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Abstract

In this paper, we study a special motion, calledatwidal motion, on a dual
hyperbolic unit sphere@o2 in the dual Lorentzian spad® with dual signature

(+.*.7) . Then, the results are carried over to the Loriamidine spacelR? by

E. Study’s mapping. We also obtain the Study mépkeoorbits drawn on the
fixed dual hyperbolic unit sphere by unit dual westof an orthonormal base.
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1 Introduction

W.K. Clifford (1845-1879) introduced dual numbensthe form of A = A + A"

with £2=0 for studying the non-Euclidean geometry [3]. Hoeevits first
applications to mechanics are due to E. Study (AI8&8D) which defined dual
numbers as dual angles to specify the relationgd®at two lines in the Euclidean

space R*. Then, he used dual numbers and dual vectorssindsiearch on the
geometry of lines and kinematics, and defined tla@png which is called after
his name (E. Study’s mapping): The set of orierstedight lines in the Euclidean

3-spaceR*® is one-to-one correspondence with the dual paintthe surface of a
dual unit sphereS? in the dual spacé?® of triples of dual number&]. Hence, a

differentiable curve on a dual unit sphe$@ corresponds to a ruled surface in the

line spacelR?® [7]. Ruled surfaces have been widely applied ifiese design and
simulation of rigid bodies [10].

It is known that dual vectors, dual angles, duth@gonal matrices, the E. Study
mapping, etc. are the most important notions faliegtions of dual geometry to

engineering. For example, the dual angle=y +&y" between two dual unit
vectors is formed with real anglg between corresponding two directed lines in
the line spacelR® and the shortest distangg” between these directed lines.

These notions lay the foundations for the studgpiferical and spatial motions.
Dual Lorentzian correspondences of these notionse wetroduced and also,
several important theorems and results relatedetumgtry of this space were
given by the authors [1] [2] [6].

E. Study’'s mapping plays a fundamental role betwéesm real and dual
Lorentzian spaces [10]. By this mapping, a curvaaual hyperbolic unit sphere

175702 corresponds to a timelike ruled surface in theebtzian line spacéR?, that
is, there exists a one-to-one correspondence betimegeometry of curves on
H? and the geometry of timelike ruled surfacesIRf. Similarly, a timelike
(spacelike) curve on a dual Lorentzian unit sph@jeoorresponds to a spacelike
(timelike) ruled surface in the Lorentzian line spdR?, that is, there exists a
one-to-one correspondence between the geometiynefike (spacelike) curves
on §’12 and the geometry of spacelike (timelike) ruledaees inIR?’[9].

Since the dual Lorentzian metric is indefinite, Hrggle concept in this space is
very interesting. For instance, the dual hyperbatigle = + " between two
dual timelike unit vectors is a dual value formeithvihe (real) hyperbolic angle
(¢ between corresponding two directed timelike limethe Lorentzian line space

IR} and the shortest Lorentzian distance betweesettizected timelike lines.
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Planar and spherical conchoidal motions have ba@nduced by Karger and
Novac [4]. Yapar [8] defined the dual spherical domidal motion and gave the

geometrical interpretations in the Euclidean lipace IR®. In this paper, we
define the dual hyperbolic analogy of planar, splaérand dual spherical
conchoidal motions.

The Lorentzian motions in the Minkowski 3-spa&’ are represented in the dual
Lorentzian 3-space 27 by dual Lorentzian orthogonal3x3 matrices
M = (qj ) M™=yMTy, where a, are dual functions of one variabiél IR and

1 0 O
y=|0 1 0] is a signature matrix [9]. This means that whehoaentzian
0 0 -1
motion is given inIR?, we can find a corresponding dual Lorentzian agthl
3x3 matrix M .

2 Preliminaries

In this section, we give a brief summary of theottyeof dual numbers and dual
Lorentzian vectors. LetR} denote the 3-dimensional Minkowski space over the
field of real numberdR with the Lorentzian inner produet,> given by

<a,b>= a1b1+ azbz - asQ’

where a=(a,, a,,a,) and b=(b,,b,,b)0IR. A vectora=(a,,a,,3,) of IR} is
said to be timelike il<a,a>< 0, spacelike if<a a>>0 or a=0, and lightlike
(null ) if <a,a>=0 and a=#0. Similarly, a curvea is called timelike
(spacelike) if<a',a'> <0 (<a',a'>>0), and lightlike (null) if<a',a'>=0,
wherea' is the derivative otr .

