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Abstract

Let G be a topological group and A a topological G-module (not necessarily
abelian). In this paper, we define H*(G, A) and H'(G,A) and will find a six
terms exact cohomology sequence involving H® and H'. We will extend it to
a seven terms exact sequence of cohomology up to dimension two. We find a
criterion such that vanishing of H*(G, A) implies the connectivity of G. We
show that if H'(G, A) = 1, then all complements of A in the semidirect product
G X A are conjugate. Also as a result, we prove that if G is a compact Hausdorff
group and A is a locally compact almost connected Hausdorff group with the
trivial mazimal compact subgroup then, H' (G, A) = 1.

Keywords: Almost connected group, inflation, mazimal compact subgroup,
non-abelian cohomology of topological groups, restriction.

1 Introduction

Let G and A be topological groups. It is said that A is a topological G-module,
whenever G continuously acts on the left of A. For all g € G and a € A we
denote the action of g on a by Ya.

In section 2, We define H°(G, A) and H'(G, A).

In section 3, we define the covariant functor H* (G, —) for i = 0,1 from the
category of topological G-modules to the category of pointed sets. Also, we
define two connecting maps d° and 6.
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A classical result of Serre [6], asserts that if G is a topological group and
1—>A— B — (C — 1 a central short exact sequence of discrete GG-modules
then, the sequence 1 — H°(G,A) — H°(G,B) — H°(G,C) — HY G, A) —
HY(G,B) - H(G,C) — H*(G, A) is exact.

In section 4, we generalize the above result to the case of arbitrary topo-
logical G-modules (not necessarily discrete).

We show that if G is a connected group and A a totally disconnected group
then, H'(G, A) = 1.

In section 5, we show that if G has an open component (for example G with
the finite number of components) and for every discrete (abelian) G-module
A H'(G,A) =1 then, G is a connected group.

In section 6, we show that vanishing of H!(G, A) implies that the comple-
ments of A in the (topological) semidirect product G x A, are conjugate.

In section 7, we prove that, if G is a compact Hausdorff group and A
a locally compact almost connected Hausdorff group then there exists a G-
invariant maximal compact subgroup K of A such that the natural map ¢} :
HY(G,K) — H'(G, A) is onto. As a result, if G is compact Hausdorff and A
is a locally compact almost connected Hausdorff group with trivial maximal
compact subgroup then, H*(G, A) = 1.

All topological groups are arbitrary (not necessarily abelian). We assume
that G acts on itself by conjugation. The center of a group G and the set of all
continuous homomorphisms of G into A are denoted by Z(G) and Hom.(G, A),
respectively. The topological isomorphism is denoted by 7 ~ 7.

Suppose that A is an abelian topological G-module.

Take C°(G, A) = A and for every positive integer n, let C"(G, A) be the set
of continuous maps f : G" — A with the coboundary map 0" : C™(G, A) —
C™H(G, A) given by

) Snf(gla "'7gn+1> -
D f (G2, oy Gna1) + 2 (=1) F (91, s GiGiwts oo Gnr) + (=1)" T f (g1, s Gn)-

ith

The nth cohomology of G with coefficients in A in the sense of Hu [5], is the
abelian group
H"(G, A) = Kerd™/Imo™ .

2 HG,A) and H'(G, A)
Let G be a topological group and A a topological G-module.

Definition 2.1. We define H°(G, A) = {ala € Afa = a,Vg € G}, i.e.,
HY(G, A) = AC, the set of G-fized elements of A.
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Definition 2.2. A map a: G — A is called a continuous derivation if « is
continuous and

a(gh) = a(g)?a(h),Vg,h € G.

The set of all continuous derivations from G into A is denoted by Der.(G, A).
Two continuous derivations «, § are cohomologous, denoted by a ~ f3, if there
is a € A such that

B(g) = ata(g)’a, for all g € G.
It is easy to show that ~ is an equivalence relation. Now we define
HY(G,A) = Der.(G,A)] ~ .

