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Abstract

The purpose of this work is to construct a type of proximity relations in
ideally proximity spaces based on an ideal I and three types of the proximity δ.
Examples are given for the constructed relation. The constructed γ -relation is
a pre- basic (resp., Ef, Lo) - proximity if δ is the basic (resp., Ef, Lo)- proxim-
ity. Properties and characterization of γ - relation are obtained. Connections
between types of ideal and properties of γ -relation are obtained. The suggested
relation can help in the fields of uncertainty processing in the context of rough
set data analysis which are related to a lot of real life applications.

Keywords: Topological ideal, proximity space, compactification, rough set
theory.

1 Introduction

The modern view for topological spaces is a pair of a nonempty universal
set of objects with a structure based on smallest conditions suitable to define
neighborhood and continuity. The concept of relation is a simple mathematical
tool that can be easily used by non mathematicians like engineers, biologists.
Our goal in this work is to use the concept of relations and ideals to enrich
proximity spaces with new tools that help in applications.
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The process of constructing topological structure on a universe is not
only useful as a mathematical procedure but also it is considered as a model-
ing process for mathematizing quantitative and qualitative data [13-16]. For
example, the information table 1 is about six patients and their corresponding
symptoms and noticed disease.

Table 1: An information system about six patients and their conditional symp-
toms C and decision disease D.

conditional symptoms C D
Temperature Headache Cough Muscle-Pain Flu

P1 high no severe yes yes
P2 high yes severe no yes
P3 very high yes severe yes yes
P4 normal no mild yes no
P5 high yes mild no no
P6 very high no severe yes yes

We can construct a topology τ on the set {P1, P2, P3, P4, P5, P6} using
the set of symptoms {T, H, C, MP} to measure the accuracy of decision (Flu).

To the best of our knowledge, proximity structures have not been used in
the field of data analysis via rough set theory. Our approach initiate examples
for using proximity structures and relation in the context of rough set data
analysis RSDA .

2 Preliminaries

We start by recalling that a sub-collection I of the power P(X) of a set X is
called an ideal [9] on X if

(i) A∈I and B⊂A=⇒B∈I and

(ii) A∈I and B∈I =⇒ A∪B∈I.

Definition 2.1. An ideal I is said to be:

(a) [9] Free ideal, if ∪{E⊂X | E∈I}=X . Equivalently, every point in X is in
I.

(b) [8, 9] Ideal of finite subsets, if I= If = {E⊂X | E finite}.
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(c) [9, 11] Regular ideal w.r.t. any proximity δ, if for every B∈I ∃ E∈I s.t.
Bδ(X-E) where (δ means not - δ).

Remark 2.2. The ideal If of finite subsets is a free ideal and every free ideal
contains an ideal If of finite subsets.

Proposition 2.3. [5, 8] (i) The intersection of two ideals on a non-empty

set X is an ideal, but the union of two ideals is not an ideal in general.

(ii) The sum I∨J of two ideals I and J on a non-empty set X is the ideal
{E∪H | E∈I and H∈J } .

(iii) The restriction of an ideal I on a set X to a subset A⊂X, denoted by
I|A, is an ideal defined by I|A={B∈I | B⊂A}={B∩A | B∈I}, moreover
I|A⊂I.

Definition 2.4. A binary relation δ on P(X) is said to be a pre-basic prox-
imity, if δ satisfies the following axioms:

(i) AδB =⇒ BδA.

(ii) (A∪B)δC⇐⇒AδC or BδC.

(iii) AδB=⇒A6= ∅ and B 6= ∅.

A pre-basic proximity δ on P(X) is said to be basic [17], if it satisfies the
following condition:

(iv) A∩B6= ∅ =⇒ AδB.

A relation δ on P(X) is said to be an Ef [4, 11]-(resp., a pre-Ef) proximity,
if δ is a basic (resp., pre-basic) proximity with additional condition:

(v) AδB=⇒ ∃E⊂ X s.t. A δ E and (X-E)δ B.

A basic (resp., pre-basic) proximity δ on P(X) is said to be a Lo [10, 11]-
(resp., pre-Lo) proximity, if δ satisfies the following condition:

(vi) AδB and {b}δC ∀ b∈B implies AδC.