The norm of a vectom is defined by|a|=,/|<a,a>|. Now, leta=(a,,a,, a,)

and b=(b,,b,,b,) be two vectors inR;, then the Lorentzian cross productaf
andbis given by

axb=(ab,-ab;, ab- al ab- g h.

A dual number has the form =1 +¢&1”, where A and A" are real numbers and
£ stands for the dual unit which is subject to tHesu

€20, £2=0,06=£0=0,1e=cl=¢.
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Like a real number which can be considered as gteam differential geometry
and motion analysis of spatial mechanisms, a duatber is also commonly

referred as a dual angle= A +&A” between two lines in the space. The real part

A of the dual angle is the projected angle betwherlibes, and the dual padt’
is the length along the common normal of the lings. denote the set of all dual

numbers by :

p={A=2+&1"|A, A"0IR, £ = 0}.

Equality, addition and multiplication are defined® by
A+eA"=p+¢gB" iff A= andA”=/4",
(A+eAN+(B+eB)=(A+ B)+e(A7+ ),

And

(A+eX)(B+eB)=AB+E(AB7+A7B),

respectively. Then it is easy to show th{d® ,+,.) is a commutative ring with
unity. The numbergd” (A° OIR) are divisors of 0. We note that  and S
are two nonzero elements of a riRgsuch thatd [ =0, then eitherd or S is a
divisor of 0 (or zero-divisor). Moreover, il =A+&1”, B=B+8°0D with
L£#0 then the division is given by

A_dred’ A A A

B B+eB BB B

Now, let f be a differentiable function with dual variabke= x+£xX’. Then the
Maclaurin series generated byis

f()=f(x+texX)= f(XN+e X (N,
where f'(x )is the derivative off (x). Then it is easy to see that

sin(X) =sin(X+£ X )= sinx+& X COSX
cos(®)= cosk+&£ X ¥ cox—& X SinX
sinh (X) =sinh (x+& X F sintx+&£ X cosix
cosh& )= coshk+& X ¥ cosh+e X  sink
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JR = x+e X :\/?+£2\7*X_ , (x0).

Let D° be the set of all triples of dual numbers, i.e.
p*={a=(a, 3, 3,)|a=a+tsg0D, 1< 3.

The elements of?°® are called as dual vectors. A dual vediomay be expressed
in the form &=(4,4,8)=a+ca =(a,a,a)+c(q,a,d), where
a=(a,a,a) anda’=(a,d,d) are the vectors ofR*. Now, letd=a+za’,
b=b+eb”0p° and A=A +£A"00 . Then we define

d+b=a+b+e(@”+ b,
Aa=(14,14,,18)=a+e(la’+1'a).

Then 2° becomes a unitary? -module with these operations. It is callgd-
module or dual space. The dual Lorentzian inner ymbaf two dual vectors
a=(a,a,,a)=a+ea"”, b=(b,b, b)=b+eb" is defined by

<8, b>=4hb+ab-3ah=<a,b>+s(<a,b”’>+<a’,b>),

where <a,b> is the Lorentzian inner product of the vectarsand b in the
Minkowski 3-spacelR’. Then a dual vectod=a+£a" is said to be timelike i

is timelike, spacelike ifa is spacelike ora=0, and lightlike (null) if a is
lightlike (null) and a#0. The set of all dual Lorentzian vectors is caltedl

Lorentzian space and it is denoted BY:
D} ={ é:a+£a5‘ a, a’0IR’ } :

The dual Lorentzian cross product of two dual vect and bO02? is defined
by
axb=(ab, -~ &b Ah-ah jah-"gp=axb+s(a xbraxh),

whereaxb is the Lorentzian cross product iR;’.



A Special Motion on Dual Hyperbolic Unit... 29

Let &=a+&a’0P] . Then & is said to be unit dual timelike vector (resp.itun
dual spacelike vector) if the vectoasand a” satisfy the following equations:

<a,a>=-1(resp.,<a a>= 1),<a a">= (

The set of all unit dual timelike vectors (respl,umit dual spacelike vectors) is
called the dual hyperbolic unit sphere (resp. dummkntzian unit sphere), and is

denoted byA? (resp.S? ) [9].

A ruled surface is a surface generated by the matia straight line inR®. This
line is the generator of the surface. A ruled stefes said to be timelike if the
induced metric on the surface is a Lorentzian modie., the normal vector of the
ruled surface at every point is a spacelike vectamy spacelike if the induced
metric on the surface is a positive defined Riemammetric (i.e., the normal
vector of the ruled surface at every point is aetike vector) [9].