Notice 2.3. There exists the trivial continuous derivation o9 : G — A
where ay(g) = 1; Hence, H (G, A) is nonempty. In general, H'(G, A) is not
a group. Thus, we will view H'(G, A) as a pointed set with the basepoint ay.

Note that H°(G, A) is a subgroup of A, so it is a pointed set with the
basepoint 1. Also if A is a Hausdorff group, then, H°(G, A) is a closed subgroup
of A.

Remark 2.4. (i) If A is an abelian group then, H'(G,A) is the first
(abelian) group cohomology in the sense of Hu, i.e., it is the group of all con-
tinuous derivations of G into A reduced modulo the inner derivations. [5]

(ii) If A is a trivial topological G-module then, H'(G, A) = Hom.(G, A)/ ~.
Here o ~ 3 if 3 a € A such that B(g) = a 'a(g)a,Vg € G.

(iii) Let G be a connected group and A a totally disconnected group then,
HY(G,A)=1.

Proof. (i) and (ii) are obtained from the definition of H'(G, A).
(iii): If @ € Der.(G, A) then, a(1) = 1. On the other hand G is a connected
group and A is totally disconnected. So, « = ag. Thus, H'(G, A) = 1.

3 H'(G,-) as a Functor and the Connecting
Map §' for i =0, 1
In this section we define two covariant functors H%(G, —) and H'(G, —) from

the category of topological G-modules o.M to the category of pointed sets PS.
Furthermore, We will define the connecting maps d° and §*.
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Let A, B be topological G-modules and f : A — B a continuous G-
homomorphism. We define H'(G, f) = f : H(G,A) — H'(G,B), i = 0,1, as
follows:

For i = 0, take f; = f|4e. This gives a homomorphism from H°(G, A)
to H°(G, B), since f is a homomorphism of G-modules . So if a € A“, then,
9f(a) = f(%) = f(a), for each g € G. Hence, f(a) € BY, ie., f& is well-
defined.

For i =1, we define f; as follows:

For simplicity, we write « instead of [a] € HY(G, A).
If « € HY(G, A), then, take f;(a) = foa. Now if g,h € G, then,

fi(a)(gh) = fla(gh)) = fla(g)’alh)) = f(alg))f(alh)) = fi(@)(g)* fi (@) (h).

So, f{(a) is a continuous derivation.

Moreover, if a,8 € H'(G,A) are cohomologous then, there is a € A
such that 5(g) = a 'a(g)’a. Hence, f(B(g)) = f(a)"'f(a(g))'f(a). So,
fila) ~ f7(8).

The fact that H'(G, —) is a functor follows from the definition of f/, (i =0, 1).
Also H°(G, —) is a covariant functor from M to the category of topological
groups 7G.

Suppose that 1 A—=B-"=C 1 is an exact sequence of topo-
logical G-modules and continuous G-homomorphisms such that ¢ is an embed-
ding. Thus, we can identify A with ¢(A).

Now we define a coboundary map 6° : H°(G,C) — H*(G, A).

Let c € H*(G,C), b € B with 7(b) = c¢. Then, we define §°(c) by 6°(c)(g) =
b=19b,¥g € G. Tt is obvious that 6°(c) is a continuous derivation. Let b € B,
7(b') = c. Then, b = ba for some a € A. So,

(b)719 = a b 9a = a6%(c)(g)%a.

Thus, the derivation obtained from &’ is cohomologous in A to the one obtained
from b, i.e., 6" is well-defined.

Now, suppose that 0 A—=B-"=C 1 is a central exact se-
quence of G-modules and continuous G-homomorphisms such that ¢ is a home-
omorphic embedding and in addition 7 has a continuous section s : C' — B,
ie., ms = Idc.

We construct a coboundary map HY(G,C) ——~ H*(G, A) . Here H%(G, A)
is defined in the sense of Hu [5]. By assumption «(A) C Z(B), so, A is an
abelian topological G-module.

