

Gen. Math. Notes, Vol. 1, No. 2, December 2010, pp. 17-25 ISSN 2219-7184; Copyright ©ICSRS Publication, 2010 www.i-csrs.org Available free online at http://www.geman.in

$\delta \hat{g}$ -Closed Sets in Topological Spaces

¹M.Lellis Thivagar, ²B.Meera Devi and ³E.Hatir

¹Department of Mathematics, Arul Anandar College, Madurai-625514, Tamil Nadu, INDIA. E-mail: mlthivagar@yahoo.co.in

²Department of Mathematics, Sri.S.R.N.M College, Sattur-626203, Tamil Nadu, INDIA E-mail: abmeeradevi@gmail.com

³Department of Mathematics, Selcuk University, TURKEY.

(Received 24.10.2010, Accepted 9.11.2010)

Abstract

In this paper a new class of sets, namely $\delta \hat{g}$ -closed sets is introduced in topological spaces. We prove that this class lies between the class of δ -closed sets and the class of δg -closed sets. Also we find some basic properties and applications of $\delta \hat{g}$ -closed sets. We also introduce and study a new class of space namely $\hat{T}_{3/4}$ -space.

Keywords: generalized closed sets , δg -closed sets, δ -closure, \hat{g} -open sets and $\hat{T}_{3/4}$ -space.

AMS subject classification: 54C55.

1 Introduction

Levine [4], Mashhour et al.[8], Njastad[10] and Velicko[13] introduced semi-open sets, pre-open sets, α -open sets and δ -closed sets respectively.Levine[5] introduced generalized closed (briefly g-closed) sets and studied their basic properties.Bhattacharya and Lahiri[2], Arya and Nour[1], Maki et a [6,7], Dontchev and Ganster[3] introduced semi-generalized closed (briefly sg-closed) sets, generalized semi-closed (briefly gs-closed) sets, generalized α -closed (briefly α -closed) sets, α -generalized closed (briefly α -closed) sets and δ -generalized closed (briefly δg -closed) sets respectively. Veera Kumar [12] introduced \hat{g} -closed sets in topological spaces. The purpose of this present paper is to define a new class of closed sets called $\delta \hat{g}$ -closed sets and also we obtain some basic properties of $\delta \hat{g}$ -closed sets in topological spaces. Applying these sets, we obtain a new space which is called $\hat{T}_{3/4}$ -space.

2 Preliminaries

Throughout this paper (X,τ) (or simply X) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1 A subset A of a space (X,τ) is called a

- (i) semi-open set [4] if $A \subseteq cl(int(A))$.
- (ii) pre-open set [8] if $A \subset int(cl(A))$.
- (iii) α -open set [10] if $A \subset int(cl(int(A)))$.
- (iv) regular open set [11] if A = int(cl(A)).

The complement of a semi-open(resp.pre-open, α -open,regular open)set is called semi-closed (resp. semi-closed, α -closed, regular closed).

Definition 2.2 The δ -interior[13] of a subset A of X is the union of all regular open set of X contained in A and is denoted by $Int_{\delta}(A)$. The subset A is called δ -open[13] if $A = Int_{\delta}(A)$, i.e. a set is δ -open if it is the union of regular open sets. the complement of a δ -open is called δ -closed. Alternatively, a set $A \subseteq (X,\tau)$ is called δ -closed [13] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{ x \in X : int(cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U \}$.

Definition 2.3 A subset A of (X,τ) is called

- (i) generalized closed (briefly g-closed) set[5] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open set in (X,τ) .
- (ii) semi-generalized closed (briefly sg-closed) set [2] if $scl(A)\subseteq U$ whenever $A\subseteq U$ and U is a semi-open set in (X,τ) .
- (iii) generalized semi-closed (briefly gs-closed) set [1] if $scl(A)\subseteq U$ whenever $A\subseteq U$ and U is open set in (X,τ) .
- (iv) α generalized closed (briefly αg -closed) set [7] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X,τ) .
- (v) generalized α closed (briefly $g\alpha$ -closed) set [6] if α cl(A) \subseteq U whenever $A \subseteq U$ and U is α -open set in (X,τ) .
- (vi) δ -generalized closed (briefly δg -closed) set [3] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X,τ) .
- (vii) \hat{g} -closed set [12] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is a semi-open set in (X,τ) .

(viii) α - \hat{g} -closed (briefly $\alpha \hat{g}$ -closed) set [9] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a \hat{g} - open set in (X,τ) .

