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Abstract
The object of the present paper is to study the basic properties of somewhat
v—continuous functions.
Keywords: Somewhat continuous function; Somewhat b-continuous func-
tion.

1 Introduction

b-open[1] sets are introduced by Andrijevic in 1996. K.R.Gentry intro-
duced somewhat continuous functions in the year 1971. V.K.Sharma and
the present authors of this paper defined and studied basic properties of
v—open sets and v—continuous functions in the year 2006 and 2010 respec-
tively. T.Noiri and N.Rajesh introduced somewhat b-continuous functions
in the year 2011. Inspired with these developements we introduce in this
paper somewhat r—continuous functions, somewhat r—irresolute functions,
somewhat v—open and somewhat M-rv—open functions and study its basic
properties and interrelation with other type of such functions available in the
literature. Throughout the paper (X, 7) and (Y, o) (or simply X and Y) rep-
resent topological spaces on which no separation axioms are assumed unless
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otherwise mentioned.

2 Preliminaries

For A C (X;7), A and A° denote the closure of A and the interior of A in
X, respectively. A subset A of X is said to be b-open[1] if A C (A)° N A°.

Definition 2.1: A function f is said to be
(i) somewhat continuous|7][resp:somewhat b-continuouscite[8]] if for U € o
and fH(U) # ¢, 3V € rlresp:V € bO(7)] 2V # pand V C f~Y(U).
(ii)somewhat open[7][resp: somewhat b-open|8]] provided that if U € 7 and
U+# ¢, 3V €ofresp:V € bO(0)] 5V #¢and V C f(U).

It is clear that every open function is somewhat open and every somewhat
open is somewhat b-open. But the converses are not true.

Definition 2.2: A topological space (X, 7) is said to be
(i) resolvable[6]) if there exists a dense set A in (X, 7) such that X — A is also
dense in (X, 7). Otherwise, (X, 7) is called irresolvable.
(ii)b-resolvable[8]) if there exists a b-dense set A in (X, 7) such that X — A is
also b-dense in (X, 7). Otherwise, (X, 7) is called b-irresolvable.

Definition 2.3: If X is a set and 7 and ¢ are topologies on X, then 7 is
said to be equivalent [7] to o provided if U € 7 and U # ¢, then there is an
open [7] set Vin X such that V # ¢ and V C U and if U € o and U # ¢, then
there is an open set V in (X, 7) such that V # ¢ and U D V.

3 Somewhat vr—Continuous Functions:

Definition 3.1: A function f is said to be somewhat v—continuous if for
U € o and ]H(U) # ¢, there exists a non-empty v—open set V in X such that
V.c ).

Example 1: Let X = {a,b,c}, 7 = {¢,{a},{b,c}, X} and 0 = {0, {a}, X }.
Define a function f: (X,7) — (X,0) by f(a) = a, f(b) = cand f(c) = b. Then

f is somewhat v—continuous.

Example 2: Let X = {a,b,c}, 7 = {¢,{a},{b,c}, X} and 0 = {0, {a}, X }.
Define a function f: (X,7) — (X, 0) by f(a) = ¢, f(b) =aand f(c) = b. Then

f is not somewhat v—continuous.
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Note 1: Composition of two somewhat v—continuous functions need not
be somewhat v—continuous in general.

However, we have the following

Theorem 3.1: If f is somewhat v—continuous and g is continuous, then
go fis somewhat v—continuous.

Corollary 3.1: If f is somewhat v—continuous and g is r-continuous|resp:
r-irresolute|, then go fis somewhat v—continuous.

Definition 3.2: A C X is said to be v—dense in X if there is no proper
v—closed set C in X such that M C C C X.

Theorem 3.2: For a surjective function f, the following statements are
equivalent:
(i) f is somewhat v—continuous.
(ii) If C is a closed subset of Y such that f'(C) # X, then there is a proper
v—closed subset D of X such that f'(C) C D.
(iii)If M is a v—dense subset of X, then f(M) is a dense subset of Y.
Proof: (i)=(ii): Let C be a closed subset of Y such that f'(C) # X. Then
Y — C is an open set in Y such that f (Y — C) = X — f1(C) # ¢ By (i),
there exists a V € vO(X) 3V #¢and V C f (Y —C) = X — f(C). This
means that X —V O f1(C) and X —V = D is a proper v—closed set in X.
(ii)=(i): Let U € o and f '(U) # ¢ Then Y — U is closed and f (Y — U) =
X — f1(U) # X. By (ii), there exists a proper v—closed set D such that
D > f1(Y —U). This implies that X — D C f'(U) and X — D is v—open
and X — D # ¢.
(ii)=-(iii): Let M be a v—dense set in X. Suppose that f(M) is not dense in
Y. Then there exists a proper closed set C in Y such that M) C C C Y.
Clearly f(C) # X. By (ii), there exists a proper v—closed set D such that
M c f1(C) c D c X. This is a contradiction to the fact that M is v—dense
in X.
(iii)=-(ii): Suppose (ii) is not true. there exists a closed set C in Y such that
f1(C) # X but there is no proper v—closed set D in X such that f!(C) c D.
This means that f'(C) is v—dense in X. But by (iii), f(f *(C)) = C must be
dense in Y, which is a contradiction to the choice of C.

