basic properties of B-v-Tv, B-y-
T;, B-v-D; for i = 0,1,2 spaces and we ofer a new class of functions called
B-y-irresolute, B-y-continuous functions and a new notion of the graph of a
function called a B-y-closed graph and investigate some of their fundamental
properties.
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1 Introduction

Ogata [3] introduced the notion of y-open sets which are weaker than open
sets. The concept of B-v-open sets and [-yD-sets in topological spaces are
introduced by Hariwan Z. Ibrahim [1].

In this paper, we introduce the notion of 5-y-g.closed sets and some weak
separation axioms. Also we show that some basic properties of 5‘7‘T% , B-y-
T;, B-v-D; for i = 0,1,2 spaces and we ofer a new class of functions called
B-vy-irresolute, f-v-continuous functions and a new notion of the graph of a
function called a §-y-closed graph and investigate some of their fundamental
properties.
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2 Preliminaries

Let (X, 7) be a topological space and A a subset of X. The closure of A and
the interior of A are denoted by Cl(A) and Int(A), respectively. An operation
v [3] on a topology 7 is a mapping from 7 in to power set P(X) of X such that
V C (V) for each V' € 7, where (V') denotes the value of v at V. A subset
A of X with an operation v on 7 is called v-open [3] if for each x € A, there
exists an open set U such that © € U and v(U) C A. Then, 7, denotes the set
of all y-open set in X. Clearly 7., C 7. Complements of y-open sets are called
v-closed. The 7, -interior [2] of A is denoted by 7,-Int(A) and defined to be
the union of all y-open sets of X contained in A. A subset A of a space X is
said to be B-v-open [1] if A C Cl(7,-Int(CIl(A))).

3 [(-v-g Closed Sets, B-V'T% Spaces and [-7-
Irresolute

Definition 3.1 A subset A of X is called 5-v-closed if and only if its com-
plement is B-y-open.

Moreover, 5-yO(X) denotes the collection of all S-y-open sets of (X, 7)
and B-yC(X) denotes the collection of all g-y-closed sets of (X, 7).

Definition 3.2 Let A be a subset of a topological space (X, 7). The inter-

section of all B-y-closed sets containing A is called the B-y-closure of A and
is denoted by B-yCI(A).

Definition 3.3 Let (X, ) be a topological space. A subset U of X is called
a B-y-neighbourhood of a point x € X if there exists a B-y-open set V' such
that x € V C U.

Theorem 3.4 For the B-y-closure of subsets A, B in a topological space
(X, 1), the following properties hold:

1. A is B-y-closed in (X, 1) if and only if A= B-~CI(A).
2. If A C B then f-~CI(A) C p~CI(B).
3. B-yCl(A) is B-y-closed, that is f-yCI(A) = B-~yCl(B-~CI(A)).

4. x € ByCI(A) if and only if ANV # ¢ for every B-y-open set V of X
containing .

Proof. It is obvious.
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Definition 3.5 A subset A of the space (X, T) is said to be 5-y-g.closed if
B-yCUA) C U whenever A C U and U is a f-y-open set in (X, 7).

It is clear that every [-vy-closed subset of X is also a [-v-g.closed set. The
following example shows that a §-v-g.closed set need not be [-y-closed.

Example 3.6 let X = {a,b,c}, 7 = {¢, X, {a},{b},{c},{a,b},{qa,c},{b,c}},
define an operation v : 7 — P(X) such that v(A) = X. Then {b} is B-y-
g.closed but it is not B-y-closed.

Proposition 3.7 A subset A of (X, 1) is B-y-g.closed if and only if [3-
~Cl({x}) N A # ¢ holds for every x € f-yCI(A).

Proof. Let U be a [$-y-open set such that A C U. Let x € -yCI(A). By

assumption there exists a z € f-yCl({z}) and z € A C U. It follows from
Theorem 3.4 that U N {z} # ¢. Hence x € U. This implies g-yCI(A) C U.
Therefore A is f-y-g.closed set in (X, 7).
Conversely, let A be a [-v-g.closed subset of X and = € §-yCI(A) such that g-
yCl({x})NA = ¢. Since, B-yCl({z}) is f-y-closed set in (X, 7). Therefore by
Definition 3.1, X —(8-yCl({z})) is a B-y-open set. Since A C X —(5-yCl({x}))
and A is f-v-g.closed implies that S-yCI(A) € X — (B-yCl({x})) holds, and
hence z ¢ 5-yCI(A). This is a contradiction. Hence S-yCl({z}) N A # ¢.