A relation δ is said to be separated [12], if it satisfies:

(vii) xδy=⇒x=y.
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Leader [10] has introduced the concept of local proximity space.

Definition 2.5. A basic proximity δ on P(X) is called a local proximity
w.r.t. an ideal I on X, if it satisfies the following conditions:

(i) If AδB, then Aδ(B∩C) for some C∈I.

(ii) Given A and B such that B∈I, if AδB then ∃E∈I s.t. AδE and (X-E)δB.

In the following example, the Rough sets technique is applied on the infor-
mation system of students enrollment qualification.

Example 2.6. Let X={S1, S2, S3, S4, S5, S6} be a universe, using the set
of qualification (finite set of attributes) {IT, Programming, English} to mea-
sure the accuracy of decision, the domain of attribute IT ={medium, good,
very good}, the domain of attribute Programming ={medium, good} and the
domain of attribute English ={medium, good, very good}, < = {(S1, S1),
(S2, S2), (S3, S3), (S4, S4), (S5, S5), (S6,S6), (S4, S6), (S6,S4)} is an equiv-
alence relation on X where [S1]={S1}, [S2]={S2}, [S3]={S3}, [S4]=[S6]={S4,
S6}, [S5]={S5} are equivalence classes. The upper approximation of A⊆X is
RA=∪{[x] | [x]∩A 6= φ}. Let A={S1, S4}, B={S5, S6}, then RA={[S1], [S4]}
and RB={[S4], [S5]}. If AδB⇔ RA∩RB 6= φ, then δ is Ef-proximity on X.
Also, it is possible to construct types of ideals in information system.

Table 2: An information system IS of students enrollment qualification.

IT Programming English Decision
S1 good good good yes
S2 medium good good no
S3 very good good good yes
S4 medium medium good no
S5 good medium very good yes
S6 medium medium good no

Definition 2.7.[1] A relation δ⊆X×P(X) is said to be a K-proximity on
a given set X if it satisfies the following conditions for every subsets A and B
of X and x∈X:

(i) xδA∪B⇐⇒xδA or xδ B.

(ii) xδ∅ ∀x∈X.
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(iii) x∈A =⇒ xδA.

(iv) xδA =⇒ ∃E⊆X s.t. xδE and yδA ∀y∈(X-E).

Table 3: A simple decision system of age and LEMS and the corresponding
decision attribute (Walking ability).

conditional C D
Age LEMS Walk

O1 16-30 1-25 yes
O2 31-45 26-49 yes
O3 16-30 1-25 no
O4 31-45 26-49 yes

Example 2.8.[18] Let us consider a decision system shown in Table 3. The
universe set X consists of four objects X={O1, O2, O3, O4}, and the set of
attributes includes two attributes conditions age and LEMS (Lower Extremity
Motor Score). The domain of attribute age={16-30, 31-45}, the domain of
attribute LEMS={1-25, 26-49} and the domain of decision attribute (Walk)
with two values {Yes, no}. Let <={(O1, O1), (O2, O2), (O3, O3), (O4,
O4), (O1, O3), (O2, O4), (O3, O1), (O4, O2)} is an equivalence relation on
X where [O1]=[O3]={O1, O3}, [O2]=[O4]={O2, O4} are equivalence classes.
Let A={O1, O3, O4}⊆ X, it is clear that x δ A ⇔ [x] ∩ A 6= φ, then δ is
K-proximity on X.

Definition 2.9.(i)[10, 11, 12] A subset B of local (resp., a Lo- or an Ef-)
proximity space (X, δ) is a δ-neighborhood of A (in symbols A≺B), if Aδ̄(X-

B). The familyN (δ, A)={B⊂X | A≺B} is a δ-nbd. system of a subset A of
X.

(ii)[1] A subset B of K-proximity space (X, δ) is a δ-neighborhood of x (in
symbols x≺B), if xδ̄(X-B). The family N (δ, {x})={B⊂X | x≺B} is a
δ-nbd. system of x.

(iii) [1, 10, 11, 12] The intersection of two δ-nbds is a δ-nbd.