Theorem 2.1: (E. Study’s Mapping):The unit dual timelike vectors of the dual
hyperbolic unit sphere7§7§ are in one-to-one correspondence with the directed

timelike lines of the Minkowski 3-spati®’ (Fig. 1). [9]

Timeaxis

Time axis

E.Study < d(£)
Mapping
¥
¥
x x

Fig. 1: The curvea(t) on Z/{VOZ and the corresponding timelike ruled surfacekih
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3  Conchoidal Motion on the Dual Hyperbolic Unit
Sphere A2

We will define conchoidal motion on the dual hypsib unit sphereﬁf. Let us
consider a fixed dual orthonormal franfe={0; d,, U,, U, (timelike} and denote
this frame by the dual hyperbolic unit sphedé. Let H: be a great hyperbolic
circle (a geodesic) orH' and C be a point not lying onH,. The frame
{0;4,,0,,0;} is chosen as shown in Fig. 2, whefg and G, lie in the timelike

plane of the great hyperbolic circlé,, and the timelike plané,d, contains the
chosen point C. Let wus consider an orthonormal dual frame
{0;9,,9,,V, (timelike} as shown in Fig. 2.

The frame{0; V;, V,,V,} moves now in such a way that the timelike vecipr

rotates in the great hyperbolic circld; while the timelike planei,V, passes
through the pointC all the time. As the parameter of the motion weade the
dual hyperbolic angley =y +ey" of the timelike vectorsy, and 0,, where

Vv, = lycoshy + 0, sinly

Further, we can write

V= Al + Al + A, (V,0)= A+ A- A=1, (1)
WhereA (L=< i< 3) are dual numbers. By orthonormality,

we have<v,,V,>=0, i.e.

< {,coshy + 0, sinl, Ad, + Afi,+ All ,>=

or

—~Acoshy + A, sinly = (. ) (2
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//_7\\ The plane &,

H'
H!

-]

v
E‘.:a

Fig. 2: Dual hyperbolic conchoidal motior€(t, andv, are unit dual timelike
vectors and the others are unit dual spacelikeovglct

Further, we may writ&€ as follows:
¢ = G,cosh + G, sini,

where A= o0+ &0 is dual hyperbolic angle between the timelike e and
U,. Since the timelike plan&V, has to pass through the pofdtall the time, the
vectorsv,, vV, and ¢ must be co-planar, that ide{(V,, V,, €)= 0. Thus we get the

equation.
Asinhg cosili+ A, coslir sin— A, sigh sidl . (3)
Then, we have three equations altogether for thaamns A, A, A:

Av A A=
-Acoshy + A, sinly = 0,
(AZ coshy — A, sinh;ﬁ) sindi+ A sinff cogh=

From the second equation, we obtaid\ = Asinhg, A =Acoshy for
some 0 2. Substituting this into the third equation, weabt



32 Mustafa Kazaz et al.

Asinhdi+ A sini cosi= Di.e., Asinh = -1 tant .

Multiplying the first equation bysinh?g , upon substitution we have
sink? =/Tz( tanif4+ sinﬁ,ﬁ), and thend = isinhw(sinﬁz[/+ tanﬁZI)_}/Z.
We choose the plus sign. Then consequently we have

¥, = [—(sinhzzﬁ + tanﬁZI)_}/2 tand, sinfi coz;‘lh( sifah+ taillzfl)_y2 ,

sinhzzﬁ(sinﬁtﬁ+ tanﬁZI)%]

v, =[O0, sinhy, cosiy],

and fromV, =V, xV, we obtain

VZ:[—sinhzﬁ(sinﬁtﬁ+ tanﬁZl)%, - cogfi tarzflﬂ sifah+ taﬁzfl)%,
-sinh tanlil( sinf + tan?il)%]

Thus a moving orthonormal dual fran{l@; Vi, \72,\73} is chosen. Let us represent

this moving frame by dual hyperbolic unit sphdtfe. Then, a dual hyperbolic
conchoidal motion which is analogous to the reahctmidal motion [10] is
obtained. In this case, dual hyperbolic conchoidedtion is represented by
H/H".