Theorem 3.8 If f-~yCl({z}) N A # ¢ holds for every x € B-yCI(A), then
B-yCl(A) — A does not contain a non empty B-y-closed set.

Proof. Suppose there exists a non empty 5-y-closed set F' such that F' C -
yCIl(A) — A. Let z € F, x € B-yCI(A) holds. It follows that FN A = (-
YCUF)NAD B-~vCl({x})NA # ¢. Hence FN A # ¢. This is a contradiction.

Corollary 3.9 A is S-y-g.closed if and only if A = F — N, where F is
B-y-closed and N contains no non-empty B-vy-closed subsets.

Proof. Necessity follows from Proposition 3.7 and Theorem 3.8 with F' =
p-yCIl(A) and N = -~CIl(A) — A.
Conversely, if A= F — N and A C O with O is -y-open, then F N (X — O)
is a [-y-closed subset of N and thus is empty. Hence p-yCI(A) C F C O.

Theorem 3.10 If a subset A of X is f-y-g.closed and A C B C B-~yCI(A),
then B is a f-v-g.closed set in X.

Proof. Let A be a f-y-g.closed set such that A C B C -yCI(A). Let
U be a [-v-open set of X such that B C U. Since A is [-v-g.closed, we
have f-yCl(A) C U. Now B-yCI(A) C B-CIUB) C B~ClB~CI(A)] = B-
vCIl(A) € U. That is f-yCIl(B) C U, U is p-y-open. Therefore B is a
B-v-g.closed set in X.
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Theorem 3.11 Let v : 7 — P(X) be an operation. Then for each x € X,
either {x} is B-y-closed or X — {x} is B-y-g.closed set in (X, T).

Proof. Suppose that {z} is not 5-y-closed, then by Definition 3.1, X —{z}
is not S-y-open. Let U be any [-y-open set such that X —{z} C U, so U = X.
Hence 8-yCU(X — {x}) C U. Therefore X — {z} is B-y-g.closed.

Definition 3.12 A space X is said to be /B—v—T% space if every B-v-g.closed
set in (X, 1) is f-y-closed.

Theorem 3.13 A space X is a ﬁ—’y—T% space if and only if {x} is B-y-closed
or B-y-open in (X, ).

Proof. Suppose {z} is not S-v-closed. Then it follows from assumption
and Theorem 3.11 that {z} is f-y-open.
Conversely, Let F' be S-y-g.closed set in (X, 7). Let x be any point in S-
vCIU(F), then {x} is B-y-open or [-y-closed.

1. Suppose {x} is f-y-open. Then by Theorem 3.4, we have {z} N F # ¢,
hence z € F. This implies -yCI(F) C F, therefore F' is [-y-closed.

2. Suppose {z} is f-y-closed. Assume x ¢ F| then z € 5-yCI(F) — F.
This is not possible by Theorem 3.8. Thus we have z € F. Therefore
p-yCI(F) = F and hence F' is S-vy-closed.

Definition 3.14 [1] A topological space (X, T) with an operation v on T is
said to be

1. B-y-Ty if for each pair of distinct points x,y in X, there exists a B-y-open
set U such that either x € U and y ¢ U orx ¢ U and y € U.

2. B-y-11 if for each pair of distinct points x,y in X, there exist two 5--
open sets U and V' such that x €¢ U buty ¢ U andy € V but = ¢ V.

3. B-y-Ty if for each distinct points x,y in X, there exist two disjoint 5--
open sets U and V' containing x and y respectively.

Definition 3.15 [1] A subset A of a topological space X is called a 5-vyD-
set if there are two B-v-open sets U and V such that U # X and A=U —V.