(iv)[1, 10, 11, 12] For a local (resp., a Lo, an Ef or K)-proximity relation δ;
N (δ, x)⊂N (τδ, x) where N (τδ, x) is the nbd. system of x w.r.t. τδ.
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For a local (resp., a Lo, an Ef or K)-proximity space (X, δ) the operator
Clδ(A)={x∈X | xδA} ∀ A⊂X is a Kuratowski closure operator which produce
the topology τδ generated by δ. Note that τδ is a completely regular, if δ is an
Ef-proximity or a local proximity. Also, if (X, τ) is a completely regular space,
then there exists proximity δ on X which compatible with τ i.e., τδ=τ .

Every Ef-proximity space is a Lo-proximity space. Every Lo-proximity
space induces a topology τδ which is R0; Conversely, every R0 space (X, τ) has
a compatible Lo-proximity.

Definition 2.10. [12] Let (X, δ) be any proximity space and A⊂X then:

(i) A is δ-open, if (xδAc ∀ x∈A).

(ii) A is δ-closed, if (xδ A ⇒ x∈A).

Lemma 2.11.[12] For subsets A and B of any proximity space (X, δ), if AδB,
A⊂C and B⊂D, then CδD.

Proposition 2.12.(i)[9, 10, 11] Let (X, δ) be a local (resp., an Ef, a Lo)

- proximity space then for subsets A and B of X, AδB iff ClδAδClδB, where
the closure is taken w.r.t. τδ.

(ii)[1] Let (X, δ) be K-proximity space, then for subsets B of X and x∈X,
{x}δB =⇒ Clδ{x}δClδB, where the closure is taken w.r.t. τδ.

Proposition 2.13.[12] Let (X, δ, I) be a local proximity space, then:

(i) If X∈I, then (X, δ) is an Ef-proximity space.

(ii) Every singleton is in I.

(iii) Given A∈I there exists B∈I such that AδBc.

If (X, δ) is an Ef-proximity space and I is the power set of X, then (X,
δ, I) is a local proximity space.

Definition 2.14.(i)[11, 12] A function f from an Ef (resp., a Lo)-proximity
space (X, δ1) to an Ef (resp., a Lo)- proximity space (Y, δ2) is called a proxi-
mally continuous, if Aδ1B implies f(A)δ2f(B). Equivalently, f is a proximally
continuous, if Cδ2D implies f−1(C)δ1f

−1(D). If X =Y, then we say that, δ1 is
finer than δ2 (in symbols δ2 < δ1) that is Aδ1B implies Aδ2B.
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(ii)[11, 12] A bijective function f from an Ef (resp., a Lo)-proximity space
(X, δ1) to an Ef (resp., a Lo)- proximity space (Y, δ2) is called a proxi-
mally isomorphic (or δ-homeomorphic), if both f and f−1 are proximally
continuous functions.

(iii)[9] A function f from a local proximity space (X, δ1, I) to a local proximity
space (Y, δ2, J ) is said to be a proximally continuous, if Aδ1B implies
f(A)δ2f(B) and A∈I implies f(A)∈J . If X=Y, then δ1 is finer than δ2.

(iv)[1] A function f from an K-proximity space (X, δ1) to an K-proximity
space (Y, δ2) is called a proximally continuous, if xδ1B implies f(x)δ2f(B).
Equivalently, f is a proximally continuous if xδ1f

−1(B) implies yδ2B for
every x∈f−1(y). If X=Y and the identity map is a proximally continuous
we say that, δ1 is finer than δ2 (in symbols δ2 < δ1), if xδ1B implies xδ2B .

Definition 2.15.[12] If (X, δ) is any proximity space and Y⊂X. For subsets
A and B of Y we define AδY B iff AδB.

Definition 2.16.[12] Given a function f :X−→(Y, δ2), the coarsest proximity
δ0 which may be assigned to X in order that f proximally continuous is defined
by: Aδ0B iff ∃C⊂Y s.t. f(A)δ2(Y-C) and f−1(C)⊂(X-B).

An important concept to construct the compactification of Ef-proximity
and local proximity is a cluster and for a Lo-proximity a bunch is defined.