Now, let us choose a fixed poirX on the trace ofH in the planevyv, (we

should note that the trace of a surface in anyeiarsimply the intersection of the
surface and the plane). During the dual hyperbodicchoidal motion, the dual
point X draws an orbit orH'. We denote the dual hyperbolic anglesigf and

XV, by p= p+ep’ andd=q+eq’, respectively (see Fig. 3).
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The plane u,u,

The plane v, v,

Fig. 3: The timelike vectorxX is on the plan&,v,

Then, we may write

Vv, sinh p+V, sinhg
sinh(p+q)

X =

Since p+ q:g andsinh(r/ 2)# 0, coshfr /2¥ (, we can write

1 1
sinh(P+¢) sinh(p+ q)+ & (P'+ ¢ )cosh(r q

__ 1 (p”+ q’)cosh@@ 2)
= + £ .
sinh(7/ 2) sinf @ 2)

=a+e&a” = 4= constant.

So, X can be written as follows,
X = &a(Vv, sinh p+v, sinhgq . 4)
Making the necessary calculations forwe have

x=a(x, %, %)
:a(—A‘l’Ztanhcfsinhp,A(”2 sinfy cogh sinp+  sigh sinf (5)

A™2sinh?*y sinhp+ cosky sinh) :
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x'=a(x, %, X)+ a(x, % %)
:a(—pDA‘l’ztanha coshp+y" A*? tanr sinkh  cogh sinfto” A?  tdeh
secfo sintp-o”AY? secty sinh p'AY? sigh cagh cosh
+q”sinhy coshg+¢" cosly sing-yw"A¥? siAy  cosh  siph
+Y"A Y coshy sinfp-o”A™? tanr seéw sigh cagsh smph (6)
p"AY?sinh?y coshp+ g’ cosly costty”  sigh  simh
—"A*?sinh®y coshy sintp+y"AY? sinh2 sinp
-0"A*?tanho secho sinfy  sinp)
+aD(—A‘1’2tanha sinhp , AY? sinfy coshy sinhp+ siny sing ,
AY2sinh?y sinhp+ cosly sinq)

where x and x are the real and dual parts of, respectively, and
A=sinty + tanfy, A=0+e&0 =const.,p, §= cons Equations (5) and (6)
depend on only two parametetsand¢’ . Thus, equations (5) and (6) represent a
timelike line congruence itR; (for details on congruencies, see [2] [6]).

A timelike line congruence may be expressed asvi@! Letm=m(y,(/’) be a
position vector of the reference surface of a tikeeline congruence, and let
X = Xx(,¢") be a unit vector in direction of a timelike lineof the timelike line
congruence. Lety denote the position vector of an arbitrary point
Y =(y,,Y,,Y;) oOf the fixed timelike linex of the timelike line congruence in
IR}. Then we havey=m+ px. We know that the moment vector’ of the
vector X with respect to the origi® is x"=mxx and xxx"=m+<m x> x.
Then we may writd = p—(m, x). Thus, we have

Y= X@ )< X W)+ Ax@ )

=a(x, %, x)x(ax, % X+ a(x % YPNtA(x % ¥

=a’ (%, %, %)*X(X, %, %)+ ad(x % P<(x % ¥FA(¥ ¥ 3
=a’(%, %, %)X(X, %, %)*+A(%, % X).

(7)

Since(y,, ¥,, ¥,) are the coordinates of we have

y,=a’( p’AY?sinhy coshp sinhg- ¢ A*? singr sintp coslr¢”  sintc
—"A¥?sinh*y cosly sintp sinb-@w" A" sirfly  sifhp @)
+Y A2 coshy sinhp sinlg-o”A¥? tanti setlr sigh siph sigh
—al AY?tanho sinhp ;
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y, = a2( p’'AY?tanho cosly sinhg coslp- g A’> tash cagh sigh cogh
—"A¥?tanho sinly coshy sinp sinp-@"A' taoh sinki2 sinb
—"A"*tanho sinty sintp sinly
+o0"Alsectto sinfy sinhp-o"A¥? tanty seér cagh siplinhg
+g AV ?sectfo cosy sinp sinh )+al AY? sigh cagh siph  ginh s

)
and
A =a2( p’AY?tanho sinty sinhg costp- ¢ A’? tamh sigh sinh cosh
—"A¥?tanho sinfy cosl sinp sinp-¢" A" taoh cogh?2 Sirh
—-"A"?tanho cosly sinlg sinlp-c”A%? tadr seah  sihh  siph  sg
+o"A'sectf o siny cdsy sintf p+o”A"? secfio sinly sinp sinip )
+al(A"?sinh?y sinhp+ cosly sinky ).
(10)

If we take G=q+&q’=0, then the condition (4) gives ug=V,. Thus, from
equations (8), (9) and (10) we have

y, = —¢/"sini ¢ (sinfy + tanho )'-A tanb (siMy + tadr ~F (11)
Yy, =(-¢"tanho sinh@ +0" sedo sifly )(siAy+ tahm ~*