The complement of a g-closed (resp. sg-closed, gs-closed, α g-closed, β g-closed and β -closed and α g-closed) set is called g-open (resp. sg-open, gs-open, α g-open, β g-open, β g-open and α g-open).

Theorem 2.4 Every open set is \hat{g} -open.

Proof: Let A be an open set in X. Then A^c is closed. Therefore, $Cl(A^c) = A^c \subseteq X$ whenever $A^c \subseteq X$ and X is semi-open. This implies A^c is \hat{g} -closed. Hence A is \hat{g} -open.

Definition 2.5 A space (X,τ) is called a

- (i) $T_{1/2}$ -space [5] if every g-closed set in it is closed.
- (ii) $T_{3/4}$ -space [3] if every δg -closed set in it is δ -closed.
- (iii) $T_{\alpha \hat{q}}$ -space [9] if every $\alpha \hat{g}$ -closed set in it is α -closed.

3 $\delta \hat{g}$ -Closed Sets

We introduce the following definition.

Definition 3.1 A subset A of a space (X,τ) is called $\delta \hat{g}$ -closed if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is a \hat{g} - open set in (X,τ) .

Proposition 3.2 Every δ -closed set is $\delta \hat{g}$ -closed set.

Proof: Let A be an δ -closed set and U be any \hat{g} - open set containing A. Since A is δ -closed, $\operatorname{cl}_{\delta}(A) = A$ for every subset A of X. Therefore $\operatorname{cl}_{\delta}(A) \subseteq U$ and hence A is $\delta \hat{g}$ -closed set.

Remark 3.3 The converse of the above theorem is not true as shown in the following example.

Example 3.4 Let
$$X = \{a, b, c\}$$
, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\}$ δ -closed = $\{\phi, X, \{b\}, \{a, c\}\}\}$; $\delta \hat{g}$ -closed = $\{\phi, X, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}\}$ Here $\{b, c\}$ is $\delta \hat{g}$ -closed but not δ -closed in (X, τ) .

Proposition 3.5 Every $\delta \hat{g}$ -closed set is g-closed.

Proof: Let A be an $\delta \hat{g}$ -closed set and U be an any open set containing A in (X,τ) . Since every open set is \hat{g} -open and A is $\delta \hat{g}$ -closed, $\operatorname{cl}_{\delta}(A) \subseteq U$ for every subset A of X. Since $\operatorname{cl}(A) \subseteq \operatorname{cl}_{\delta}(A) \subseteq U$, $\operatorname{cl}(A) \subseteq U$ and hence A is g-closed.

Remark 3.6 An g-closed set need not be $\delta \hat{g}$ -closed set as shown in the following example.

Example 3.7 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{b\}, \{a, c\}\}\}$. Then the set $\{a\}$ is g-closed but not $\delta \hat{g}$ -closed in (X,τ) .

Proposition 3.8 Every $\delta \hat{g}$ -closed set is gs-closed.

proof: Let A be an $\delta \hat{g}$ -closed and U be any open set containing A in (X,τ) . Since every open set is \hat{g} -open, $cl_{\delta}(A)\subseteq U$ for every subset A of X. Since $scl(A)\subseteq cl_{\delta}(A)\subseteq U$, $scl(A)\subseteq U$ and hence A is gs-closed.

Remark 3.9 A gs-closed set need not be $\delta \hat{g}$ -closed as shown in the following example.

Example 3.10 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{a\}, \{a, c\}\}$. Then the set $\{c\}$ is gs-closed but not $\delta \hat{g}$ -closed in (X, τ) .

Proposition 3.11 Every $\delta \hat{g}$ -closed set is αg -closed.

proof: It is true that $\alpha \operatorname{cl}(A) \subseteq \operatorname{cl}_{\delta}(A)$ for every subset A of X.

Remark 3.12 A αg -closed set need not be $\delta \hat{g}$ -closed as shown in the following example.

Example 3.13 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}\}$. Then the set $\{b\}$ is αq -closed but not $\delta \hat{q}$ -closed in (X, τ)

Proposition 3.14 Every $\delta \hat{g}$ -closed set is δg -closed.

proof: Let A be an $\delta \hat{g}$ -closed set and U be any open set containing A.Since every open set is \hat{g} - open, $\operatorname{cl}_{\delta}(A) \subseteq U$, whenever $A \subseteq U$ and U is \hat{g} - open. Therefore $\operatorname{cl}_{\delta}(A) \subseteq U$ and U is open. Hence A is δg -closed.