Definition 2.17.[12, 19] A collection σ of subsets of a basic (resp., a local, an
Ef-, a Lo-) proximity space (X, δ) is called a δ-clan if the following condition
is satisfied: A∈σ and B∈σ =⇒AδB.

A δ-clan σ of subsets of a local (resp., an Ef-, a Lo-) proximity space (X,
δ) is called a δ-cluster, if the following conditions are satisfied:

(i) AδB ∀B∈σ =⇒A∈σ.

(ii) A∪B∈σ =⇒A∈σ or B∈σ.

A δ-clan σ of subsets of a Lo-proximity space (X, δ) is called a δ-bunch,
if the following conditions are satisfied:

(i) A∈σ⇐⇒Cl(A)∈σ.

(ii) A∪B∈σ=⇒ A∈σ or B∈σ.
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Remark 2.18. In a Lo-proximity every δ-cluster is a δ-bunch.

Remark 2.19. For each x∈X, the collection σx={A | Aδx} is a cluster which
is called a point cluster. Also, the family of all δ-clusters w.r.t. Ef-proximity
is denoted by H.

Definition 2.20.[11, 12] Let P⊂H. A subset A of X is called absorbs P ,
if A∈σ for every σ ∈P .

Lemma 2.21.[11, 12] The binary relation δ̃ on the power set of H defined
by P δ̃Q iff A absorbs P and B absorbs Q implies AδB, is a separated Ef-
proximity on H.

Smirnov [17] proved the following result: (X, δ) is Ef-proximity space iff
there exists a compact Hausdorff space H in which X can be topologically
embedded so that: AδB in X iff Cl(A)∩Cl(B)6=∅.

Theorem 2.22.[11, 12] Every proximally mapping f of (X, δ1) onto (Y, δ2)
has a unique extension to a continuous mapping f which maps the compacti-
fication of X onto the compactification of Y.

Definition 2.23.[10, 11] A subset X of a topological space (Y, τ) is regu-
larly dense in Y, if given U∈τ and p∈U, then ∃A⊆X such that p∈Cl(A)⊂U.

A characterization of Lo-proximity spaces using clusters given by the fol-
lowing theorem.

Theorem 2.24.[10, 11] Let δ be binary relation on given set X, then the
following are equivalent:

(I) There exists T1-topological space Y and a mapping f of X into Y such
that f(X) is regularly dense in Y and AδB in X iff Clf(A)∩Clf(B)6=∅ in
Y.

(II) δ is a separated Lo-proximity satisfying the additional axiom:
given AδB in X there exists a cluster σ to which both A and B belong.

Theorem 2.25.[3] Let (X, δ) be a separated Ef (resp., Lo) proximity and Σ be
the family of all clusters (resp., bunches), then the function Θ: (X, δ) −→ (Σ,
δ̃) is a proximally isomorphic to Θ(X) with the subspace proximity induced by
δ̃ and Θ(X) is a dense in Σ.
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Definition 2.26.[9, 11] A topological space (X, τ) is said to be locally com-
pact, if ∀x∈X ∃ nbd. U of x s.t. Cl(U) is compact subspace.

Theorem 2.27. [9] Given a local proximity (X, δ, I) there exists a locally
compact, Hausdorff space L and a mapping π of X into L satisfying the fol-
lowing three conditions:

(i) AδB iff Cl(π(A))∩ Cl(π(B))6=φin L.

(ii) A∈I iff Cl(π(A)) is compact in L.

(iii) Cl(π(X))=L.

Such a local compactification is unique. Conversely, if π is a mapping on a set
X into a locally compact, Hausdorff space L and

(i) AδB iff Cl(πA))∩Cl(π(B))6= ∅ in L .

(ii) A∈I iff Cl(π(A)) is compact in L.

Then (X, δ, I) is a local proximity space.

3 γ-Proximity Structures

This section is devoted to define a new finer proximity relation γ from a given
basic (resp., Ef, Lo)-proximity relation δ and an ideal I on X and study some
of its properties.

Definition 3.1. Let (X, δ, I) be an I-proximity space and I6={∅}. De-
fine the relation γ on P(X) as follows:

AγB iff (A∩E)δ(B∩E) for some E∈I.

