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Abstract 

     In this paper, we formulate and analyze a new model for solving optimal 
control problems governed by Volterra integro-differential equations. The control 
and state variables are approximated by using monic Chebyshev series. The 
optimal control problem is reduced to a constrained optimization problem. 
Numerical examples are solved to show good ability and accuracy of the present 
approach.  

     Keywords: Optimal control problems, Monic Chebyshev approximation, 
Volterra Integro – differential equations. 

1      Introduction 

Solutions for optimal control problems (OCP) are usually carried out numerically.  
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Therefore numerical methods and algorithms for solving optimal control problems 
have evolved significantly. An overview of numerical methods for solving 
optimal control problems described by ODE and integral equations can be found 
in [6, 7, 8].  In various branches of applications, the optimal control problems may 
be governed by integral or integro-differential equations [10]. Integral equations 
occur amongst others, in neutron transfer theory, in quantum theory and in 
optimal control theory [9]. The most important methods for solving these types of 
problem can be found in [2, 3].  
 
In this paper, we present a numerical solution of the optimal control problems 
governed by Volterra integro-differential equations. In fact, it seems that, with the 
exception of the simplest physical problems, practically every situation that can be 
modeled by ordinary differential equations can be extended to a model with 
Volterra integro equations. For example a general ODE system of interacting 
biological populations of the form: 
 � ��, �, �(�), � ′(�), 	(�)
 = 0, −1 ≤ �, � ≤ 1, 
 
can be extended to Volterra integro-differential equations: 
  � ′(�)= ���, �(�), 	(�)� + �(�)
+ � ���, �, �(�), �′(�), 	(�)���.                                                          (1.1)�

��  

 
Indeed, some related extensions have already been considered in [1] and in other 
works. Problems in mathematical economics also lead to Volterra integral 
equations. The relationships among different quantities, for example between 
capital and investment, include memory effects and the simplest way to describe 
such memory effects is through Volterra integro operators [10,11]. 
 
Let �(�) ∈ � ∈ ℛ  is a state vector and 	(�) ∈ ! ∈ ℛ" is the control vector 
where ! is a compact set. Let �(�) ∈ ℛ  is a real valued continuous functions on # = $−1,1%  and � is continuous function on #.  
 
Suppose that the kernel � is assumed be known and continuous with respect to all 
variables and control function 	(�) ∈ ! is also continuous. In equation (1.1), the 
we have to find an allowable control 	(�) such that:   
Minimize the cost functional: 
 &
= � '��, �(�), 	(�)���,�

��                                                                                                  (1.2) 
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with initial constraints,           
         )(�(−1), � ′(−1))= 0,                                                                                                       (1.3) 
 
and the terminal constraints 
 +(�(1), � ′(1))= 0,                                                                                                             (1.4) 
 
The main idea of this paper is to present a numerical method for solving optimal 
control problems with Volterra integro differential equations which may lead to 
present executable numerical approaches for obtaining near optimal solutions of 
the considered problem. This paper intends to actualize this idea by combining the 
method of monic Chebyshev approximation and the method of the resulted 
optimization problem, for providing a numerical scheme to find the optimal 
solutions. 
 
The remainder of this paper is organized as follows: In section 2, some 
fundamental information of monic Chebyshev approximations are presented. An 
approximation of optimal control problem is introduced in section 3. Optimality 
conditions and the error estimation and associated theorems have been proved in 
section 4. In section 5, numerical results which demonstrate the efficiency of the 
new approach are introduced. We end the paper with few concluding remarks in 
section 6. 
 