Let € HY(G,C) and s : C — B be a continuous section for 7. Define
§(a) via 6'()(g,h) = sa(g) 9(sa(h))(sa(gh))~t. Tt is clear that §'(a) is a
continuous map.
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We show that §'(a) is a factor set with values in A, and independent of
the choice of the continuous section s. Also ¢! is well-defined.
Since « is a derivation, we have:

7(8'(@)(g. 1)) = wlsalg) *(sa(h))(sa(gh)) ") = alglalh)(algh) " = 1.

Thus, 6*(a) has values in A.
Next, we show that §'(«) is a factor set, i.e.,

95 () (h, k)6 (a)(g, hk) = 6' (o) (gh, k)6 (a)(g, h), Yg,h,k € G. (3.1)

First we calculate the left hand side of (3.1). For simplicity, take b, = sa(g),
Vg € G. Since A C Z(B), thus,

96" (a) (h, k)3 () (g, k) = 9(bn"brbye ) (b Db ) = bg? (01" by )bk
= bgg(bhhbk)gbhkbg’,}k = bggbhghbkbg’hlk,
On the other hand,
0' () (gh, k)3* ()(g, h) = (bgn?" brby ) (0g?brbyy ) = bg?bn?"bib .

Therefore, §'(a) is a factor set.

Next, we prove that 6'(«) is independent of the choice of the continuous
section. Suppose that s and w are continuous sections for 7. Take b, = sa(g)
a/nd b; = ua(g), for a fixed a € Der.(G,C). Since W(b;) = a(g) = n(b,), then,
b, = bya, for some a, € A. Obviously the function x : G — A, defined by
k(g) = ag, is continuous. Thus,

(8) () (g, h) = by?bby, = bti(g)?bu?si(h) ((gh))~"biy,)
=(r(9)7m(R)((gh)) =) (bs"brbyy) = 6" (k) (g, h)6" (@) (g, h),

where 6'(x)(g, h) = 9%(h)(k(gh)) " (g).

The coboundary map 6! : C'(G, A) — C?(G, A) is defined as in [5]. Conse-
quently, ' (k) and (6')' (k) are cohomologous.

Suppose that o and § are cohomlologous in Der.(G, A). Then, there is
c € C such that 8(g) = ¢ 'a(g)ic, Vg € G.
Let s : C'— A be a continuous section for 7. Since

m(s(c " a(g)c)) = m(s(c)~'sa(g)?s(c)),

then, there exists a unique v(g) € kerm = A such that

1(9)(s(e) " sa(g)?s(c)) = s(c"a(g)c).
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It is clear that the map v: G — A, g — ~(g) is continuous. Therefore,

01 (B)(g. h) = sB(g).#58(h).(sB(gh)) "

s(cla(g)9c).9s(c La(h)he).(s(c La(gh)o"c)) !

1(9)ls(e) " sa(g)?s ()] (v(h)[s(c) ™ sa(h)"s()])-(v(gh)[s(c) " sa(gh)™s(c)])
Iy(h)v(gh) = v(9)[s(e) " salg)?s(e)].5[s(c) ' sa(h)"s(c)].[s(c) "' salgh)o"s(c)] !
H(9)(g. 1) [s(e) " salg)?salh)(aa(gh)) " s(c)]

01 (1) (9, M) [s(e)7'8% (@) (g, B)s(e)] = 8" (7)(g, B[S (@) (g, )]-

The last equality is obtained from the fact that §'(a)(g,h) € A C Z(B)
and s(c) € B. Now, note that §'(a) is cohomologous to §'(), when « is
cohomologous to 5. Thus, 8! is well-defined.

I
o

4 A Cohomology Exact Sequence

Let (X, xg), (Y, y0) be pointed sets in PS and f : (X, z9) — (Y, 90) a pointed
map, i.e., f: X — Y is a map such that f(zg) = yo. For simplicity, we write
f X — Y instead of f : (X,z0) — (Y,y0). The kernel of f, denoted by
Ker(f), is the set of all points of X that are mapped to the basepoint yo. A

sequence (X, xq) . (Y, yo) —== (Z, %) of pointed sets and pointed maps is
called an exact sequence if Ker(g) = Im(f).