Example 3.2.(1) Let δ be the usual metric proximity on the positive real

numbers and let an ideal I consists of all complements of members of filter
generated by filter base consisting of all right rays, then the relation γ is
local proximity space.

(2)Let δ be the discrete proximity on X 6=φ and let an ideal I=P(X)then the
relation γ is pre Ef-proximity space.
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Example 3.3. Let X={1, 2, 3, 4}, A={1, 3, 4}⊆X, < = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3),
(2, 4), (3, 1), (4, 2)} is an equivalence relation on X where [1]=[3]={1, 3}, [2]=[4]={2, 4}
are equivalence classes, I={{1, 2, 4}, {1, 2}, {1, 4}, {2, 4}, {1}, {2}, {4}, φ}. It
is clear that xδA⇔[x]∩ A6=φ, xγA⇔ ∃E∈I such that xδ(E∩A)⇔ ∃E∈I such
that [x]∩E∩A6=φ where E={1, 2, 4}, E∩A={1, 4}, xγA⇔[x]∩{1, 4}6= φ, then
γ and δ are K-proximity on X.

Example 3.4. Let X={1, 2, 3, 4}, A= {1, 3, 4}⊆X, < = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3),
(2, 4), (3, 1), (4, 2)} is an equivalence relation on X where [1]=[3]={1, 3}, [2]=[4]={2, 4}
are equivalence classes, I={{1, 4}, {1}, {4}, φ}. It is clear that xδA⇔[x]∩
A6= φ, xγA⇔ ∃E∈ I such that xδ(E∩A)⇔∃E∈I such that [x]∩ E∩A 6=φ where
E={4}, E∩A={4}, 1γ̄A⇔[1]∩{4}=φ, then δ is K-proximity on X but γ is not
K-proximity on X.

Theorem 3.5. Let (X, δ, I) be an I-proximity space. Then γ is a pre-
basic (resp., pre-Ef or pre-Lo) proximity, if δ is a basic (resp., an Ef- or a Lo-)
proximity.

Proof. Let (X, δ) be a basic proximity space and I be an ideal on X. Let A
and B be subsets of X.

(i) AγB=⇒BγA.

(ii) Aγ(B∪C)⇐⇒ (A∩E)δ((B∪C)∩E) for some E∈I.
⇐⇒(A∩E)δ(B∩E) for some E∈I or (A∩E)δ(C∩E) for some E∈I.
⇐⇒ AγB or AγC.

(iii) Let A=∅ and B⊂X, then ∅δ(B∩E) ∀E∈I and so ∅γB.

Hence γ is a pre-basic proximity on X. By the same manner we shall
prove γ is a pre-Ef (resp., pre-Lo)-proximity on X, if δ is an Ef (resp., a Lo)-
proximity on X.

Corollary 3.6. Let(X, δ, I) be an I-proximity space. Then γ is finer thanδ.

Proof. Straightforward.

Remark 3.7. Let (X, δ, I) be an I-K proximity space. The proximity
relation γ may be defined as follows:

xγB iff xδ(B∩E) for some E∈I.

Remark 3.8. Let (X, δ, I) be an I-proximity space. Let ClδA (resp., ClγA)
be the closure of a subset A of X w.r.t. δ (resp., γ), then it is clear that
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ClγA⊂ClδA.

Corollary 3.9. Let (X, δ, I) be an I-proximity space. Then:

(i) Every δ-nbd. is a γ nbd.

(ii) Every δ-closed set is a γ-closed.

Proof. Straightforward.

Proposition 3.10. Let (X, δ) be a basic (resp., an Ef-, a Lo-) proximity
space with ideals I and J , then:

(i) γ(I)⊂γ(J ), if I⊂J .

(ii) γ(I∩J )⊂γ(I)∩γ(J ) ⊂γ(I∨J ).

(iii) γ(I)∪γ(J )⊂γ(I∨J ).

Proof. As a sample, we give a proof when δ is a basic proximity. Other cases
have similar proofs.

(i) Let A and B be subsets of X and A γ(I)B, then ∃E∈I s.t. (A∩E)δ(B∩E).
By hypothesis, ∃E∈J s.t. (A∩E)δ(B∩E) and so Aγ(J )B.