Theorem 3.3: Let f be a function and X = AU B, where A, B € RO(X).
If the restriction functions f, : (A;74) — (Y,0) and fip : (B;z) — (Y, 0) are
somewhat v—continuous, then f is somewhat v—continuous.

Proof: Let U € o such that f(U) # ¢. Then (fi,) 7 (U) # ¢ or (fip)""(U) #
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6 or both (£,)7H(U) # ¢ and (f5)"1(U) # 6. Suppose ()" (U) # 6, Since
Jia 1s somewhat v—continuous, there exists a v—open set V in A such that
V#¢and V C (fia)(U) C fH(U). Since V is v—open in A and A is r-open
in X, Vis v—open in X. Thus f is somewhat v—continuous.

The proof of other cases are similar.

Definition 3.3: If X is a set and 7 and o are topologies on X, then 7 is
said to be v—equivalent to ¢ provided if U € 7 and U # ¢, then there is a
v—open set V in X such that V # ¢ and V C U and if U € ¢ and U # ¢, then
there is a v—open set V in (X, 7) such that V # ¢ and U D V.

Now, consider the identity function f and assume that 7 and o are v—equivalent.
Then f and f' are somewhat v—continuous. Conversely, if the identity
function f is somewhat v—continuous in both directions, then 7 and o are
v—equivalent.

Theorem 3.4: Let f: (X,7) — (Y,0) be a somewhat v—continuous

surjection and 7% be a topology for X, which is v—equivalent to 7. Then
f:(X,7") — (Y,0) is somewhat v—continuous.
Proof: Let V € ¢ such that f (V) # ¢. Since f: (X,7) — (Y,0) is some-
what v—continuous, there exists a nonempty v—open set U in (X, 7) such
that U C f (V). But by hypothesis 7* is v—equivalent to 7. Therefore, there
exists a v—open set U* € (X;7*) such that U* C U. But U C f (V). Then
U* C f1(V); hence f: (X,7*) — (Y, o) is somewhat v—continuous.

Theorem 3.5: Let f: (X,7) — (Y,0) be a somewhat v—continuous sur-

jection and ¢* be a topology for Y, which is equivalent to o. Then f: (X, 7) —
(Y, 0*) is somewhat v—continuous.
Proof: Let V* € ¢* such that f'(V*) # ¢ Since o* is equivalent to o,
there exists a nonempty open set V in (Y,o) such that V. C V*. Now
¢ # fHV) c fFY(V*). Since f: (X,7) — (Y,0) is somewhat v—continuous,
there exists a nonempty v—open set U in (X,7) such that U C f (V). Then
U C f(V*); hence f: (X,7) — (Y,0") is somewhat v—continuous.

Definition 3.4: A function f is said to be somewhat r—open provided
that if U € 7 and U # ¢, then there exists a non-empty r—open set V in Y
such that V' C f(U).

Example 3: Let X = {a,b,c}, 7 = {¢,{a}, X} and 0 = {0, {a},{b,c}, X }.
Define a function f: (X,7) — (X,0) by fla) = a, f(b) = c and f(c) = b. Then f

is somewhat v—open and somewhat open.
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Example 4: Let X = {a,b,c}, 7 = {¢,{a},{b,c}, X} and 0 = {0, {a}, X }.
Define a function f: (X,7) — (X,0) by fla) = b, f(b) = c and f(c) = a. Then f

is not somewhat v—open and not somewhat open.

Example 5: Let X = {a,b,c}, 7 = {¢,{a}, X}, and 0 = {¢, {a}, {a, b}, X}.
Then the identity function f: (X,7) — (X,0) is somewhat open but not
somewhatr—open.

Theorem 3.6: Let f be an open function and g be somewhat v—open.
Then go fis somewhat v—open.