Theorem 4.1. (i) Let 1 A—=B-—"=(C 1 be a short exact
sequence of topological G-modules and continuous G-homomorphisms, where
t 18 homeomorphic embedding. Then, the following is an exact sequence of
pointed sets,

0—— HY(G, A)—~ HY(G, B) "~ HY(G, ) (4.1)

— P HVG, A) s HY(G, B) T HN(G,0).

(i1) In addition, if «(A) C Z(B), and m has a continuous section, then

0—— HYG, A) —°~ HY(G, B) "~ HY(G, C) (4.2)

—Puva,A) e HY(G, B) e HY(G, O) -2 H2(G, A)
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1 an exact sequence of pointed sets.

Proof. (i): We prove the exactness term by term.

1. Exactness at H°(G, A): This is clear, since ¢ is one to one.

2. Exactness at H°(G, B): Since mjis = (m)y = 1, then, Im(s)) C
Ker(n§). Now we show that Kernj C Imuj. If b € Kernj, then, m(b) = 1
and b € HY(G,B). There is an a € A such that t(a) = b. Moreover,
t(9a) =% (a) = u(a), Vg € G. So, 9a = a, Vg € G, since ¢ is one to one.
Thus, a € H°(G, A). Hence, b € Im(1}).

3. Exactness at H°(G,C): Take ¢ € Im(n}). So, ¢ = 7(b) for some
b € H°(G,B). Thus, §°(c)(g) = b~'9. Hence, §°(c) ~ ap. Conversely, if
§°(c) ~ ayp, then, there is a; € A such that 6°(c)(g) = a;'%a1, Vg € G. Let
¢ = w(b) for some b € B. Then, by definition of §°(c)(g), there is ay € A
such that b=19b = a;'0%(c)(g)%as, Yg € G. So, b(ajas)™t € H°(G, B). Since
75 (b(ajas)™) = ¢, then, c € Imm,.

4. Exactness at H°(G, A): Let ¢ € H°(G,C). Then, there is b € B such
that 7(b) = ¢. So,

m105(c)(g) = m(85(c)(g)) = m(b~'9b) = 7 (b)~"om(b).

Consequently, 71d5(c) ~ By, where fBy(g) = 1,Vg € G. Conversely, let o €
Kerdui. Then, there is b € B such that ta(g) = b~19b,Vg € G. So, w(b~19) =
1,Vg € G. Take ¢ = m(b). Hence, c € H°(G,C). Thus, 6°(c) ~ t(a) = a.

5. Exactness at H'(G, B): Since w}t} = (m1)} = 1, then, Imu} C Kerm}.
Conversely, let 3 € kerm}. Then, there is ¢ € C such that 73(g) = ¢ '9¢, for
allg € G. Let b € B and ¢ = 7(b). Therefore, n(3(g)) = 7(b=19), Vg € G. On
the other hand, the map 7: A — A, a — b~ 'ab, is a topological isomorphism,
because A is a normal subgroup of B. So, for every g € G there is a unique
element a, € G such that, 3(g) = (b"ta,b)(b~'9b). Thus, S(g) = b 'a,9b,
Vg € G. Hence, a, = bB(g)?b", Vg € G. Obviously, the map a : G — A via
a(g) = a4 is a continuous derivation, and ¢f(a) ~ ¢(B) = .

(ii): Tt is enough to show the exactness at H'(G,C). Let [3] € H'(G, B)

and s be a continuous section for 7. Then,

5 (1 (8))(g. h) = s(x3(9))7s(mB()) (s(mB(gh)))~" = Blg)?B)A(gh) ™ = 1.

So, Imm; C K erd'. Conversely, let [7] 6]4;67"(51. Then, there is a continuous
function a € C*(G, A) such that §'(y) = ¢*(«). Thus,

s7(9)?sv(h)(s7(gh))~" = Ya(h)a(gh) " alg),Yg, h € G.

Assume (g) = s7(g)a(g)~!,Vg € G. Since A C Z(B), then, 3 is a continuous
derivation from G to B. Also 7 = 7. Hence, 7{([5]) = [7].