(ii) and (iii) follows directly from (i).

Theorem 3.11. Let δ1 and δ2 be two proximities on a non-empty set X and
for any ideal I on X, if δ1<δ2, then γ1<γ2.

Proof. Let A and B be subsets of X and I be any ideal on X and let Aγ2B,
then ∃E∈I s.t. (A∩E)δ2(B∩E). By hypothesis, ∃ E∈I s.t. (A∩E)δ1(B∩E) and
so Aγ1B.

Corollary 3.12. Let δ1 and δ2 be two proximities on a non-empty set X
and I be an ideal on X. Then:

(i) γ(δ1∩δ2, I)=γ(δ1, I)∩γ(δ2, I).

(ii) γ(δ1∪δ2, I)=γ(δ1, I)∪γ(δ2, I).

Proof. Straightforward.

For a subset Y of any I- proximity space (X, δ, I), the space (Y, δ|Y , I|Y )
is the induced (restricted) I|Y - proximity space on Y with the restricted ideal
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I|Y and γ is a generated proximity from δ, I. The next theorem investigate
the relation between restricted proximity space γ|Y on Y and the proximity γ1
generated by δ|Y and I|Y on Y .

Theorem 3.13. Let (X, δ, I) be an I-proximity space. Let Y⊂X and γ
is a generated proximity from δ, I, then γ|Y =γ1.

Proof. Let A and B be subsets of Y

Aγ1B=⇒ ∃E∈I|Y⊂I s.t. (A∩E)δ|Y (B∩E).

=⇒ ∃E∈I s.t. (A∩E)δ(B∩E).

=⇒ AγB =⇒ Aγ|Y B. Hence γ|Y< γ1.

Aγ|Y B⇐⇒AγB ⇐⇒∃E∈I s.t. (A∩E)δ(B∩E).

=⇒ ∃E∈I s.t. (A∩E∩Y)δ|Y (B∩E∩Y).

=⇒ ∃ K=(E∩Y)∈I|Y s.t. (A∩K)δ|Y (B∩K).

=⇒ Aγ1B. Hence γ1 <γ|Y and so γ|Y =γ1.

The following theorems are obvious and the proofs are omitted.

Theorem 3.14. Let (X, δ) be a basic (resp., an Ef a Lo)-proximity space
with ideals I and J on X, then:

(i) Every γ-clan is a δ-clan.

(ii) Every γ2-clan is a γ1-clan ,if δ2 is finer than δ1.

(iii) Every γ(I)-clan is a γ(J )-clan, if I⊂J .

Theorem 3.15. Let (X, δ) be an Ef (resp., Lo)-proximity space with ideal I
on X, then:

For every cluster σγ of (X, γ) there exists a clusterσδ of (X, δ) such that:
A∈σδ⇐⇒AδB ∀B∈σγ.

Theorem 3.16. Let (X, δ) be a Lo-proximity space, then:

For every bunch σγ of (X, γ) there exists a bunch σδ of (X, δ) such that:
A∈σδ⇐⇒ClδA∈σγ.
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In the following, we determine the type of γ for special types of I and the
following proofs are obvious.

Theorem 3.17. Given (X, δ, I) an Ef (resp., Lo)-proximity space with an
ideal I. Then:

(i) γ is an Ef-proximity, if I is a free ideal, If or P(X).

(ii) γ is a Lo-proximity, if I is a free ideal, finite ideal or P(X).

(iii)γ is a local proximity, if I is a free regular ideal.

Theorem 3.18. Given (X, δ, I) a K-proximity space with an ideal I. Then
γ is a K-proximity, if I is a free ideal, If or P(X).

4 Proximity Structures Generated by Special

Cases of Ideal

In the sequel we use the following notations. Let X be a non-empty set and
(Y, δ, I) be a proximity space with an ideal I. Let f :X−→Y be an injective
function. Let δ0 be the coarsest proximity on X making f proximally contin-
uous. Let γ0 be the proximity on X generated by δ0 and f−1(I). Let γ be the
proximity on Y generated by δ and I. Let γ1 be the proximity on Y generated
by γ.