Theorem 3.7: For a bijective function f, the following are equivalent:
(i) f is somewhat v—open.
(ii) If C is a closed subset of X, such that f(C) # Y, then there is a v—closed
subset D of Y such that D # Y and D D f(C).
Proof: (i)=(ii): Let C be any closed subset of X such that f(C) # Y. Then
X —Cisopenin X and X —C # ¢. Since f is somewhat v—open, there exists
a v—open set V # ¢ in Y such that V C X — C). Put D =Y — V. Clearly
D is v—closed in Y and we claim D # Y. If D = Y, then V = ¢, which is a
contradiction. Since VC IX —C),D=Y -V DO (Y - IX - C)) = f(C).
(ii)=-(i): Let U be any nonempty open subset of X. Then C = X — U is a
closed set in X and (X —U) = f(C) =Y — flU) implies f(C) # Y. Therefore,
by (ii), there is a v—closed set D of Y such that D # Y and f(C) C D. Clearly
V=Y —Disav—openset and V # ¢. Also, V=Y —-D CY — f(C) =
Y - f(X =U)=AU).

Theorem 3.8: The following statements are equivalent:
(i) f is somewhat v—open.
(ii)If A is a v—dense subset of Y, then f*(A) is a dense subset of X.
Proof: (i)=(ii): Suppose A is a v—dense set in Y. If f'(A) is not dense in
X, then there exists a closed set B in X such that f'(A) € B C X. Since f is
somewhat v—open and X — B is open, there exists a nonempty v—open set C in
Y such that C' C (X — B). Therefore, C C AX—B) C f{f '(Y —A)) CY —A.
Thatis, ACY —C CY. Now, Y —Cisav—closed set and ACY —C CY.
This implies that A is not a v—dense set in Y , which is a contradiction. There-
fore, f'(A) is a dense set in X.
(ii)=-(i): Suppose A is a nonempty open subset of X. We want to show that
v(f(A))° # ¢. Suppose v(f(A))° = ¢. Then, v(f(A)) = Y. Therefore, by (ii),
FHY —f(A)) is dense in X. But f (Y — f(A)) € X — A. Now, X — A is closed.
Therefore, f (Y — f(A)) € X — A gives X = (f (Y — f(A))) € X — A. This
implies that A = ¢, which is contrary to A # ¢. Therefore, v(f(A))° # ¢.
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Hence f is somewhat v—open.

Theorem 3.9: Let f be somewhat v—open and A be any r-open subset of
X. Then f 4 : (A;714) — (Y, 0) is somewhat v—open.
Proof: Let U € 74 such that U # ¢. Since U is r-open in A and A is open in
X, U is r-open in X and since by hypothesis f is somewhat v—open function,
there exists a v—open set V in Y, such that V' C f(U). Thus, for any open set
U of A with U # ¢, there exists a v—open set V in Y such that V' C fU)
which implies f 4 is a somewhat v—open function.

Theorem 3.10: Let f be a function and X = AUB, where A, B € RO(X).
If the restriction functions f, and fj5 are somewhat v—open, then f is some-
what v—open.
Proof: Let U be any open subset of X such that U # ¢. Since X = AU B,
either ANU # ¢ or BNU # ¢ or both ANU # ¢ and BNU # ¢. Since U is
open in X, U is open in both A and B.
Case (i): If ANU # ¢ € RO(A). Since f|4 is somewhat v—open, 3V € vO(Y)
5V Cc AUNA)C f(U), which implies that f is somewhat v—open.
Case (ii): If BNU # ¢ € RO(B). Since f is somewhat v—open, 3V € vO(Y)
>V Cc AUNB) C fU), which implies that f is somewhat v—open.
Case (iii): If both ANU # ¢ and BNU # ¢. Then by case (i) and (ii) f is

somewhat v—open.

Remark 1: Two topologies 7 and o for X are said to be v—equivalent if
and only if the identity function f: (X,7) — (Y, 0) is somewhat v—open in
both directions.

Theorem 3.11: Let f: (X,7) — (Y, 0) be a somewhat open function. Let
7% and o* be topologies for X and Y, respectively such that 7* is equivalent
to 7 and o* is v—equivalent to o. Then f: (X;7%) — (Y;0%) is somewhat
v—open.

4 Somewhat r—Irresolute Functions:

Definition 4.1: A function f is said to be somewhat v—irresolute if for
U € vO(o) and f1(U) # ¢, there exists a non-empty v—open set V in X such
that V C f~1(U).