Definition 3.16 [1] A topological space (X, T) with an operation v on T is
said to be

1. B-y-Dq if for any pair of distinct points x and y of X there exists a [5-
vD-set of X containing x but not y or a f-yD-set of X containing y but
not x.
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2. B-y-Dy if for any pair of distinct points x and y of X there exist two
p-yD-sets U and V' such that x € U buty ¢ U andy € V but x ¢ V.

3. B-v-Dy if for any pair of distinct points x and y of X there exist disjoint
B-vD-sets G and E of X containing x and y, respectively.

Definition 3.17 A topological space (X, T) with an operation vy on T, is
said to be B-y-symmetric if for x and y in X, x € f-~yCl({y}) implies y € [3-
VC1({x}).

Proposition 3.18 If (X, 1) is a topological space with an operation v on
T, then the following are equivalent:

1. (X, 1) is a B-y-symmetric space.
2. {x} is B-y-g.closed, for each x € X.

Proof. (1) = (2). Assume that {z} C U € -yO(X), but S-~Cl({z}) &
U. Then S-yCl({z})NX —U # ¢. Now, we take y € f-vCl({x})NX —U, then
by hypothesis x € 5-vCl({y}) C X — U and x ¢ U, which is a contradiction.
Therefore {z} is f-y-g.closed, for each z € X.
(2) = (1). Assume that z € -yCl({y}), but y ¢ B-vCi({z}). Then {y} C
X — p-yCl({z}) and hence S-vCi({y}) C X — f-yCl({x}). Therefore = €
X — B-~yCl({x}), which is a contradiction and hence y € S-yCl({x}).

Proposition 3.19 A topological space (X,7) is B-y-T1 if and only if the
singletons are B-y-closed sets.

Proof. Let (X, 7) be f-v-T} and x any point of X. Suppose y € X — {z},

then x # y and so there exists a S-y-open set U such that y € U but = ¢ U.
Consequently y € U C X — {z}, that is X —{z} = U{U : y € X — {x}} which
is S-y-open.
Conversely, suppose {p} is f-v-closed for every p € X. Let x,y € X with
r # y. Now x # y implies y € X — {z}. Hence X — {x} is a -y-open set
contains y but not z. Similarly X — {y} is a S-y-open set contains = but not
y. Accordingly X is a §-v-T) space.

Corollary 3.20 If a topological space (X, T) with an operation v on T is a
B-v-T space, then it is B-y-symmetric.

Proof. In a -v-T) space, every singleton is S-y-closed (Proposition 3.19)
and therefore is -v-g.closed. Then by Proposition 3.18, (X, 7) is f-y-symmetric.

Corollary 3.21 For a topological space (X, T) with an operation ~y on T,
the following statements are equivalent:
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1. (X, 1) is B-y-symmetric and S-y-Tp.
2. (X, 1) is f-v-T7.

Proof. By Corollary 3.20 and Remark 3.8 [1], it suffices to prove only
(1) = (2).
Let x # y and as (X, 7) is 8-7-1p, we may assume that x € U C X — {y} for
some U € B-yO(X). Then z ¢ 5-yCl({y}) and hence y ¢ S-yCIl({x}). There
exists a f-y-open set V such that y € V' C X —{z} and thus (X, 7) is a f-v-T}
space.

Remark 3.22 Let (X, 1) be a topological space and ~y be an operation on
T, then the following statements are hold:

1. Every B-vy-T space is ﬁ—’y—T%.

2. Bvery B—’y—T% space s B-v-1j.

Proposition 3.23 If (X, 7) is a f-y-symmetric space with an operation -y
on T, then the following statements are equivalent:

1. (X, 1) is a B-y-Ty space.
2. (X,7) isa ﬁ—”y—T% space.
3. (X, 1) is a B--T1 space.

Proof. (1) < (3). Obvious from Corollary 3.21.
(3) = (2) and (2) = (1). Directly from Remark 3.22.

Corollary 3.24 For a B-y-symmetric space (X, T), the following are equiv-
alent:

1. (X,71) is B-y-Tp.
2. (X, 1) 1s B-y-Ds.
3. (X, 1) is f-v-T7.

Proof. (1) = (3). Follows from Corollary 3.21.
(3) = (2) = (1). Follows from Remark 3.8 [1]Jand Corollary 3.11 [1].

