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Abstract
A theory of the diffraction Fresnel transform is extended to certain spaces
of Schwartz distributions. The diffraction Fresnel transform is obtained as a
continuous function in the space of Boehmians. Convergence with respect to 0
and A convergences is shown to be well defined .
Keywords: Fresnel Transform; Wawvelet transform; Distribution space;
Boehmian space.

1 Introduction

Integral transforms play an important role in various fields of science. In optics,
several integral transforms are of great importance. Some of these transforms
are: the Fresnel transform [10, 12, 25, 26]; the fractional Fourier transform |5,
6, 11, 13, 18]; the linear canonical transform [22, 23|; the wavelet transform |20,
21]; the diffraction Fresnel transform [27,28] and, many others. The wavelet
transform is described in [20, 21] as

O (1) = Jp o f (@) v (52) do (1

where ¢ (x) is named as mother wavelet satisfying rdz1) (x) = 0. The parame-
ters A and u are, respectively, the translate and dilate of w, whereas, w* is the
conjugate of w. The optical diffraction transform is described by the Fresnel
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integration [27, 28]

F(22) = e f (1) Koy (1) day (1.2)

where K (a1, 71, V2, Qo5 T1, To) = exp (ﬁ (22 — 2179 + 05233’%)) is the trans-
form kernel whose parameters aq, 71, v2, s represent a ray transfer Matrix M,
in an optical system, with ajas — v172 = 1.

We consider the combined optical transform obtained jointly from (1.1)
and (1.2), named as the Fresnel-wavelet transform [10, Equ. (36)]

Fy (A, gy 9) = \/QiWRK (Qn, 71,72, Q23 1, 2, A, ) f (1) d. (1.3)
where
. _ 2 o (2] —
K(Oél,’}/17’)/270é2;$1,x27)\,,u) = exp (2_;1 (al(xyl? )\) - 2 2(; /\) + a2$§>>

is the transform kernel.

Parameters: aq,71,72, and ay appearing in the above expression are ele-
ments of a 2 X 2 matrix with unit determinant. Since the general single-mode
squeezing operator F' in the generalized Fresnel transform is in wave optics,
applications of F' is a faithful representation in the Fresnel-wavelet transform
[10]. Hence, the combined Fresnel-wavelet transform can be more conveniently
studied by the general single-more squeezed operation.

In the literature, it has not yet been reported that the Fresnel-wavelet
transform is extended to a space of generalized functions . Thus, we, in this
article, aim at extending the Fresnel-wavelet transform to certain generalized
function space ( Boehmian space). Such extension is mainly related to the fact
that the optical Fresnel-wavelet transform of a good function is certainly a C*
function.

We spread the article into five sections: In Section 2, we introduce the
notion of Boehmian spaces. In Section 3, we consider the Boehmian space
B, from [4]. Section 4 is devoted for a general construction of the space
B, , where images of the extended Fresnel-wavelet transform lie. In the last
section, we establish that the optical Fresnel-wavelet transform of an arbitrary
Boehmian in ‘B, is another Boehmian in B, . Moreover, we discuss linearity
and continuity conditions with respect to certain types of convergence.

Let ¢ (R4) be the test function space of all C* functions of arbitrary sup-
ports and £ (R,) be its strong duals of distributions of compact supports.
The kernel function K (aq, 71, Ve, o; 1, T2, A, 1) of the Fresnel-wavelet trans-
form is clearly in e (R, ). This leads to define the distributional transform on
the dual of distributions of compact support by the relation F,, (A, p, z5) =

ﬁ (f (z1), K (o, 71, 72, 25 71, T2, A, ) , for every f € 3 (Ry).
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2 General Boehmian Spaces

Let G be a linear space and H be a subspace of G. Assume to each pair of
elements f,g € G and ¥,¢ € H, is assigned the product f e g such that:
pep € Hand poth = oo € H, (fop) et = fo(ded).and
(f+g)ep=fedp+gep k(fep)=(kf)ep ke C. A family of sequences
A from H, is said to be delta sequence if for each f,g € G,(¥,),(0,) € A,
the following should satisfy: f e 4, = ged, (n=1,2,...), implies f = g, and
(¢n @ y,) € A. Let O be a class of pair of sequences

0= {((fn) (@) (fa) € G, (¢n) € A}’

for each n € N. An element ((f,), (¢,)) € O is said to be a quotient of se-
quences, denoted by . if fiep; = fj0¢;,Vi,j € N. Two quotients of sequences

% and i—z are equivalent, £_Z ~ %, if f;®1; = gj®¢;, Vi, 7 € N. The relation ~
is an equivalent relation on O and hence, splits O into equivalence classes. The
In
$n
are called Boehmians and the space of all Boehmians is denoted by B,. The
sum of two Boehmians and multiplication by a scalar is defined in a natural

equivalence class containing is denoted by [f;—"} .These equivalence classes

eration e and the differentiation are defined by [(J;—”} ° [g—"} = [ q{”:i"] and
D~ [(Jg—"} = [%f"} . The relationship between the notion of convergence and

the product e are given by:

1-If f, = f asn— o0 in G and, ¢ € H is any fized element, thenf, o
¢ — fep, asn — ooin G.