The following two corollaries are immediate consequences of Theorem 4.1.
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Corollary 4.2. Let 1 A—=B-"-C 1 be a short exact se-
quence of discrete G-modules, and G-homomorphisms then, there is the exact
sequence (i) of pointed sets.

Corollary 4.3. Let 0 A—=B-T"-C 1 be a central short ex-
act sequence of discrete G-modules and G-homomorphisms then, there is the
exact sequence (ii) of pointed sets.

Remark 4.4. If we restrict ourselves to the discrete coefficients then, Corol-
lary 4.2 and Corollary 4.3 are the same as Proposition 36 and Proposition 43
in [6, Chapter I], respectively.

Lemma 4.5. Let G be a connected group, and A a totally disconnected
abelian topological G-module. Then, H"(G, A) =0 for every n > 1.

Proof. Consider the coboundary maps 6" : C™(G, A) — C™(G, A). Since
G is connected and A is totally disconnected then, G acts trivially on A, and
the continuous maps from G™ into A are constant. If n is an even positive
integer then, one can see that Kerd” = C™(G, A) and Imé™~' = C™(G, A).

Thus, H"(G,A) = Il:n%fffl = g:égﬁg = 0. Now suppose that n is odd. It is

easy to check that Kerd™ = 0. Consequently, H"(G,A) =0.

Remark 4.6. The existence of continuous section in theorem /.1 is essen-
tial.

For example, consider the central short exact sequence of trivial S'-modules:

0 Z—~R—"-§! 1,

2mit

here 7 is the exponential map, given by 7(t) = e and 2 is the inclusion

map. This central exact sequence has no continuous section. For if it has a
continuous section then by [1, Lemma 3.5] , R is homeomorphic to Z x S!.
This is a contradiction since R is connected but Z x S is disconnected . Thus,
Hom,(S',R) = 0. Now by Lemma 4.5,
HY(S',Z) = H'(S',R) = H*(S',Z) = 0,
On the other hand,
H'(S',SY) = Hom, (S, St) # 0.

Thus, we don’t obtain the exact sequence (4.2).
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5 Connectivity of Topological Groups

In this section by using the inflation and the restriction maps, we find a nec-
essary and sufficient condition for connectivity of a topological group G.

Definition 5.1. Let A be a topological G-module and A’ a topological G'-
module. Suppose that ¢ : G' — G, : A — A’ are continuous homomorphisms.
Then, we call (¢,1)) a cocompatible pair if

$(*Wa) = Sy(a), ¥y € G Va € A,

For example, if IV is a subgroup of G and A a topological G-module then,
(1,1d4) is a cocompatible pair, where 2 : N — G is the inclusion map and Id 4
is the identity map. Also, suppose that 7 : G — G/N is the natural projection
and j: AV — A is the inclusion map. Then, (7, ) is a cocompatible pair.

Note that a cocompatible pair (¢, ) induces a natural map as follows:
Der.(G,A) — Der.(G', A") by a — Yap,
which induces the map:
(¢,4)": H(G, A) = H'(G", A') by [a] = [hag].

Definition 5.2. Let N be a subgroup of G and A a topological G-module.
Suppose that v : N — G is the inclusion map. The induced map (v, Id)* is
called the restriction map and it is denoted by Res' : H'(G,A) — H'(N, A).

Definition 5.3. Let N be a normal subgroup of G and A a topological G-
module. Suppose that m: G — G/N s the natural projection and j: AN — A

is the inclusion map. The induced map (m,)* is called the inflation map and
it is denoted by Inf' : HY(G/N, AN) — HY(G, A).

Note that if A is an abelian topological G-modules then, Inf! and Res!
are group homomorphisms.

Lemma 5.4. Let A be a topological G-module, and N a normal subgroup
of G. Then,

(i) H'(N,A) is a G/N-set. Moreover, if A is an abelian topological G-
module then, H'(N, A) is an abelian G /N-module.

(i) ImRes* C HY(N, A)¢/V.