2  Preliminaries 
 

The monic Chebyshev approximations of a given function -(�). /∞$−1,1% using (+ + 1) Chebyshev Gauss-Lobatto (CGL) points �0 = − 123 �04 
 , 5 = 0,1, … . +, 

are: 
 -(�)
≅ 8 19

 
9:;  <9=9  (�),                                                                                                  (2.1) 

 
where =9(�) is the  monic Chebyshev polynomials, 
 

 19 = 1, > = 0,1, … , + − 1, 1  = �?,  
And 
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 <9

=
@AA
AB
AAA
C 1+ 8 DE   -(�E) 

E:; ,                                  > = 0,                                                                    
2+ 8 DE   -(�E) 

E:; �E ,                              > = 1,                                                       (2.2)     
12��?9+ 8 DE   -��E� 

E:; =9��E�,            > = 2, … , +,                                                                    

F  

 

where D; = D = �?  , DE = 1 for G = 1,2, … , + − 1. 
The integration of  -(�) is approximated by [4]: 
 

� -(�)�(�) ≅�H
�� 8 I0,E(�)-��E� , 

E:;  5 = 0,1, … +, 
 

where the entries of  I0,E(�) are the elements of the matrix J as given in [4]:  
  I0,E(�) = DE+ (�0 + 1) + DE+ �E(�0? − 1)

+ DE+ 8  1929=K��E� LM9N� (�0)2(> + 1) − M9�� (�0)2(> − 1) + (−1)9N�>? − 1 O ,P
K:?  

  5, G =0,1, … , +.                                                                                                                  (2.3)                                                                                                                 
 
The operation matrix of the successive integration is given by:    
 � � … � � -(�;)QR

��
QS

��
QTUR

��
�H

�� ��; ��� … ��9�? ��9�� = J(9)$-%, 
 
where, 
  J(9) = VI0,E(9)W, 5, G = 0,1, … , +, and; 

 I0,E(9) = (�0� �E)9��(> − 1)! I0,E(�) , 5, G = 0,1, … , +. 
 

3  Monic Chebyshev Approach for Solving OCP 
 
Monic Chebyshev approximation is adopted here to approximate the solution of 
the problem. We start with monic Chebyshev approximation for the highest-order 
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derivative, �(9), and generate approximations to the lowest-order derivatives 
through successive integrations of the approximation of the highest-order 
derivative, as follows:  
 
Let                    � ′(�) =Y(�) ,                                                                                                          (3.1) 
 
where Y(�0), 5 = 0,1,2, … + are unknowns. This will lead us to 
 

                  �(�0) = 8 I0,E(�) Y��E� + 1;, 5 = 0,1, … , + 
E:;  

 
where the constant  1; may be defined from the given condition.  
Consider the following approximation of the control variable: 
 

	��E� = 8 <9=9��E�"
9:; , G

= 0,1, … Z.                                                                                   (3.2)  
 
The optimal control problem (1.1)-(1.2) is now replaced by the following 
constrained optimization problems.  
 
Minimize    

& = 8 I ,E(�) 
E:;  ' [�E , 8 IE,\(�) Y(�\) 

\:;
+ 1; , 8 <9

"
9:; =9��E�].                                           (3.3) 

Subject to:  
 

Y(�0) = � ^�0, 8 I0,E(�) Y��E� + 1;
 

E:; , 8 <9
"

9:; =9(�0)_ + `(�0) 

 + 8 I0,E(�) 
E:;  � a�0, �E , 8 IE,\(�) Y(�\) + 1;, Y��E�, 

\:; 8 <9
"

9:; =9��E� b , 
         5 = 0,1, … +.                                                                                                          (3.4) 
 
The resulted NLP problem (3.3) and (3.4) can be solved by using well-known 
solvers.  
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4  Optimality Conditions and Error Analysis  
 
From the calculus of variations, the previous problem can be expressed as that of 
minimizing the augmented functional [5]: 
 

& = �(c�
�� � ′ + `)�� 

                                                        (4.1) 

   
Subject to (1.1), (1.3) and (1.4) where the Hamiltonian is defined by: 

      
                         ` = ' − c � ′,                                                                                        (4.2) 
 
In equations (4.1) and (4.2), c(�) is Lagrange multiplier variable. The state �(�), 
the control 	(�) and the Lagrange multipliers c(�)  that solve the problem must 
satisfy the constraints (1.1)-(1.4)  and the following optimality conditions: 
 
                                       `� − c′ = 0. 
 