Example 6 Let X = {a,b,c}, 7 = {¢,{a},{b,c}, X} and 0 = {9, {a}, X}.
Define a function f: (X,7) — (X, 0) by f(a) = ¢, f(b) =aand f(c) = b. Then

f is somewhat v—irresolute.
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Note 2: Composition of two somewhat v—irresolute functions need not be
somewhat v—irresolute.

However, we have the following

Theorem 4.1: If f is somewhat v—irresolute and ¢ is v—irresolute, then
go fis somewhat v—irresolute.

Theorem 4.2: For a surjective function f, the following statements are
equivalent:
(i) f is somewhat v—irresolute.
(ii) If C is a v—closed subset of Y such that f~'(C) # X, then there is a proper
v—closed subset D of X such that f'(C) C D.
(iii)If M is a v—dense subset of X, then f(M) is a v—dense subset of Y.
Proof: (i)=(ii): Let C be a v—closed subset of Y such that f'(C) # X. Then
Y —C'is an v—open set in Y such that f (Y —C) = X —f1(C) # ¢ By (i), there
exists a v—open set V € vO(X) 3V #pand V C f 1Y —C) =X — f1C).
This means that X —V D f}(C) and X —V = D is a proper v—closed set in
X.
(ii)=(): Let U € vO(o) and f'(U) # ¢ Then Y — U is v—closed and
Y —U)=X —f(U) # X. By (ii), there exists a proper v—closed set D
such that D O f'(Y — U). This implies that X — D C f'(U) and X — D is
v—open and X — D # ¢.
(ii)=-(iii): Let M be a v—dense set in X. Suppose that f(M) is not v—dense in
Y. Then there exists a proper v—closed set C in Y such that (M) C C C Y.
Clearly f(C) # X. By (ii), there exists a proper v—closed set D such that
M c f1(C) c D c X. This is a contradiction to the fact that M is v—dense
in X.
(iii)=-(ii): Suppose (ii) is not true, there exists a v—closed set C in Y such that
f1(C) # X but there is no proper v—closed set D in X such that f'(C) C D.
This means that f'(C) is v—dense in X. But by (iii), f(f *(C)) = C must be
v—dense in Y, which is a contradiction to the choice of C.

Theorem 4.3: Let f be a function and X = AU B, where A, B € RO(X).
If the restriction functions f 4 : (A;74) — (Y, 0) and fiz : (B;p) — (Y,0) are
somewhat v—irresolute, then f is somewhat v—irresolute.

Proof: Let U € vO(o) such that f'(U) # ¢. Then (f,)""(U) # ¢ or
(fip) " (U) # ¢ orboth (f,)H(U) # ¢ and (fi5) " (U) # . Suppose (fa) " (U) #

¢, Since fi, is somewhat v—irresolute, there exists a v—open set V in A such
that V # ¢ and V C (fj4)'(U) C fH(U). Since V is v—open in A and A is

r-open in X, V is v—open in X. Thus f is somewhat v—irresolute.
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The proof of other cases are similar.

Now, consider the identity function f and assume that 7 and o are v—equivalent.
Then f and f ! are somewhat v—irresolute. Conversely, if the identity function
f is somewhat v—irresolute in both directions, then 7 and ¢ are v—equivalent.

Theorem 4.4: Let f: (X,7) — (Y,0) be a somewhat v—irresolute

surjection and 7* be a topology for X, which is v—equivalent to 7. Then
f:(X,7) — (Y, 0) is somewhat v—irresolute.
Proof: Let V € vO(o) such that f'(V) # ¢. Since f: (X,7) — (Y,0) is
somewhat v—irresolute, there exists a nonempty v—open set U in (X, 7) such
that U c f (V). But by hypothesis 7* is v—equivalent to 7. Therefore, there
exists a v—open set U* € (X;7*) such that U* C U. But U C f (V). Then
U* C f1(V); hence f: (X, 7*) — (Y,0) is somewhat v—irresolute.

Theorem 4.5: Let f: (X,7) — (Y, 0) be a somewhat v—irresolute surjec-

tion and o* be a topology for Y, which is equivalent to 0. Then f: (X, 7) —
(Y, 0*) is somewhat v—irresolute.
Proof: Let V* € vO(c*) such that f(V*) # ¢ Since vO(c*) is equivalent
to vO(0), there exists a nonempty v—open set V in (Y, o) such that V' C V*.
Now ¢ = f (V) c f1(V*). Since f: (X,7) — (Y, 0) is somewhat v—irresolute,
there exists a nonempty v—open set U in (X, 7) such that U c f*(V). Then
U cC f(V*); hence f: (X,7) — (Y,0") is somewhat v—irresolute.