Definition 3.25 Let A be a subset of a topological space (X,T) and ~y be
an operation on 7. The B-y-kernel of A, denoted by f-vyker(A) is defined to
be the set

B-yker(A) = N{U € f~4O(X): AC U}.
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Proposition 3.26 Let (X, 7) be a topological space with an operation vy on
T and v € X. Then y € B-yker({z}) if and only if v € B-~Cl({y}).

Proof. Suppose that y ¢ S-vyker({z}). Then there exists a S-y-open set
V' containing z such that y ¢ V. Therefore, we have x ¢ 5-vCi({y}). The
proof of the converse case can be done similarly.

Proposition 3.27 Let (X, 1) be a topological space with an operation vy on
T and A be a subset of X. Then, f-yker(A) ={z € X: f~Cl({z})NA # ¢}.

Proof. Let x € p-vker(A) and suppose f-yCl({z}) N A = ¢. Hence
x ¢ X — -yCl({z}) which is a S-y-open set containing A. This is impossible,
since x € f-yker(A). Consequently, B-yCl({x})NA # ¢. Next, let € X such
that -yCl({z}) N A # ¢ and suppose that « ¢ B-vker(A). Then, there exists
a f-y-open set V' containing A and x ¢ V. Let y € -yCl({z}) N A. Hence, V
is a J-y-neighbourhood of y which does not contain x. By this contradiction
x € f-yker(A) and the claim.

Proposition 3.28 If a singleton {x} is a f-yD-set of (X, T), then B-yker({x}) #
X.

Proof. Since {z} is a 8-yD-set of (X, 7), then there exist two subsets Uy, Us €
p-vyO(X, 1) such that {z} = U; — Us, {z} C U; and U; # X. Thus, we have
that f-vyker({z}) C U; # X and so f-yker({z}) # X.

Proposition 3.29 For a ﬁ—v-T% topological space (X, T) with at least two
points, (X, 7) is a f-y-Dy space if and only if -vker({x}) # X holds for every
point x € X.

Proof. Necessity. Let x € X. For a point y # x, there exists a S-yD-set
U such that x € U and y ¢ U. Say U = Uy — Uy, where U; € f-vO(X, 1) for
each i € {1,2} and U; # X. Thus, for the point x, we have a -y-open set U;
such that {z} C Uy and U; # X. Hence, f-vker({z}) # X.

Sufficiency. Let x and y be a pair of distinct points of X. We prove that
there exist f-yD-sets A and B containing x and y, respectively, such that
y ¢ Aand x ¢ B. Using Theorem 3.13, we can take the subsets A and B for
the following four cases for two points x and y.

Casel. {z} is B-y-open and {y} is S-vy-closed in (X, 7). Since f-vker({y}) #
X, then there exists a [-v-open set V such that y € V and V # X. Put
A ={z} and B = {y}. Since B =V — (X — {y}), then V is a S-y-open set
with V' # X and X —{y} is f-v-open, and B is a required §-yD-set containing
y such that = ¢ B. Obviously, A is a required -y D-set containing = such that
y ¢ A
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Case 2. {z} is f-v-closed and {y} is f-y-open in (X, 7). The proof is similar
to Case 1.

Case 3. {z} and {y} are f-y-open in (X, 7). Put A = {z} and B = {y}.
Case 4. {z} and {y} are fS-v-closed in (X,7). Put A = X — {y} and B =
X —{z}.

For each case of the above, the subsets A and B are the required [-vD-sets.
Therefore, (X, 7) is a f-v-D; space.

Definition 3.30 Let (X,7) and (Y,0) be two topological spaces and v, (
operations on T, o, respectively. A function f : (X,7) — (Y,0) is said to be
B-y-irresolute if for each x € X and each (-B-open set V' containing f(x),
there is a B-y-open set U in X containing x such that f(U) C V.

Theorem 3.31 Let f : (X,7) — (Y,0) be a mapping, then the following
statements are equivalent:

1. f is B-y-irresolute.
2. f(B-yCl(A)) C B-BCI(f(A)) holds for every subset A of (X, ).
3. f7YB) is B-y-closed in (X, T), for every B3-B-closed set B of (Y, o).