                                      `g = 0. 
 
The performance index is then approximated as follows: 
 

& = 8 I ,0(�) 
0:; '��0 , �(�0), 	(�0)� 

 
The constrained optimization problem takes the final form: 
Minimize  
   
        & =   &$h, i%.                                                                                                           (4.3) 
 
Subject to   
 
     j$h, i% = 0,                                                                                                            (4.4) 
 
where, h = $Y(�;), Y(��), … , Y(� )%, i = $<;, <�, … , <"%. 
For the stopping criteria, we used:  
 |&(h N�, i N�) − &(h , i )| < .   
 
To decide whether the computed solution in close enough to the optimal solution. 
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Now, the error estimation in the dynamic system and objective functions are 
considered. First, the following assumptions are presented to obtain error 
estimation.  
 
i. The function k is Lipchitz with respect to  y and y′  with Lipchitz constant  Lpq,q′ .  
 
       r���, �, ��, �′�, 	� − ���, �, �?, �′?, 	�r      
                                     ≤ )st,t′ u‖�� − �?‖ + r�′� − �′?rw,                                      (4.5) 

      for all ��, �? ∈ �, 	 ∈ ! and for all �, � ∈ #.      
ii. The function 	(�): # → ! is satisfy Lipschitz condition with constant )g. 
     ‖	(��) − 	(�?)‖ ≤ )g|�� − �?|,  for 

all ��, �? ∈ #.                                                  (4.6)                                                                
 
iii. The function � is jointly Lipschitz with respect to � ′, � and 	 with constant  )st,t′,| . 
  r���, �, ��, �′�, 	�� − ���, �, �?, �′?, 	?�r ≤ )st,t′,|u‖�� − �?‖ +r� ′� − � ′?rF                       
                    F +‖	� − 	?‖}                                                                                                 (4.7) 
    for all ��, �? ∈ �, 	�, 	? ∈ ! and for all �, � ∈ #.   
iv. Let max 
 

 ���s��,Q,�(Q),�′(Q),g(Q)
�Q � , � ∈ �, 	 ∈ ! , �, � ∈ #  � =�Q .                                                (4.8)   
 
Lemma 1 If �(�): # → � ⊂ ℛ9 is differentiable function, then ‖�′‖ ≤ Z�′  and ‖�′′‖ ≤ Z�′′  
 
Proof. 
Suppose the function ���, �, �(�), �′(�), 	(�)� is bounded and from equation (1.1), 
we have       

r� ′(�)r ≤ r���, �(�), 	(�)�r + ‖�(�)‖ + � � ���, �, �(�), �′(�), 	(�)����
�� �

≤ Z�′                                                                                                          (4.9) 
where, 
 Z�′ = Z� + Z� + Zs   for all � ∈ #and �<�ur���, �, �(�), �′(�), 	(�)�r, 	 ∈!, � ∈ �w = Zs . 
Now suppose the function 
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�� ��, �, �(�), � ′(�), 	(�)
��   
 
is bounded, by using the second time-derivative of � ′(�) in equation (1.1), we get   � ′′(�) = �′��, �(�), 	(�)� + `′(�) + ���, �, �(�), �′(�), 	(�)� 

                         + � �� ��, �, �(�), � ′(�), 	(�)
�� ��,                                                         (4.10)�
��  

then r� ′′(�)r ≤ r�′��, �(�), 	(�)�r + ‖�′(�)‖ + r���, �, �(�), �′(�), 	(�)�r 

                   + � ��� ��, �, �(�), � ′(�), 	(�)
�� � ���
��≤ Z�′′                                             (4.11) 

where 
 Z�′′ = Z�′ + Z�′ + Zs + �� and r�′��, �(�), 	(�)�r ≤ Z�′, ‖�′(�)‖ ≤ Z�′ .   