Proof. (i) Since N is a normal subgroup of G, then, there is an action of
G on Der.(N, A) as follows:
For every g € G we define a = &,Vg € G, with a(n) = 909" 'n),n € N.

In fact, & is continuous and we have:
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a(mn) =99 (mn)) =9%a(9" 'm9 "'n) =9a(% m)™a(® 'n) = alm)ma(n),

whence, @ € Der.(N,A). It is clear that 9"a = 9("a). Moreover, if A is
an abelian group, it is easy to verify that 9(af) = 9a93. Now suppose that
a ~ 3. Then, there is an a € A with (n) = a 'a(n)"a,¥n € N. Thus, for
every g € G, n € N,

1 1 -1

9B n) =% (%a(? n))(" "a).
Therefore,
B(n) = (Ya)"ta(n)"(Ya), i.e., & ~ 5

Thus, the action of G on Der.(G, A) induces an action of G on H'(N, A). Tt
is sufficient to show for every m € N, ™a ~ «. In fact, for every n € N

m ) = "a(m T inm) = ™(a(m™)™ a(n)™ ma(m)) =

ma(m Ha(n) a(m) = a(m)ta(n)"a(m).

Thus, a ~ a.
(ii) By a similar argument as in (i), we have
9a(""n) = a(g)~'a(n)"aly), Vg € G.n € N
whence, 9 (a1) ~ a1, VgN € G/N.

Lemma 5.5. Let N be a normal subgroup of a topological group G and A
a topological G-module. Then, there is an exact sequence

1 HY(G/N, AN 5@, A) B BN, A)ON

Proof. The map Inf! is one to one: If o, € Der.(G/N,AN) and
Inflla] = Inf'[B], then, ar ~ Bm. Thus, there is an a € A such that
Br(g) = atar(g)’a,Vg € G. Hence, B(gN) = a 'a(gN)%a,VgN € G/N.On
the other hand, if g € G, then, a(gN) = S(gN) = 1, and hence, a € AY. This
implies that “Na = 9a,Vg € G. Consequently, o ~ f3, i.e., Inf' is one to one.

Now we show that KerRes' = ImInf!'. Since Res'Inf![a] = [a(m)] = 1,
then, ImInf! C KerRes'.

Let [a] € KerRes'. Then, there is an a € A such that a(n) = a™'"a, Vn €
N. Consider the continuous derivation 8 with 3(g) = aa?a™!, Vg € G. Since
f(n) =1,¥n € N then,  induces the continuous derivation v : G/N — A via
Y(gN) = B(g). Also Im~y C AV, since for all n € N,

"Y(gN) ="B(g) = Bng) = B(9)*B(9~"ng) = B(g) = 7(gN).
Hence, Inf'[y] = [yn] = [8] = [a]. Consequently, KerRes' C ImInf*.
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Lemma 5.6. Let G be a topological group and A a topological G-module.
Suppose that A is totally disconnected and Gy the identity component of G.
Then, the map

H'(G/Go, A)™—~ H'(G, A)
18 bijective.

Proof. Since G acts trivially on A, then, A% = A. On the other hand,
H'(Gy, A) = 1. Thus, by Lemma 5.5, the sequence

0—— H'(G/Go, Y™ H' (G, A) —=0

i1s exact.

Theorem 5.7. Let G be a topological group which has an open component.
Then, G is connected iff H'(G, A) =1 for every discrete abelian G-module A.

Proof. Assume G is a connected group and A a discrete abelian G-module.
Since every discrete G-module A is totally disconnected then, H'(G, A) = 1.

Conversely, Suppose that H'(G,A) = 1, for every discrete abelian G-
module A. By Lemma 5.6, H'(G/Gy, A) = 1, for every discrete abelian G-
module A. Since G/G) is discrete, then, the cohomological dimension of G/Gy
is equal to 0 which implies that G/Gy =1 [4, Chapter VIII], i.e., G = Gy.