Remark 3.15 A δg -closed set need not be $\delta \hat{g}$ -closed as shown in the following example.

Example 3.16 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{c\}, \{a, b\}\}$. Then the set $\{a\}$ is δg -closed but not $\delta \hat{g}$ -closed in (X,τ) .

Remark 3.17 The class of $\delta \hat{g}$ -closed sets is properly placed between the classes of δ -closed and δg -closed sets.

Proposition 3.18 Every $\delta \hat{q}$ -closed set is $\alpha \hat{q}$ -closed.

proof: It is true that $\alpha cl(A) \subseteq cl_{\delta}(A)$ for every subset A of (X,τ) .

Remark 3.19 A $\alpha \hat{g}$ -closed set need not be $\delta \hat{g}$ -closed as shown in the following example.

Example 3.20 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}\}$. Then the set $\{a\}$ is $\alpha \hat{g}$ -closed but not $\delta \hat{g}$ -closed in (X, τ) .

Remark 3.21 The following examples show that $\delta \hat{g}$ -closeness is independent from \hat{g} -closeness, sg-closeness, sg-closeness and α -closeness.

Example 3.22 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{a\}\}$. Then the set $\{a,b\}$ is $\delta \hat{g}$ -closed but neither \hat{g} -closed nor sg-closed and the set $\{a,c\}$ is $\delta \hat{g}$ -closed but neither $g\alpha$ -closed nor α -closed.

Also the another example Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Then the set $\{c\}$ is \hat{g} -closed,sg-closed and $g\alpha$ -closed but not $\delta\hat{g}$ -closed.

Example 3.23 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}\}$. Then the set $\{a\}$ is α -closed but not $\delta \hat{g}$ -closed in (X,τ) .

Remark 3.24 The following diagram shows the relationships of $\delta \hat{g}$ -closed sets with other known existing sets. $A \rightarrow B$ represents A implies B but not conversely.

Fig. 1

1. $\delta \hat{g}$ -Closed 2. δ -Closed 3. δg -Closed 4. \hat{g} -closed 5.g-closed 6. αg -closed 7.g s-closed 8.s g-closed 9. $g \alpha$ -closed 10. $\alpha \hat{g}$ -closed 11. α -closed 12.closed.

4 Characterisation

Theorem 4.1 The finite union of $\delta \hat{g}$ -Closed sets is $\delta \hat{g}$ -Closed.

proof: Let $\{A_i/i = 1, 2, ...n\}$ be a finite class of $\delta \hat{g}$ -Closed subsets of a space (X,τ) . Then for each \hat{g} -open set U_i in X containing A_i , $cl_{\delta}(A_i) \subseteq U_i$ i $\in \{1,2,...n\}$. Hence $\bigcup_i A_i \subseteq \bigcup_i U_i = V$. Since arbitrary union of \hat{g} -open sets in (X,τ) is also \hat{g} -open set in (X,τ) , V is \hat{g} -open in (X,τ) . Also $\bigcup_i cl_{\delta}(A_i) = cl_{\delta}(\bigcup_i A_i) \subseteq V$. Therefore $\bigcup_i A_i$ is $\delta \hat{g}$ -Closed in (X,τ) .

Remark 4.2 Intersection of any two $\delta \hat{g}$ -Closed sets in (X,τ) need not be $\delta \hat{g}$ -Closed since, in Example 3.22, $\{a,b\}$ and $\{a,c\}$ are $\delta \hat{g}$ -Closed sets but their intersection $\{a\}$ is not $\delta \hat{g}$ -Closed.

Proposition 4.3 Let A be a $\delta \hat{g}$ -Closed set of (X,τ) . Then $cl_{\delta}(A)$ -A does not contain a non-empty \hat{g} -closed set.

proof: Suppose that A is $\delta \hat{g}$ -Closed, let F be a \hat{g} -closed set contained in $\operatorname{cl}_{\delta}(A)$ -A. Now F^c is \hat{g} -open set of (X,τ) such that $A \subseteq F^c$. Since A is $\delta \hat{g}$ -Closed set of (X,τ) , then $\operatorname{cl}_{\delta}(A) \subseteq F^c$. Thus $F \subseteq (\operatorname{cl}_{\delta}(A))^c$. Also $F \subseteq \operatorname{cl}_{\delta}(A)$ -A. Therefore $F \subseteq (\operatorname{cl}_{\delta}(A))^c \cap (\operatorname{cl}_{\delta}(A)) = \phi$. Hence $F = \phi$.