Definition 4.4: A function f is said to be somewhat M-v—open provided
that if U € vO(7) and U # ¢, then there exists a non-empty v—open set V in
Y such that V' C f(U).

Example 7: Let X = {a,b,c}, 7 = {¢,{a},{b,c}, X} and 0 = {¢, {a}, {b},
{a,b}, X}. Define a function f: (X,7) — (X,0) by fla) = a,f(b) = ¢ and
fle) =0b. Then f is somewhat M-v—open.

Example 8: Let X = {a,b,c}, 7 = {¢,{a},{b},{a,b},X} and 0 =
{¢,{a},{b,c}, X}. Define a function f: (X,7) — (X,0) by f(b) = ¢, f(a)=a
Jf(c) = b. Then fis not somewhat M-rv—open

Theorem 4.6: Let f be an r-open function and g somewhat M-v—open.
Then go fis somewhat M-v—open.

Theorem 4.7: For a bijective function f, the following are equivalent:
(i) f is somewhat M-v—open.
(ii) If C is a v—closed subset of X, such that f(C') # Y, then there is a v—closed
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subset D of Y such that D # Y and D D f{C).

Proof: (i)=(ii): Let C be any v—closed subset of X such that (C') # Y.
Then X — C'is v—open in X and X — C # ¢. Since f is somewhat v—open,
there exists a v—open set V # ¢ in Y such that V C X —C). Put D =Y —V.
Clearly D is v—closed in Y and we claim D # Y. If D =Y, then V' = ¢, which
is a contradiction. Since VC (X -C),D=Y -V D (Y - (X -C)) = f(C).
(ii)=(i): Let U be any nonempty v—open subset of X. Then C' = X — U is a
v—closed set in X and (X —U) = (C) =Y —f(U) implies f(C) # Y. Therefore,
by (ii), there is a v—closed set D of Y such that D # Y and f(C) C D. Clearly
V=Y —Disav—openset and V # ¢. Also, V=Y —D CY — f(C) =
Y - fiX-U)=fU).

Theorem 4.8: The following statements are equivalent:
(i) f is somewhat M-v—open.
(ii)If A is a v—dense subset of Y, then f*(A) is a v—dense subset of X.
Proof: (i)=(ii): Suppose A is a v—dense set in Y. If f!(A) is not v—dense
in X, then there exists a v—closed set B in X such that f'(4) ¢ B c X.
Since f is somewhat v—open and X — B is v—open, there exists a nonempty
v—open set C in Y such that C' C (X — B). Therefore, C C (X — B) C
f(f'(Y —A) CcY — A Thatis, ACY —C C Y. Now, Y — C is a v—closed
set and A C Y —C C Y. This implies that A is not a v—dense set in Y , which
is a contradiction. Therefore, f'(A) is a v—dense set in X.
(ii)=(i): Suppose A is a nonempty v—open subset of X. We want to show
that v(f(A))° # ¢. Suppose v(f(A))° = ¢. Then, v(f(A)) = Y. Therefore, by
(ii), f (Y — f(A)) is v—dense in X. But f (Y — f(A)) € X — A. Now, X — A
is v—closed. Therefore, f'(Y — f{A)) C X — A gives X = (f (Y — f(A))) C
X — A. This implies that A = ¢, which is contrary to A # ¢. Therefore,
v(f(A))° # ¢. Hence f is somewhat M-v—open.

Theorem 4.9: Let f be somewhat M-v—open and A be any r-open subset
of X. Then f, : (A;74) — (Y, 0) is somewhat M-v—open.
Proof: Let U € vO(7)4) such that U # ¢. Since U is r-open in A and A is
open in X, U is r-open in X and since by hypothesis f is somewhat M-v—open
function, there exists a v—open set V in Y, such that V' C f{U). Thus, for any
v—open set U of A with U # ¢, there exists a v—open set V in Y such that
V' C f(U) which implies f 4 is a somewhat M-v—open function.

Theorem 4.10: Let f be a function and X = AUB, where A, B € RO(X).
If the restriction functions f4 and fp are somewhat M-v—open, then f is some-
what M-v—open.
Proof: Let U be any v—open subset of X such that U # ¢. Since X = AU B,
either ANU # ¢ or BNU # ¢ or both ANU # ¢ and BNU # ¢. Since U is
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v—open in X, U is v—open in both A and B.