6 Complements and First Coholomology

Let G and A be topological groups. Suppose that y : G x A — A is a
continuous map such that 7, : A — A, defined by 7,(a) = x(g,a), is a
homeomorphic automorphism of A and the map g — 7, is a homomorphism
of G into the group of homeomorphic automorphisms, Aut,(A), of A. By
G x, A we mean the (topological) semidirect product with the group opera-
tion, (g,a)(h,b) = (gh, m(a)b), and the product topology of G x A. Sometimes
for simplicity we denote G x,, A by G x A and view G and A as topological
subgroups of G X A in a natural way. So every element e in G X N can be
written uniquely as e = gn for some g € G and n € N.

Let E = G x N. A subgroup X of E such that £ ~ X x N is called a
complement of N in E. Indeed, any conjugate of G is a complement.

We show that the complements of N in F correspond to continuous deriva-
tions from G to N. If X is any complement, for every g € G, then, ¢!
has a unique expression of the form ¢=! = zn where € X and n € N.
Define ay : G — N by ax(g) = n. Obviously, ax(g) = m|c(g™!), where
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g : X X N — N is given by me(z,n) = n. Hence, ax is continuous. Now if
gi € G then, g;' = a;n; for some z; € X , n; € N, i = 1,2. We have:

(9192) " = g5 "1 = wangwainy = woxy! 17127"&1 = xzx1n§"1 i 1)712 = Tx1n{ Ny
By definition of ax, ax(g192) = ax(g1)a(g2), i.e., ax € Der.(G,N).

So, we have associated a continuous derivation with each complement.
Conversely, suppose that « : G — N is a continuous derivation. Then,
Xo = {alg)glg € G} C E is a corresponding complement to o in £. Ob-
viously, the continuous map « : g — a(g)g, is a homomorphism. Suppose that
m : GX N — G is given by m1(g,n) = g. Hence, m|x, : Xo — G is the inverse
of k, since m|x, (a(9)g) = m|x.(¢? n) = g,Vg € G. Thus, X, ~ G.

Define the map x : X, x N — N by x(a(g)g) = 9n, for all g € G,n € N.
Clearly, x is a continuous map. Hence, X, x, N G x N = E.

In fact we have proved the following theorem.

Theorem 6.1. Let G be a topological group and N a topological G-module.
Then, the map X — ax is a bijection from the set of all complements of N in
G x N onto Der.(G,N).

Theorem 6.2. If A is a topological G-module then, there is a map from
HY(G, A) onto the set of conjugacy classes of complements of A in G x A.
Moreover, if A is an abelian group then, this map is one to one.

Proof. Suppose that X and Y are the complements of A in G x A such
that ax ~ ay. Hence, there is a € A such that ay(g9) = a 'ax(g)a, Vg € G.
Thus, for each ¢ € G, we have ay(g)g = a 'ax(g9)%ag = a tax(g)ga. This
implies that X =Y.

Moreover, suppose that A is an abelian group and X and Y are conjugate
complements. So, X ="Y for some n € N. If g € G, then, a(g)g € X where
ay is a continuous derivation arising from X. Hence, ax(g)g = "y for some
y €Y. Now "y = [n,yly, so, ax(g)g = [n,y]y, which shows that

b =n(ax(9)"y)n " (ax(9)"y) ' =

[n, 9] = ngn~'g™
n(ax(g))nyn'n"tny~'n" (ax(g)) ! =
(nax(9))(nyn~'y ™) (n " ax(9)™") = [n,y] = "yy ™'
because A is an abelian group. Therefore,

1 1

g =y nyl tax(g) =y (v tax(9) = v (yax(9)"y ).

Thus, by definition of ay, we get ay(g) = yax(g)"y~!. Consequently, ax ~
Ay .

As an immediate result, we have the following corollary.
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Corollary 6.3. Let A be a topological G-module and H*(G, A) = 1. Then,
the complements of A in G X A are conjugate.

7 Vanishing of H(G, A)

Let GG be a compact Hausdorff group and A a topological G-module. Suppose
that A is an almost connected locally compact Hausdorff group. Then, we
prove there exists a G-invariant maximal compact subgroup K of A, and for ev-
ery such topological submodule K, the natural map ¢} : HY(G, K) — HY(G, A)
is onto. In addition, as a result, If A has trivial maximal compact subgroup
then, H'(G, A) = 1.