2—1If fu—=f asn—ooin G and (6,) € A, then f,ed, — fasn — o
in G. In B, two types of convergence:

d—convergence : Let (f,) € B, then £, 2 B, if there is (0n) € A,
(Br®6n), (B ed,) € G,Vk,n € Nand (3, ;) — (f ;) as n — oo,in G, V
k e N.

A—convergence : ((,) in B, is A—convergent to [ in B, Gy, Y B, if
there is (0,) € A such that (8, — ) 9, € G,¥Yn €N, and (5, — ) ®d, — 0
as n — oo in G. For further analysis, see [1-4, 8, 14, 15, 17].

3 The Boehmian Space ‘B,

Let f and g be C'* functions , over R,. Then the convolution between f and
g is defined by [4, Equ.3.2]

(f>9) (@) =r, f(zy™") o (y)y 'dy, (3.1)
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where z is a non-negative real number.

In the rest of investigations, it is more convenient to use the noation *
instead of the used one, >. Further, we retain likewise notations and the results
established in [4].

Let D = D(Ry), be the Schwartz’ space of all C*° complex-valued func-
tions which are compactly supported in R,. Then, we recall the following
definition [4]

Definition 3.1. Let S= {¢p € D(Ry) : ¢ > 0 and g, ¢ = 1} and A be the
set of all delta sequences ¢,,n =10,1,2,..., from S, such that supp ¢, — 0 as
n — 0o. Then, (¢,) € A if and only if (¢,) € D(Ry) , and

Al R+¢n = 1,Vn € N,

Asg ¢, > 0,Vn € N;

Ag inf {e > 0 : suppep,, C (0,¢)} — 0,as n — oco.

The following are proved in [4]

Lemma 3.2. Let f € C*(Ry) and ¢ € S, then fx¢p € C*(R,).

Lemma 3.3. Let f,g € C* (R,),¢,¥ € S and, o € C( The set of complex
numbers ) . Then, the following are true
1) (f+g)x¢=frdp+gxo.
(2) (af o) =a(f*o).
(3) pxtp =1px .
(4) fr(@xth) = (fx¢) .
Theorem 3.4. If ILm fao=/f,in C*°(Ry), and ¢ €S , then
li_>rn faxd=fx¢pin C°(Ry).
Lemma 3.5. Let f, — f , in C*°(Ry), and (6,) € A. Then,f, x 0, — f

Theorem 3.6 . Given (¢,), (¢¥,) € A. Then, (¢, *1y) € A..
After this sequence of results, the desired Boehmian space 28, was con-

structed in [4].
In *B,, it is needful to have the following definition:

Definition 3.7. Let [g—:] , [i—z} € B, . Then, the convolution of two

Boehmians is defined as

[3;_] . [i_] - [g;_g} , for all n € N. (3.2)

Equ.(3.2) is well-defined by Theorem 3.6 and Lemma 3.2.
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Differentiation is defined by

a|fn| — | D%
D[] = | 5]

Addition and scalar multiplication is defined in B, as

Sn gn | (frnx¥n)+(gnxpn) S| Sfn
[%} + [w] = [ mtin ]‘mda [m} = [%J yaeC.

4 The Boehmian Space B,

Let S (Ri) , be the space of rapidly decreasing functions on R% = Ry xR X R,
19, 7]. Then the Fresnel-wavelet transform of f € S (R%) is indeed a C* (R.)
function. Let f € S (RY) and ¢ € C* (Ry).

We define a mapping ® : S (R%) — C* (Ry) by

U®¢H&mwﬁ=/)f0fﬂw*wﬂw@wt (4.1)

Ry

Following theorem is very needful
Lemma 4.1. Let f € S(R3Y) and ¢ € C*°(Ry) then
foyeS(RY).