Assume (C[#],‖. ‖) to be the space of all continuous functions with norm ‖�′(�)‖ =  �<�∀�∈�|�′(�)|. We denote the error of  �(�) by �� = ‖� − ��‖ . By using 
Lemma 1 and under the assumption in this section, we have the following 
Theorems. 
 
Errors in Dynamic System 
 
Theorem 1 For every 	(�) ∈ !, the error estimation in equation (1.1) satisfies  
     ‖� − ��‖ ≤� + ��,                                                                                                       (4.12)   
 
where, 
 

 �� = ��\ + )st,t′,|�Z�′ + Z�′′ +  )g� 
  � = �� + �? + � + � + Zs� 
 
And 
 � = r���, �(�), 	(�)� − ����, �(�), 	(�)�r, � = ‖�(�) − ��(�)‖, �� = r��(�) − ��′ (�)r,  �? = ‖�(�) − �′(�)‖  
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Proof. 
Let �E = −123 E4  and �0 = −123 04  for 5, G = 0,1,2, + − 1 and it is obvious that ����E� = �(−123 E4 ) and 

 ��(�0) = � �−123 04 
.  
If � = �0, then ��(�0) = �(�0) , let � ≠ �0 ,we have      ‖� − ��‖ ≤ �� + �? + �<�∀ �∈��� ′(�) − � ′�(�)�                    ≤ �� + �? + � + �

+ �<�∀ �∈� a � ����, �, �(�), �′(�), 	(�)��
��− � ��, �, ��(�), �′�(�), 	�(�)
� ��b                 ≤  �� + �? + � + �

+ �<�∀ �∈� a � ����, �, �(�), �′(�), 	(�)��
��− � ��, �E , �(�), �′(�), 	(�)
� ��F 

                                 + � �� ��, �E , �(�), � ′(�), 	(�)
�
��− � ��, �E , ���E�, �′��E�, 	��E�
� �� 

F                               + � �� ��, �E , ����E�, �′���E�, 	���E�
�
��− � ��, �, ��(�), �′�(�), 	�(�)
� ��b                   ≤  �� + �? + � + � + Zs�+ L�\ + )st,t′,|�Z�′ + Z�′′ +  )g�O                             

                   ≤ � + ��,                                                                                                                     (4.13) 
then for  �� ∈ �, 	� ∈ ! , �, �, �? ∈ # 

 max ��� ��, ��, ��(��), �′�(��), 	�(��)
 − � ��, �, ��(�), �′�(�), 	�(�)
�� =Zs�   for sufficiently small � and the proof is complete . 
 
Errors in Objective Functional 
 
Now for the purpose of error estimation in equation (1.2) consider the following 
assumptions: 
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i. let      �max ��'(�, �, 	)�� � , � ∈ �, 	 ∈ !, � ∈ #  �= '�.                                    (4.14)   
 

 and let 
 
 max  ‖'(��, ��, 	�) − '(�?, ��, 	�)‖ , �� ∈ �, 	� ∈ !, ��, �? ∈ #} =Z¡� .   (4.15)    
 
ii. the function ' jointly Liptschitz with respect to � and 	, with Liptschitz 

constant )¡t,|,      
 ‖'(�, ��, 	�) − '(�, �?, 	?)‖ ≤)¡t,| ‖�� − �?‖ + ‖	� − 	?‖},                        (4.16)                                      

  for all ��, �? ∈ �, 	�, 	? ∈ !   and  for all  � ∈ # .  
 
 
Theorem 2 If the assumptions equations (4.14) – (5.16) are satisfied, for every 	(�) ∈ ! the error estimation in (1.2) satisfies  ‖& − &�‖ ≤ � + ',¢   
where  � = Z¡�  , '£ = ¤'Q + )¡t,|�Z�′ +  )g�¥. 
 