Recall that G is almost connected if G/Gq is compact where Gy is the con-
nected component of the identity of G.

Definition 7.1. An element g € G is called periodic if it is contained in
a compact subgroup of G. The set of all periodic elements of G is denoted by
P(G).

Definition 7.2. A mazimal compact subgroup K of a topological group G
1 a subgroup K that is a compact space in the subspace topology, and maximal
amongst such subgroups.

If a topological group G has a maximal compact subgroup K, then, clearly
gKg™! is a maximal compact subgroup of G for any ¢ € G. There exist
topological groups with maximal compact subgroups and compact subgroups
which are not contained in any maximal one [3]. Note that if G is almost

connected then, P(G/Gy) = G/Go.

Lemma 7.3. Let G be a locally compact topological group such that P(G/Gy)
is a compact subgroup of G/Gy, and K a maximal compact subgroup of G.
Then, any compact subgroup of G can be conjugated into K [3, Theorem 1].

Lemma 7.4. Let G be a compact group and A a topological G-module such
that A is a locally compact almost connected, and let C' be a G-invariant com-
pact subgroup of A. Then, there exists a G-invariant maximal compact sub-
group K of A which contains C.

Proof. Let E = G x A, be the semidirect product of A and G with respect
to the action of G on A. Note that topologically F is the product of A and
(. We first observe that E/FEj is almost connected. Let Ay, Gy and Ey be the
components of A, G and FE, respectively. It is easily seen that Fy = Ag X G.
Also E/(Apx Gp) is homeomorphic to the compact space A/Ayx G/Gy. Hence,
E/Ey is compact. Consequently, E is almost connected. Now, by assumption,
C'is a G-invariant compact subgroup of A. Thus, G x C' is a compact subgroup
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of E. Since F is almost connected, there exists a maximal compact subgroup
L of E which contains G x C. Let K = L N A. Since K is a closed subspace
of L, then, K is compact. Also L contains G. Thus, L is G-invariant. In fact,
for every g € G and every £ € L, we have 9 = glg~! € L. This immediately
implies that K is G-invariant, since A is G-invariant. Let K’ be a compact
subgroup of GG. By Lemma 7.3, there is e € E such that eK’e”! C L. Thus,
eK'e! ¢ LN A= K. But there exist ¢ € G and a € A such that e = ga.
Thus, aK'a™! C ¢7'Kg = 9'K = K. Therefore, K is a G-invariant maximal
compact subgroup of A which contains C.

Theorem 7.5. Let G be a compact Hausdorff group and A a topological G-
module. Let A be an almost connected locally compact Hausdorff group. Then,
there exists a G-invariant maximal compact subgroup K of A, and for every
such topological submodule K, the natural map ¢ : H'(G,K) — H*(G, A) is
onto.

Proof. By Lemma 7.4, there exists a G-invariant maximal compact sub-
group K of A. Also G x K is a maximal compact subgroup of G x A |2,
Theorem 1.1]. Let a : G — A be a continuous derivation. Then, define the
continuous homomorphism x : G — G X A via g — «a(g)g. Since k is a
continuous homomorphism then, x(G) is a compact subgroup of G x A. By
Lemma 7.3 there is ag € G x A such that (ag)k(G)(ag)™ C G x K,V € G.
This is equivalent to (ag)a(z)z(ag)™ C G x K,Vz € G. Hence, for all
z e G, 99 an(z)*(¢ "a]grg ! € G x K. Since K is G-invariant then,
(¢ a)a(z)*(? 'a7') € K,¥x € G. Now define 8 : G — K by f(z) =
(¢ "a)a(x)" (¢ 'a~"),Vz € G. Hence, (i([8]) = [a], i.e., ¢* is onto map.

Corollary 7.6. Let G be a compact Hausdorff group and A a topological
G-module. Let A be an almost connected locally compact Hausdorff group with
the trivial mazimal compact subgroup. Then, H*(G, A) = 1.

Proof. It is clear.
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