Proof. (1)=(2). Let y € f(B-vCIl(A)) and V be any [-f-open set containing
y. Then there exists a point z € X and a S-y-open set U such that f(x) =y
and x € U and f(U) C V. Since x € B-yCI(A), we have U N A # ¢ and hence
6+ f(UNA) C f(U)N F(A) C VO F(A). This implies y € -BCI(f(A).
Therefore we have f(8-vCIl(A)) C S-BCI(f(A)).

(2)=-(3). Let B be a f-p-closed set in (Y, o). Therefore S-CI(B) = B. By
using (2) we have f(B-yCI(f~'(B)) C B-BCI(B) = B. Therefore we have
B-yCIl(f~Y(B)) C f~(B). Hence f~(B) is S-y-closed.

(3)=(1). Obvious.

Definition 3.32 A mapping f : (X,7) — (Y, 0) is said to be 5-y-closed if
for any B-y-closed set A of (X, 7), f(A) is a B-B-closed in (Y, o).

Theorem 3.33 Suppose that f is B-y-irresolute mapping and f is 5-v-
closed. Then:

1. For every -y-g.closed set A of (X, T) the image f(A) is B-f-g.closed.

2. For every B-f-g.closed set B of (Y,c) the inverse set f~1(B) is 5-v-
g.closed.

Proof.
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1. Let V' be any p-B-open set in (Y, o) such that f(A) C V. By using

Theorem 3.31 f~1(V) is S-y-open. Since A is 3-y-g.closed and A C
7YV, we have B-yCI(A) C f~1(V), and hence f(8-yCI(A)) C V. By
assumption f(5-yCI(A)) is a B-p-closed set. Therefore 5-GCI(f(A))
B-BCI(f(BCUA)) = f(B-7CI(A)) C V. This implies f(A) is -
g.closed.

C
-

. Let U be B-y-open set of (X, 7) such that f~'(B) C U. Let F = -

YCU(f~(B)) N (X — U), then F is S-v-closed set in (X, 7). Since f
is [-7-closed this implies f(F) is -f-closed in (Y,0). Since f(F) C
F(BACI(f1(B)) N (X ~U) € B-BOUF(F BN N FX — V) € p-
BCU(B)N (Y — B). This implies f(F) = ¢, and hence F' = ¢. Therefore
B-vCl(f~1(B)) CU. Hence f~1(B) is 8-v-g.closed in (X, 7).

Theorem 3.34 Let f : (X,7) — (Y,0) is B-y-irresolute and B-y-closed.

Then:

1. If f is injective and (Y, o) is ﬁ-B—T%, then (X, 7) is ﬁ-’y—T%.

2. If f is surjective and (X, T) is B—V—T%, then (Y, o) is B—B—T%.

Proof.

1. Let A be a [-v-g.closed set of (X, 7). By Theorem 3.33, f(A) is p-5-

g.closed. Since (Y, o) is B—B—T%, this implies that f(A) is S--closed.
Since f is B-vy-irresolute, then by Theorem 3.31, we have A = f~!(f(A))
is f-vy-closed. Hence (X, 7) is ﬁ—v—T%.

. Let B be a 3-3-g.closed set of (Y, ). By Theorem 3.33, f~(B) is 8-v-

g.closed in X. Since (X, 7) is ﬂ—’y—T%, so f71(B) is S-y-closed. Since f
is surjective and S-y-closed, so f(f~1(B)) = B is 3-S-closed.

Theorem 3.35 If [ : (X, 1) — (Y, 0) is a B-y-irresolute surjective function

and E is a B-fD-set in'Y, then the inverse image of E is a f-yD-set in X.

Proof. Let E be a $-fD-set in Y. Then there are --open sets U; and U,
in Y such that £ = U; — Uy and U; # Y. By the S-v-irresolute of f, f~1(U;)
and f~1(Uy) are 3-y-open in X. Since U; # Y and f is surjective, we have
f~YUy) # X. Hence, f71(E) = f~Y(U,) — f~1(Us) is a S-yD-set.