Proposition 4.4 If A is \hat{g} -open and $\delta \hat{g}$ -Closed subset of (X,τ) then A is an δ -closed subset of (X,τ) .

proof: Since A is \hat{g} -open and $\delta \hat{g}$ -Closed, $\operatorname{cl}_{\delta}(A)\subseteq A$. Hence A is δ -closed.

Theorem 4.5 The intersection of a $\delta \hat{g}$ -Closed set and a δ -closed set is always $\delta \hat{g}$ -Closed.

proof: Let A be $\delta \hat{g}$ -Closed and let F be δ -closed. If U is an \hat{g} -open set with $A \cap F \subseteq U$, then $A \subseteq U \cup F^c$ and so $cl_{\delta}(A) \subseteq U \cup F^c$. Now $cl_{\delta}(A \cap F) \subseteq cl_{\delta}(A) \cap F \subseteq U$. Hence $A \cap F$ is $\delta \hat{g}$ -Closed.

Theorem 4.6 In a $T_{3/4}$ -space every $\delta \hat{g}$ -Closed set is δ -closed.

proof: Let X be $T_{3/4}$ -space. Let A be $\delta \hat{g}$ -Closed set of X. We know that every $\delta \hat{g}$ -Closed set is δg -closed. Since X is $T_{3/4}$ -space, A is δ -closed.

Proposition 4.7 If A is a $\delta \hat{g}$ -Closed set in a space (X,τ) and $A \subseteq B \subseteq cl_{\delta}(A)$, then B is also a $\delta \hat{g}$ -Closed set.

proof: Let U be a \hat{g} -open set of (X,τ) such that $B\subseteq U$. Then $A\subseteq U$. Since A is $\delta \hat{g}$ -Closed set, $\operatorname{cl}_{\delta}(A)\subseteq U$. Also since $B\subseteq \operatorname{cl}_{\delta}(A)$, $\operatorname{cl}_{\delta}(B)\subseteq \operatorname{cl}_{\delta}(cl_{\delta}(A))=\operatorname{cl}_{\delta}(A)$. Hence $\operatorname{cl}_{\delta}(B)\subseteq U$. Therefore B is also a $\delta \hat{g}$ -Closed set.

Theorem 4.8 Let A be $\delta \hat{g}$ -Closed of (X,τ) . Then A is δ -closed iff $cl_{\delta}(A)$ -A is \hat{g} -closed.

proof: Necessity. Let A be a δ -closed subset of X.Then $\operatorname{cl}_{\delta}(A)$ =A and so $\operatorname{cl}_{\delta}(A)$ -A= ϕ which is \hat{g} -closed.

Sufficiency. Since A is $\delta \hat{g}$ -Closed, by proposition 4.4, $\operatorname{cl}_{\delta}(A)$ -A does not contain a non-empty \hat{g} -closed set. But $\operatorname{cl}_{\delta}(A)$ -A= ϕ . That is $\operatorname{cl}_{\delta}(A)$ =A. Hence A is δ -closed.

5 Applications

We introduce the following definition.

Definition 5.1 A space (X,τ) is called $\hat{T}_{3/4}$ -space if every $\delta \hat{g}$ -Closed set in it is an δ -closed.

Theorem 5.2 For a topological space (X,τ) , the following conditions are equivalent.

- (i) (X,τ) is a $\hat{T}_{3/4}$ -space.
- (ii) Every singleton $\{x\}$ is either \hat{g} -closed or δ -open.

proof: (i) \Rightarrow (ii) Let $x \in X$. Suppose $\{x\}$ is not a \hat{g} -closed set of (X,τ) . Then $X-\{x\}$ is not a \hat{g} -open set. Thus $X-\{x\}$ is an $\delta \hat{g}$ -Closed set of (X,τ) . Since (X,τ) is $\hat{T}_{3/4}$ -space, $X-\{x\}$ is an δ -closed set of (X,τ) , i.e. $\{x\}$ is δ -open set of (X,τ) .

(ii) \Rightarrow (i) Let A be an $\delta \hat{g}$ -Closed set of (X,τ) . Let $x \in \text{cl}_{\delta}(A)$. By (ii), $\{x\}$ is either \hat{g} -closed or δ -open.