Case (i): If ANU # ¢ € RO(A). Since f, is somewhat M-v—open, 3
VevOoY)1V c AUNA) C flU), which implies that f is somewhat M-
v—open.

Case (ii): If BNU # ¢ € RO(B). Since fj5 is somewhat M-v—open, 3
V evO(Y) >V C UNB) C f(U), which implies that f is somewhat M-
v—open.

Case (iii): If both ANU # ¢ and BNU # ¢. Then by case (i) and (ii) f is
somewhat M-v—open.

Remark 2: Two topologies 7 and ¢ for X are said to be v—equivalent if
and only if the identity function f: (X, 7) — (Y, 0) is somewhat M-rv—open in
both directions.

Theorem 4.11: Let f: (X,7) — (Y, 0) be a somewhat open function. Let
7% and ¢* be topologies for X and Y, respectively such that 7* is equivalent
to 7 and o* is v—equivalent to o. Then f: (X;7*) — (Y;0%) is somewhat
v—open.

5 v- Resolvable Spaces and - Irresolvable Spaces:

Definition 5.1: (X, 7) is said to be v—resolvable if A and X — A are
v—dense in (X, 7). Otherwise, (X, 7) is called v—irresolvable.

Example 9: Let X = {a,b,c} and 7 an indiscrete topology on X. Then
(X, 1) is resolvable and v—resolvable.

Example 10: Let X = {a,b,c} andr = {¢, {a},{a,b}, X} on X. Then
(X, 7) is not resolvable but X is v—resolvable.

Example 11: Let X = {a,b,c} andr = {¢,{a},{b,c}, X} on X. Then
(X, 7) is not resolvable and also not v—resolvable.

Theorem 5.1: The following statements are equivalent:
(i) X is v—resolvable;
(ii) X has a pair of v—dense sets A and B such that A C B.
Proof: (i)=-(ii): Suppose that (X, 7) is v—resolvable. There exists a v—dense
set A such that X — A is v—dense. Set B = X — A, then we have A = X — B.
(ii)=-(i): Suppose that the statement (ii) holds. Let (X, 7) be v—irresolvable.
Then X — B is not v—dense and v(A) C v(X — B) # X. Hence A is not
v—dense. This contradicts the assumption.
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Theorem 5.2: The following statements are equivalent:
(i) (X, 7) is v—irresolvable;
(ii) For any v—dense set A in X, v(A)° # ¢.
Proof: (i)=(ii): Let A be any v—dense set of X. Then we have v(X — A) # X;
hence v(A)° # ¢.
(ii)=-(i): If X is a v—resolvable space. Then there exists a v—dense set A in
X such that A€ is also v—dense in X. It follows that v(A)° = ¢, which is a
contradiction; hence X is v—irresolvable.

Definition 5.2: (X, 7) is said to be strongly v—irresolvable if for a nonempty
set A in X v(A)° = ¢ implies v(vA)° = ¢.

Theorem 5.3: If (X, 7) is a strongly v—irresolvable space and vA = X
for a nonempty subset A of X, then v(v(A)°) = X.

Theorem 5.4: If (X, 7) is a strongly v—irresolvable space and v(v(A))° #
¢ for any nonempty subset A in X, then v(A)° # ¢.

Theorem 5.5: Every strongly v—irresolvable space is v—irresolvable.
Proof: This follows from Theorems 3.2 and 3.3.

However, the converse of above theorem is not true in general as it can be
seen from the following example.

Example 12: Let X = {a,b,c} and 7 = {¢,{a}, X}. Then (X,7) is
v—irresolvable but not strongly v—irresolvable.

Theorem 5.6: If f is somewhat v—open and v(A)° = ¢ for a nonempty
set A in Y, then (f(A))° = ¢.
Proof: Let A be a nonempty set in Y such that v(A)° = ¢. Then v(Y — A) =
Y. Since f is somewhat v—open and Y — A is v—dense in Y, by theorem 3.5,

fH(Y — A) is dense in X. Then, (X — f1(A)) = X; hence (f *(A))° = ¢.