Theorem 3.36 If(Y,0) is f-5-Dy and f : (X, 1) — (Y, 0) is B-y-irresolute

bijective, then (X, 1) is 5-v-D;.
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Proof. Suppose that Y is a 8-4-D; space. Let x and y be any pair of distinct
points in X. Since f is injective and Y is B-8-D;, there exist $-D-set G,
and G, of Y containing f(z) and f(y) respectively, such that f(z) ¢ G,
and f(y) ¢ G,. By Theorem 3.35, f~'(G,) and f~(G,) are S-yD-set in X
containing = and y, respectively, such that = ¢ f~'(G,) and y ¢ f~1(G,).
This implies that X is a g-v-D; space.

Theorem 3.37 A topological space (X, T) is B-y-Dy if for each pair of dis-
tinct points x,y € X, there exists a [-vy-irresolute surjective function f :
(X,7) — (Y,0), where Y is a B-B-Dy space such that f(z) and f(y) are

distinct.

Proof. Let x and y be any pair of distinct points in X. By hypothesis, there
exists a B-y-irresolute, surjective function f of a space X onto a 3-3-D; space
Y such that f(z) # f(y). Then, there exist disjoint f-fD-set G, and G in Y
such that f(z) € G, and f(y) € G,. Since f is f-v-irresolute and surjective,
by Theorem 3.35, f~!(G,) and f~!(G,) are disjoint -y D-sets in X containing
x and y, respectively. Hence, X is -v-D; space.

4 [(-y-Continuous and (-7-Closed Graphs

Definition 4.1 A function f: (X, 7) — (Y, 0) is said to be B-y-continuous
if for every open set V of Y, f~Y(V') is B-y-open in X.

Theorem 4.2 The following are equivalent for a function f : (X,7) —
(Y. 0):

1. f is B-y-continuous.

2. The inverse image of every closed set in'Y is B-y-closed in X.
3. For each subset A of X, f(B-yCI(A)) C CI(f(A)).

4. For each subset B of Y, B-yCI(f~(B)) C f~Y(CI(B)).

Proof. (1) & (2). Obvious.

(3) < (4). Let B be any subset of Y. Then by (3), we have f(/B yCIl(f~Y(B))) C

CI(f(f71(B))) € CU(B). This implies -yCl(f~}(B)) C f~H(CI(B)).
Conversely, let B = f(A) where A is a subset of X. Then by (4), we have,

B CI(F(F(A) € - (CIUF(A)). Thus, [(BCI(A)) C CUT(A)).

(2 ) = (4). Let B C Y. Since f}(Cl(B)) is B-y-closed and f~}(B) C

J~HCU(B)), then BACI(f~(B)) € f~(CU(B)).

(4 ) (2). Let K C Y beaclosed set. By (4), 3-vCI(f~Y(K)) C f~HCI(K)) =

fYK). Thus, f~1(K) is B-v-closed.
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Theorem 4.3 If f: X — Y s a B-y-continuous injective function and Y
1s Ty, then X is B-y-T,.

Proof. Let x and y in X be any pair of distinct points, then there exist
disjoint open sets A and B in Y such that f(z) € A and f(y) € B. Since f
is S-vy-continuous, f~1(A) and f~(B) are 3-y-open in X containing x and y
respectively, we have f~1(A) N f~1(B) = ¢. Thus, X is -y-Ts.

Definition 4.4 For a function f : (X,7) — (Y,0), the graph G(f) =
{(z, f(z)) : x € X} is said to be B-y-closed if for each (x,y) ¢ G(f), there
exist a B-y-open set U containing x and an open set V' containing y such that

(U xV)NG(f) = ¢.

Lemma 4.5 The function f : (X,7) — (Y,0) has an B-vy-closed graph if
and only if for each x € X and y € Y such that y # f(x), there exist a
B-vy-open set U and an open set V' containing x and y respectively, such that

fU)nv =¢.
Proof. It follows readily from the above definition.

Theorem 4.6 If f: (X,7) — (Y,0) is an injective function with the 5-y-
closed graph, then X is B-vy-T}.

Proof. Let z and y be two distinct points of X. Then f(z) # f(y). Thus there
exist a -y-open set U and an open set V' containing = and f(y), respectively,
such that f(U)NV = ¢. Therefore y ¢ U and it follows that X is f-v-T3.