Lemma 4.1. If f :(X, δ0, f
−1(I))−→(Y, δ, I) is proximally continuous, then

the function f :(X, γ0)−→(Y, γ) is also proximally continuous. Furthermore,
if (Y, δ, I) is an Ef-proximity with a free ideal I, then f :(X, γ1) −→(Y, γ) is
proximally continuous.

Proof. Firstly, let (Y, δ, I) be any proximity space with an ideal I and let
A and B be subsets of X. Suppose Aγ0B. Then ∃ E∈ f−1(I) s.t. A∩Eδ0B∩E.
Since f is one-to-one proximally continuous function, then f(A)∩f(E)δf(B)∩f(E)
and so f(A)γf(B). Hence f :(X, γ0)−→(Y, γ) is proximally continuous.
Secondly, let (Y, δ, I) be an Ef-proximity with the free ideal and let f(A)γf(B).
Then ∃C⊂Y s.t. f(A)γ(Y-C) and Cγf(B). Hence ∃C⊂Y s.t. f(A)γ(Y-
C) and C∩f(B)=∅. Consequently, ∃C⊂Y s.t. f(A)γ(Y-C) and f−1(C)⊂X-
f−1f(B)⊂(X-B). Hence Aγ1B. It follows that f :(X, γ1)−→(Y, γ) is proximally
continuous.

Theorem 4.2. γ1 < γ0 and the equality hold, if I is a free ideal .
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Proof. Let (Y, δ, I) be any proximity with an ideal I. For subsets A and B
of X.

Aγ1B=⇒ ∃C⊂Y s.t. f(A)γ(Y-C) and f−1(C)⊂(X-B).

=⇒ ∃C⊂Y s.t. ∀E∈I; f(A)∩Eδ(Y-C)∩E and f−1(C)⊂(X-B).

=⇒∃C⊂Y s.t. ∀E∈I; f(A∩f−1 E))δY-(C∪Ec) and f−1(C∪Ec)⊂X-(B∩f−1(E)).

=⇒ ∀f−1(E)∈f−1(I); A∩f−1(E)δ0B∩f−1(E)=⇒Aγ0B i.e. γ1 < γ0.

Let I is a free ideal, then Aγ0B=⇒ ∀E∈ f−1(I); (A∩E)δ0(B∩E).

=⇒ ∀E∈f−1 I); ∃C⊂Y s.t. f(A∩E) δ(Y-C) and f−1(C)⊂ X-(E∩B).

=⇒ ∀E∈f−1(I); f(A)∩ f(E)δ(Y-C)∩f(E) and (B∩E)⊂f−1(Y-C).

=⇒ B⊂X-f−1(C) and so f−1(C)⊂(X-B)=⇒ Aγ1B=⇒γ0 < γ1.

Proposition 4.3. Let (X, δ, I) be a separated Ef-proximity space with an
ideal If and γ be the separated Ef-proximity space generated by δ and If on
X. Assume that Σ( resp., H) be the set of clusters w.r.t. γ (resp., δ) on X. For
σ∈Σ; φ(σ)={A⊂X| AδK ∀K∈σ}, then φ is a map of Σ into H which is fixed
on the set of cluster points. Furthermore σ⊂φ(σ), for every σ∈Σ.

Proof. Let σ∈Σ, we shall prove that σ⊂φ(σ). Suppose A⊂X and A/∈ φ(σ),
then ∃K∈ σ s.t. AδK. Since δ<γ, then ∃K∈σ s.t. AγK and so A/∈σ. Hence
σ⊂φ(σ). Now we shall prove φ(σ) is a cluster w.r.t. δ:

(i) Let A1 and A2 be subsets of X and A1δA2,then ∃K⊂X s.t. A1δK and

(X-K)δA2. Since X∈σ, then ∀K⊂X , K∈σ or (X-K)∈σ. Hence ∃K∈ σ s.t.
A1δK or ∃(X-K)∈σ s.t. (X-K)δA2 and so A1 /∈φ(σ) or A2 /∈φ(σ).

(ii) A/∈φ(σ), then ∃K∈σ s.t. AδK. Since σ⊂φ(σ), then ∃K∈φ(σ) s.t. AδK.