Proof. Let  �0 = −123 04  5 = 0,1,2, + − 1, and it is obvious that ��(�0) =�(−123 04 ) and 	�(�0) = 	 �−123 04 
 ,  

 
then 
      ‖& − &�‖ = �<�∀ Q∈�|&(�(�), 	(�)) − &�(�(�), 	(�))| 
                          ≤  �<�∀ Q∈� [ �r'��, �(�), 	(�)� − '��, ��(�), 	�(�)�r���

�� ] 

                          ≤  �<�∀ Q∈� [ �r'��, �(�), 	(�)� − '��0, �(�), 	(�)�r�� +�
��

F 
                  �r'��0, �(�), 	(�)� − '��0, �(�0), 	(�0)�r���

��  
+  F �r'��0, ��(�0), 	�(�0)� − '��, ��(�), 	�(�)�r���

�� ]    



Monic Chebyshev Approximations for Solving…                                                  33 

 

 

                           ≤ MZ¡� + �'Q + )¡t,|�Z�′ +  )g�   
                                             (4.17)                                            

                        ≤ � + '£. 
For sufficiently small δ and the proof is complete. 

 
5  Numerical Examples 
 
Consider the following problems to show the effectiveness of our technique. 
 
Example 1 Consider the following optimal control problem [1] 
 

& = 12 � ¦¤� + 12 ¥ �(�) − 	(�)§?�
�� ��, 

 
governed by the Volterra integro differential equation:  
 

2�′(�) = 1 − 712 ¤� + 12 ¥¨ + � ©¤� + 12 ¥? ¤� + 12 ¥ + ¤� + 12 ¥ 	(�)ª � ′(�)Q
�� ��,    

− 1 ≤ � ≤ 1 . 
 �(−1) = 0, �(1) = 1. 
 

The exact optimal trajectory and control functions are �(�) = QN�?  and 	(�) =�QN�? 
?
 respectively. The optimal solution of the objective  &∗ and the maximum 

absolute errors �� = ‖� − ��‖   are presented in Table (1). Whereas, the 
comparison of the exact and   approximate optimal control and trajectory may be 
seen in Fig. (1). 
  
                         Table 1: The results of applying proposed method in Example 1 
 
 
 
 
 
 
 
 
 
 
 
 
 

N=M ¬∗ ­® 
6 0.384399264D-02 0.1363D-01 
8 0.122373752D-02 0.7713D-02 
10 0.502645876D-03 0.4967D-02 
12 0.242771958D-03 0.3456D-02 
14 0.131162919D-03 0.2542D-02 
16 0.769704276D-04 0.1948D-02 
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Fig.(1): The exact and approximate optimal control and state functions 

 
Example 2 Consider the following optimal control problem 
 

& = 12 � ¯L�(�) − 35> ¤� + 12 ¥O?  ¤	(�) − � + 12 ¥?°�
�� �� 

 
governed by the Volterra integro differential equation:  
 2�±(�) = − � + 12 35> ¤� + 12 ¥ + 123 ¤� + 12 ¥ − 32 ¤� + 12 ¥?

+ 	(�) ¤�(�) + � + 12 ¥                        
 

                  + 12 � 	(�)��Q
�� , −1 ≤ � ≤ 1 , �(−1) = 0. 

 

The exact optimal trajectory and control functions are �(�) = 35> �QN�? 
 and 	(�) = QN�?   respectively. The computed results of applying the proposed method 

in the previous section, and the maximum absolute errors �� = ‖� − ��‖  are 
listed in table (2). Also, one can observe the exact and approximate optimal 
trajectory and control functions in Fig. (2). This confirms that our method gives 
almost the same solution as the analytic method. 
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Table 2: The results of applying proposed method in Example 2 
              
      
 
 
 
 
 
 

Fig. (2): The exact and   approximate optimal control and state functions 
 

6  Conclusion 
 
In this paper, we have proposed a numerical scheme for finding approximate 
solution of optimal control problems governed by Volterra integro-differential 
equations. The efficiency of this technique has been shown in the numerical 
examples. The theorems for obtaining the error estimates for optimal control and 
the cost functional were conducted and the approximated solutions obtained by 
FORTRAN codes show the validity and efficiency of the proposed method.     
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