Theorem 4.7 If f : (X, 7) — (Y, 0) is an injective S-y-continuous with a
B-y-closed graph G(f), then X is 5-v-Ts.

Proof. Let x; and x5 be any distinct points of X. Then f(z1) # f(x2), so
(21, f(z2)) € (X xY) — G(f). Since the graph G(f) is f-vy-closed, there exist
a [-y-open set U containing x; and open set V' containing f(z3) such that
f(U)NV = ¢. Since f is B-y-continuous, f~1(V) is a B-y-open set containing
29 such that U N f~1(V) = ¢. Hence X is S-v-Ts.

Recall that a space X is said to be T} if for each pair of distinct points x
and y of X, there exist an open set U containing x but not y and an open set
V' containing y but not x.

Theorem 4.8 If f : (X,7) — (Y,0) is an surjective function with the
B-vy-closed graph, then'Y is T}.

Proof. Let y; and ys be two distinct points of Y. Since f is surjective, there
exists  in X such that f(z) = yo. Therefore (x,y;) ¢ G(f). By Lemma 4.5,
there exist S-vy-open set U and an open set V' containing = and y; respectively,
such that f(U) NV = ¢. We obtain an open set V' containing y; which does
not contain y,. It follows that y, ¢ V. Hence, Y is T7.
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Definition 4.9 A function f : (X, 1) — (Y, 0) is said to be -y- W-continuous
if for each x € X and each open set V of Y containing f(x), there exists a
p-y-open set U in X containing x such that f(U) C CI(V).

Theorem 4.10 If f : (X,7) — (Y, 0) is f-y-W-continuous and Y is Haus-
dorff, then G(f) is B-vy-closed.

Proof. Suppose that (z,y) ¢ G(f), then f(x) # y. By the fact that YV is
Hausdorff, there exist open sets W and V such that f(z) € W, y € V and
VNW = ¢. It follows that CI(W)NV = ¢. Since f is f-y-W-continuous,
there exists a f-y-open set U containing x such that f(U) C Cl(W). Hence,
we have f(U) NV = ¢. This means that G(f) is S-vy-closed.

Definition 4.11 A subset A of a space X is said to be B-y-compact relative
to X if every cover of A by B-v-open sets of X has a finite subcover.

Theorem 4.12 Let f : (X,7) — (Y,0) have a B-y-closed graph. If K is
B-y-compact relative to X, then f(K) is closed in'Y .

Proof. Suppose that y ¢ f(K). For each 2 € K, f(z) # y. By lemma
4.5, there exists a $-y-open set U, containing x and an open neighbourhood
V, of y such that f(U,) NV, = ¢. The family {U, : € K} is a cover of
K by B-v-open sets of X and there exists a fnite subset Ky of K such that
K CUU, : z € Ko}. Put V.=1{V, : « € Ky}. Then V is an open
neighbourhood of y and f(K)NV = ¢. This means that f(K) is closed in Y.

Theorem 4.13 If f : (X,7) — (Y,0) has a B-y-closed graph G(f), then
for each x € X. {f(z)} = N{CI(f(A) : A is B-y-open set containing x}.

Proof. Suppose that y # f(x) and y € N{CI(f(A)) : A is S-y-open set
containing z}. Then y € CI(f(A)) for each [-y-open set A containing .
This implies that for each open set B containing y, B N f(A) # ¢. Since
(z,y) ¢ G(f) and G(f) is a B-y-closed graph, this is a contradiction.

Definition 4.14 A function f: (X,7) — (Y, 0) is called a B-y-open if the
immage of every B-y-open set in X is open in Y.

Theorem 4.15 If f : (X,7) — (Y,0) is a surjective S-y-open function
with a f-y-closed graph G(f), then'Y is Ty.

Proof. Let y; and y, be any two distinct points of Y. Since f is surjective
f(x) =y forsome x € X and (x,y2) € (X XY)—G(f). This implies that there
exist a -y-open set A of X and an open set B of Y such that (z,y) € (Ax B)
and (A x B)NG(f) = ¢. We have f(A) N B = ¢. Since f is f-y-open, then
f(A) is open such that f(z) =y, € f(A). Thus, YV is Ts.
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