(iii) Let (A∪B)∈φ(σ), then (A∪B)δK ∀K∈σ. Let K∈σ, then K=(K-H)∪(K∩H)
∀H⊂X and so (K-H)∈σ or (K∩H)∈σ ∀H⊂X. Since (A∪B)δK, then (A∪B)δ(K-
H) or (A∪B)δ(K∩H) ∀H⊂X. It follows that ∀H⊂X; Aδ(K-H) or Bδ(K-
H) or Aδ(K∩H) or Bδ(K∩H). Hence ∀H⊂X; Aδ(K-H)∪(K∩H) or Bδ(K-
H)∪(K∩H). Which implies that A∈φ(σ) or B∈φ(σ). Consequently, φ(σ)
is a cluster w.r.t. δ.
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Now we shall prove φ(σx)=σx. It is clear that σx ⊂φ(σx). Let A∈φ(σx),
then AδK ∀K∈σx. Which implies that AγK ∀K∈σx and so A∈σx. Hence φ is
one-to-one map on the set of cluster points.

Theorem 4.4. Let (X, δ, If ) be a separated Ef-proximity space with ideal If
and γ be a separated Ef-proximity relation generated by δ and If on X. Then

the function φ:(Σ, γ̃) −→(H, δ̃) given in the Proposition 4.3. is a proximally
continuous mapping.

Proof. Let A and B be subsets of Σ.

φ(A)δ̃ φ(B)=⇒∃A, B ⊂X s.t. A absorbs φ(A), B absorbs φ(B) and AδB.

=⇒∃A, B ⊂X s.t. A∈C ∀C∈φ(A), B∈C∀C∈φ(B) and AδB.

Since φ(A)={φ(σ)|σ ∈A}, utilizing Proposition 4.3., then AδK ∀K∈σ, ∀σ∈A,
BδK ∀K∈σ, ∀σ∈B and AδB. Since δ < γ, then ∃A, B ⊂X s.t. (AγK
∀K∈σ) ∀σ∈A, (BγK ∀K∈σ) ∀σ∈B and AγB.

=⇒ ∃A, B ⊂X with A∈σ ∀σ∈A, B∈σ∀σ ∈B and AγB.

=⇒A γ̃ B=⇒ φ is a proximally continuous mapping.

The following proofs are obvious.

Proposition 4.5. Let (X, δ, I) be a separated Lo-proximity space with
an ideal If and γ be the separated Lo-proximity space generated by δ and
If on X. Assume that Σ ( resp., H) is the set of clusters w.r.t. γ (resp.,
δ) on X. For σ∈Σ; φ(σ)={A⊂X|AδK ∀K∈σ}, then φ is a map of Σ into H
which is fixed on the set of cluster points. Furthermore σ⊂φ(σ), for every σ∈Σ.

Theorem 4.6. Let (X, δ, If ) be a separated Lo-proximity space with an
ideal If and γ be the separated Lo-proximity generated by δ and If on X.

Then the function φ:(Σ, γ̃)−→(H, δ̃) given in the Proposition 4.3. is a proxi-
mally continuous mapping.

Proposition 4.7. Let (X, δ, I) be a separated local proximity space with
a free regular ideal I and γ be the separated local proximity space generated
by δ and I on X. Assume that Σ( resp., H) is the set of γ (resp., δ)-clusters
on X.For σ∈Σ; φ(σ)={A⊂X|AδK ∀K∈ σ}, then φ is a map of Σ into H which
is fixed on the set of cluster points. Furthermore σ ⊂ φ(σ), for every σ∈Σ.

Theorem 4.8. Let (X, δ, I) be a separated local-proximity space with a
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free regular ideal I and γ be a separated local-proximity relation generated by
δ and I on X such that δ < γ, then the function φ:(Σ, γ̃)−→(H, δ̃) given in
the Proposition 4.5. is a proximally continuous mapping.

5 Conclusions

The constructed relation can be applied in the approximation and nearness
of concepts in information systems IS. This in turn can help in fields like
Artificial intelligence AI. which is widely used in different areas of real life
applications such as medical diagnoses, political, social and economic studies.
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