Theorem 5.7: Let f be a somewhat v—open function. If X is irresolvable,
then Y is v—irresolvable.
Proof: Let A be a nonempty set in Y such that V@ =Y. We show that
v(A)° # ¢. Suppose not, then v(Y — A) = Y. Since f is somewhat v—open
and Y — A is v—dense in Y, we have by theorem 3.5 f (Y — A) is dense
in X. Then (f*(A))° = ¢. Now, since A is v—dense in Y, f*(A) is dense
in X. Therefore, for the dense set f*(A), we have (f*(A))° = ¢, which is a
contradiction to Theorem 3.2. Hence we must have v(A)° # ¢ for all v—dense
sets A in Y. Hence by Theorem 3.2, Y is v—irresolvable.
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6 Further Properties:

Defintion 6.1: A function fis said to be somewhat semi-continuous|resp:
somewhat pre-continuous; somewhat -continuous; somewhat ra-continuous| if
for each U € o and f'(U) # ¢ there exists V € SO(Y)[resp: V € PO(Y);V €
BOY);V €raO(Y)] 2V #¢and V C fH(U).

Theorem 6.1: The following are equivalent:
(i) fi is swt.v.c.
(ii) £ 1(V) is v-open for every clopen set V in Y.
(iii)f (V) is v-closed for every clopen set V in Y.
(

iv) fl(A)) € v(f(A)).

Corollary 6.1: The following are equivalent.
(i) fis swt.v.c.
(ii)For each x in X and each V' € o(Y,, f(z)) U € vO(X, z) such that {U) C V

Theorem 6.2: Let ¥ = {U; : ¢ € I} be any cover of X by regular open
sets in X, then f is swt.v.c. iff fy,: is swh.v.c., for each i € I.

Theorem 6.3: If fis v-irresolute[resp: v-continuous| and gis swt.v.c.,[resp:
swt.c.,] then go fis swt.v.c.

Theorem 6.4: If fis v-irresolute, v-open and ¥O(X) = 7 and ¢ be any
function, then go fis swt.v.c iff g is swt.v.c.

Corollary 6.2: If fis v-irresolute, v-open and bijective, g is a function.
Then g is swt.v.c. iff go fis swt.v.c.

Theorem 6.5: If g: X — X x Y, defined by g(x) = (z, f(z)) for all z € X
be the graph function of f. Then g is swt.v.c iff f is swt.v.c.
Proof: Let V € o(Y), then X x V isopen in X x Y. Since g: X — X x Y
swt.v.c., (V) =f1(X x V) €vO(X). Thus f is swt.v.c.
Conversely, let z € X and F' € o(X x Y, g(z)). Then F({z} xY) € o(x x
Y,g(x)). Also z x Y is homeomorphic to Y. Hence {y € Y : (z,y) €
FY € o(Y). Since f is swt.v.c. {f*(y) : (z,y) € F} € vO(X). Further
ve{f'(y): (z,y) € F} =g '(F). Hence g *(F) is v-open. Thus g is swt.v.c.

Theorem 6.6: (i) If f: X — IIY), is swt.v.c, then Pyof: X — Y, is
swt.v.c for each A € A, where Py:ITY) onto Y.
(ii) f: [IX, — IIY) is swt.v.c, iff fy : X, — Y, is swt.v.c for each A € A.
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Remark 1: Algebraic sum and product of swt.v.c functions is not in gen-
eral swt.v.c.
The pointwise limit of a sequence of swt.v.c functions is not in general swt.v.c.

However we can prove the following:

Theorem 6.7: The uniform limit of a sequence of swt.v.c functions is
swt.v.c.

Note 1 Pasting Lemma is not true for swt.v.c functions. However we have
the following weaker versions.

Theorem 6.8: Pasting Lemma Let X and Y be topological spaces such
that X = AU B and let f,4 and g, are swt.v.c[resp: swt.r.c|] maps such that
flx) = g(z) for all z € AN B. If A; B € RO(X) and vO(X)[resp: RO(X)] is
closed under finite unions, then the combination o : X — Y is swt.v.c.
Proof: Let F' € o(Y), then a ' (F) = f(F)U ¢ '(F) where f'(F) €
vO(A) and ¢ '(F) € vO(B) = f'(F) € vO(X) and ¢ '(F) € vO(X)
= (F)Ug(F) e vO(X) = a}(F) € vO(X). Hence « is swt.v.c.

Theorem 6.9: (i) If f is swt.s.c, then f is swt.v.c.
(ii) If f is swt.r.c, then f is swt.v.c.
(iii)If f is swt.ra.c, then f is swt.v.c.