Proof. To show f ® 1 € S, we establish the following three relations

D, (f®¢) ()‘7/JJ7 l’z) = (D)\f®w) <)\7u7x2> ; (42)

Dy (f @) (A g, x2) = (Daf @ 4) (A, 1, 22) ; (4.3)
and

Drz (f ® 1/}) ()‘7 K, 'TZ) = (Dfﬂzf ® ?/1) ()‘7 H, xQ) : (44)

To establish (4.2), let pg, z90 > 0 be fixed and, A\g vary over R, then
Dy (f @) (Ao, o, T20) =

TR G L ) A ) WA
)\—>>\0R+ 0

=R, Dy f (/\Ot_l7 /Lot_l, l’go) Y (t) dt
= (Daf @) (Ao, o, 20) -

Thus,
Dy (f @) (Ao, o, T20) = (Daf @ ) (Ao, po, ¥20) -
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Proof of (4.3) and (4.4) is analogous. Induction on the partial differention
with respect to A\,u and x5 yields

D5 (f ® ) = DXf @, D, (f ® ¥) = D, ® ¢ and Dy, (f ®¢) = Dy, f ® ¢.
(5.5)
Hence, using the topology of S we have

1f*lls < ol 1L (1)
Lemma 4.2 f ® ¢, — [ for every f € S (R3) and (¢,) € A.

Proof. Using (4.2) — (4.4) , mean value theorem and Az we write

INDY(f @ — f) (A s 22)| = | X (DYf @400 — DXF) (A, 1, 29)| -

Hence, using (4.1) , we get
INDE(f @t — f) (A, 22)| <
Ry })‘ZDI)C\ (f (Atilj :utilv %2) —f ()‘7 s xQ)) (0 (t)| dt.
Hence the above expression approaches 0 as n — oc.
It can be similarly proved that

WDy (f @ — ) (A s w2)| and |25 D5, (f @ ¥y — f) (A, 1, 22)| approach
0 as n — oo.
This completes the proof of the lemma.

Lemma 4.3 f, @ — f @1 for every f,, f € S (RY) and ¢ € C* (Ry).

Proof. Employing (4.1)-(4.4) the lemma can easily be established in a
manner similar to that of above Lemma . The Boehmian space B g, (5, ®, A)
is therefore established. Operations such as addition, scalar multiplication,
Differentiation and the operation ® between two Boehmians in B, can be
defined similarly as done in the previous section.

5 Fresnel-Wavelet Transform of Boehmians

Following is lemma suggesting a new definition for the Fresnel-wavelet trans-
form of a Boehmian in the space ‘B,.

Lemma 5.1 Given f € S (R%) and ¢ € C*® (Ry) then
Fw (f*¢) (/\nual?) - f®Fw,¢)7

Proof. The Fresnel-Wavelet transform is written in the form

Fo (f (21)) (A, 2) = ; f(@1) Ky o, (1) diy (5.1)
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where K;\,,u,mg (xl) =K (011,’71,’}/2,042;$1,l‘2, Aau) and
2 2
K (0,71, 72, Qo5 T1, T2, A, f1) = exp <CV1($1+A) - 2932@ + 042352> .
Hence

Fu(F %) (2) = / ) @) Ky (1) (01)
= /R+ (/R+ [z )¢ (y) y‘ldy> Ky pyy (11) day.

The substitution xy = yt implies

[0 ([ 608 i) i
Ry Ry
= (Fw¢®f) (/\uuaxQ)'

This completes the proof. Hence, we define the Fresnel-wavelet transform
of a Boehmian in B, as

Fw (f*’@b) ()‘JjﬂIQ)

& L] = [52]. (5.2)
in the space B g, (S (Ri) , ®, A) .

The definition, in (5.2), is well defined. For, if f;—: ~ g—: in B, then
frn * 0m = Gm * 0. Applying the Fresnel-wavelet transform and Theorem 5.1
imply Fi, fr®0m = Fugm®06,,. Hence Fg’—f” ~ Fg“—ng". Therefore [Fg“—f"} = [Fg”—i’"}
in %Fw'

Theorem 5.2. The & : B, — Bp, is linear.
Proof. is obvious.

Theorem 5.3: The & : B, — B, is continuous with respect to A con-
vergence.

Proof. If 3, LY S in B, then (8, — 5) x4, = [%} for some §; € A, f,, €
C*(R,) and f, — 0 as v — oo. Thus F,f, — 0in S (Ri) since f, — 0 as

v — 00. Hence we conclude F, 3, ey F,,B as v — oo. This completes the proof
of te theorem.

Theorem 5.4. G : B, — Bp, is continuous with respect to the & conver-
gence.
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Proof. Let 3, % B as v — oo in B, then using [15] there can be found
Ju,js fj such that
fv,j - fg , a8 v — 00, (5.3)

where
5] = 5] -
Applying the Fresnel-wavelet transform on (5.3) we get

Fyfoj — Fuf; as v — oo.

Thus

wav,' wa'
[ 59']]%[59'@'

Hence the theorem.
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