12
+Asinhy costy (sinfy + tarffto ¥? (12)
A =(—¢/Dtanha cosh@ +o" sedlv  sigh caﬁf) (stgh+  tagh™ 13)
+Asink?y (sinfy + tanfo 2 .
If we puto =0, g” # 0in equations (11), (12) and (13), then we get
y, = -4, (14)
y, =0 +Acoshy, (15)
__pcoshy .
Y, =0 —sinth +Asinhy . (16)

Equations (14), (15) and (16) give a two-paramtenily (linear congruence) of
the timelike straight lines which are the interg@ttof the planesy, =-¢" and
the timelike ruled surfaces given by

2
coskfzp(y2 - J - yZ sinfiy = ( (17)

coshy
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Thus we give the following theorem.

Theorem 3.1: During the dual hyperbolic conchoidal motion, inetltase of
o=0, 0" #0, the Study map inR? of the orbit which is drawn on th ' by

X =V, are the straight lines which are the intersectimishe planesy, = -¢"
and the timelike ruled surfaces given by

A
coshy

cosﬁz/l(yz - j - yZ sinfiy = (.

Now, let us takep = p+&p =0 in equation (4). In this case =V,. Thus from
equations (8), (9) and (10)

. =¢", (18)
y, =Asinhy, (19)
y; =Acoshy, (20)

are obtained. From equations (18), (19) and (20have
Y;—¥: =A% yi=¢r (21)
Thus we have the following theorem.

Theorem 3.2:During the dual hyperbolic conchoidal motidth/H ', in the case
of p= p+&p =0 in equation (4), the Study map of the orbit whgkirawn on
the H' by X =V, is the congruence,

;= ¥; =A% w=y

Let us now give the analysis of the orbit @ during the dual hyperbolic
conchoidal motion. We know that

VZ:[—sinh(ﬁ(sinﬁt[/ +tanﬁZl)_y2,— cospi tanh( sfigh “g‘ﬂ')%

) (22)
—sinhgy taanI( sinfy +tan3ril)y2]
From equation (22), we obtain
VZ:(—A‘”Zsinth, - A% tanlo cosly ,- AY? tamh si(M) (23)

and
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vy = (W A ¥ sinh’y coshy - AY? cosly +o"A¥? tanh selr  sipk
Y A tanho sinly coshy —w"AY? tantr  sigh
+0"A ¥ tanh o secho cospi—o"A"? seér cagh
+Y"A¥? tanho sindfy cosly —w"AY? tani cogh
+o0"A¥?tantf o secho sinly —o"AY? seér sigh )

, (24)

where v, and v, are the real and dual parts of,, respectively, and

A=sinfy + tanfo. Equations (23) and (24) depend on two parameters
¢ and " so equations (23) and (24) represent a timelike Gongruence in

IR?.
Let g denote the position vector of an arbitrary poﬁh(gl, O, g3) of a fixed

timelike line x of the timelike congruence ifR?. Then, considering equation (7)
we have

9=V, (@) VW@ )+, ). (25)
Since(g,, 9,, 9;) are the coordinates @& we have

g, =~y A tani? o — uAY? sinty

(26)
g, =0 "A'sectf o sinfy - uAY? tanr cogh (27)
g, = -¢"A'tanho + 0" A* secho sinly cogh—- uAY? taoh sipl, (28)
where A=sini? ¢ + tanif o
If we takeo =0, g"#0in equations (26), (27) and (28), then
g,=-U g,=0, g=0 cothy. (29)

In this case, if we choose= -k (k constant) in equation (29) we have

g, = ktanh* {&j (30)
9s

which is a Lorentzian helicoid.

If we takey =0, ¢"”# 0in equations (26), (27) and (28), then

g1=_w*' g, =", gaz—[ﬂ* cotho . (31)
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If we chooseu = -ko (k constant) in equation (31) we have

g, = ktanh* (&j ,
9s

which is also a Lorentzian helicoid.
4 Conclusions

This paper presents the conchoidal motion on tla lalgperbolic unit spheré’?o2
in the dual Lorentzian spacB’. The orbits drawn on the fixed dual hyperbolic
unit sphere by unit dual vectors of an orthonorbmste{vl, Vs, \73} are obtained.

This motion and its results carried to the Loreantziine spacdR’ by means of

the Study’'s mapping. The results may give a waylééine new motions and
contribute to the study of surface design, manufagy technology, robotic
research, and special and general theory of rélgtiand many other areas in
three-dimensional Lorentzian space.
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