7 Covering and Separation Properties:

Theorem 7.1: If fis swt.v.c. surjection and X is v-compact, then Y is
compact.
Proof: Let {G; : i € I} be any open cover for Y and fis swt.v.c., U; €
vO(X) 2 U; € f1(G;). Thus {U;} forms a v-open cover for X such that
{U;} < {f'(G;)} and hence have a finite subcover, since X is v-compact.
Since f is surjection, Y = (X) = U, A(U;) C U, G,;. Therefore Y is compact.

Theorem 7.2: If fis swt.v.c., surjection and X is v-compact|v-lindeloff]
then Y is mildly compact[mildly lindeloff].
Proof: Let {U; : i € I} be clopen cover for Y. For each x € X,3U, € I >
flx) € U, and V,, € vO(X,z) 5 (V) C U,. Since {V; : i € I} is a cover of X
by v-open sets of X, 3 a finite subset Iy of I 3 X = U{V, : x € Iy}. Therefore
Y =U{f(Vy) :x €y} CU{U, : x € Iy}. Hence Y is mildly compact.

Theorem 7.3: If fis swt.v.c., surjection and X is s-closed then Y is mildly
compact[mildly lindeloff].
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Proof:Let {V; : V; € o(Y);i € I} be a cover of Y, then {f (V) : i € I}
is v-open cover of X[by Thm 3.1] and so there is finite subset Iy of I, such
that {f '(V;) : i € Iy} covers X. Therefore {V; : i € I} covers Y since f is
surjection. Hence Y is mildly compact.

Corollary 7.1: (i) If fis swt.v.c[resp: swt.r.c| surjection and X is v-
lindeloff then Y is mildly lindeloft.
(ii) If fis swt.v.c.[resp: swt.v.c.; swt.r.c] surjection and X is locally v-compact[resp:v-
Lindeloff; locally v-lindeloff], then Y is locally compact[resp: Lindeloff; locally
lindeloff].
(iii)If fis swt.v.c., surjection and X is semi-compact[semi-lindeloff; 3—compact;
f—lindeloff] then Y is mildly compact|mildly lindeloff].
(iv) If fis swt.r.c., surjection and X is v-compact[s-closed], then Y is com-
pact[mildly compact; mildly lindeloff].

Theorem 7.4: If fis swt.v.c.[resp: swt.r.c.] surjection and X is v-
connected, then Y is connected.

Corollary 7.2: The inverse image of a disconnected space under a swt.v.c.,[resp:
swt.r.c.] surjection is v-disconnected.

Theorem 7.5: If fis swt.v.c.swt.v.c.[resp: swt.r.c.], injection and Y is
UT;, then Xisv—T;;1=0, 1, 2.
Proof: Let 21 # x5 € X. Then f(z1) # f(za) € Y since f is injective. For Y
is UT, 3V; € CO(Y) 3 flz;) € V; and NV; = ¢ for j = 1,2. By Theorem 7.1,
U; € vO(X, ;) 3 ;€ U; C f1(V;) for j = 1,2 and Nf (V) = ¢ for j = 1,2.
Thus X is v — T5.

Theorem 7.6: If fis swt.v.c.[resp: swt.r.c.], injection; closed and Y is
UT;, then Xisv —T; ;1= 3, 4.
Proof:(i) Let x in X and F be a closed subset of X not containing x, then f(x)
and f(F) be a closed subset of Y not containing f(x), since f is closed and in-
jection. Since Y is ultraregular, f(x) and f(F) are separated by disjoint clopen
sets U and V respectively. Hence 3A, B € vO(X) sz € AC fY(U);F C B C
(V) and fFHU)N (V) = ¢. Thus X is v — Ts.
(ii) Let F; and f(F}) are disjoint closed subsets of X and Y respectively for j =
1,2, since f is closed and injection. For Y is ultranormal, f(F}) are separated
by disjoint clopen sets V; respectively for j = 1,2. Hence 3U; € vO(X) >
FycU;c fYV;) and nfY(V;) = ¢ for j = 1,2. Thus X is v — Tj.

Theorem 7.7: If fis swt.v.c.[resp: swt.r.c.], injection and
(1) Y is UC;[resp: UD;] then X is vCj[resp: vD;] i =0, 1, 2.
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(i) Yis UR;, then Xisv — R; 1 =0, 1.
(iii)Y is UTy, then the graph G(f) of f is v-closed in X x Y.
(iv) Y is UTy, then A = {(x1, x2)|f(x1) = flxg)} is v-closed in X x X.

Theorem 7.8: If fis swt.r.c.[resp: swt.c.|; g is swt.v.c[resp: swt.r.c]; and
Y is UTy, then E = {z € X : flx) = g(x)} is v-closed in X.
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