Case(i). Let $\{x\}$ be \hat{g} -closed. If we assume that $x \notin A$, then we would have $x \in \operatorname{cl}_{\delta}(A)$ -A, which cannot happen according to proposition 4.4. Hence $x \in A$. Case(ii) Let $\{x\}$ be δ -open. Since $x \in \operatorname{cl}_{\delta}(A)$, then $\{x\} \cap A \neq \phi$. This shows that $x \in A$.

So in both cases we have $\operatorname{cl}_{\delta}(A) \subseteq A$. Trivially $A \subseteq \operatorname{cl}_{\delta}(A)$. Therefore $A = \operatorname{cl}_{\delta}(A)$ or equivalently A is δ -closed. Hence (X,τ) is a $\hat{T}_{3/4}$ -space.

Theorem 5.3 Every $T_{3/4}$ -space is a $\hat{T}_{3/4}$ -space.

proof: The proof is straight forward since every $\delta \hat{g}$ -Closed set is δg -closed set.

Remark 5.4 The converse of the above theorem is not true as it can be seen from the following example.

Example 5.5 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}\}.(X, \tau)$ is a $\hat{T}_{3/4}$ -space but not a $T_{3/4}$ -space.

Theorem 5.6 Every $\hat{T}_{3/4}$ -space is a $T_{\alpha g}$ -space.

proof: Let (X,τ) be a $\hat{T}_{3/4}$ -space, then every singleton is either \hat{g} -closed or δ -open. Since every δ -open is α -open, then every singleton is either \hat{g} -closed or α -open. Hence (X,τ) is a $T_{\alpha\hat{g}}$ -space.

Remark 5.7 The following example supports that the converse of the above theorem is not true.

Example 5.8 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}\}$. (X,τ) is a $T_{\alpha \hat{g}}$ -space but not a $\hat{T}_{3/4}$ -space.

Remark 5.9 $\hat{T}_{3/4}$ -space and $T_{1/2}$ -space are independent of one another as the following examples show.

Example 5.10 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}\}$. (X,τ) is a $\hat{T}_{3/4}$ -space but is not a $T_{1/2}$ -space.

Example 5.11 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$. (X,τ) is a $T_{1/2}$ -space but not a $\hat{T}_{3/4}$ -space.

Remark 5.12 The following diagram shows the relationships $\hat{T}_{3/4}$ -space with other known existing spaces. $A \rightarrow B$ represents A implies B but not conversely

Fig. 2

1. $\hat{T}_{3/4}$ -space 2. $\mathbf{T}_{3/4}$ -space 3. $\mathbf{T}_{\alpha g}$ -space 4. $\mathbf{T}_{1/2}$ -space

References

- [1] S.P Arya and T Nour, Characterizations of S-normal spaces, *Indian J.Pure.Appl.MAth.*,21(8)(1990), 717-719.
- [2] P Bhattacharya and B.K Lahiri, Semi-generalized closed sets in topology, *Indian J.Math.*, 29(1987), 375-382.
- [3] J Dontchev and M Ganster, On δ -generalized closed sets and $T_{3/4}$ -spaces, $Mem.Fac.Sci.Kochi\ Univ.Ser.A,\ Math.,\ 17(1996),15-31.$
- [4] N Levine, Semi-open sets and semi-continuity in topological spaces Amer Math. Monthly, 70(1963), 36-41.
- [5] N Levine, Generalized closed sets in topology *Rend.Circ.Mat.Palermo*, 19(1970) 89-96.
- [6] H Maki, R Devi and K Balachandran, Generalized α -closed sets in topology, Bull-Fukuoka Uni.Ed part III, 42(1993), 13-21.
- [7] H Maki, R Devi and K Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci.Kochi Univ. Ser. A. Math., 15(1994), 57-63.
- [8] A.S Mashhour, M. E Abd El-Monsef and S.N. El-Debb, On precontinuous and weak precontinuous mappings, *Proc.Math. and Phys.Soc. Egypt* 55 (1982), 47-53.
- [9] M. E Abd El-Monsef, S.Rose Mary and M. Lellis Thivagar, On $\alpha \hat{G}$ -closed sets in topological spaces, Assiut University Journal of Mathematics and Computer Science, Vol 36(1),P-P.43-51(2007).
- [10] O Njastad, On some classes of nearly open sets, $Pacific\ J\ Math.,\ 15(1965),\ 961-970.$
- [11] M Stone, Application of the theory of Boolian rings to general topology, *Trans. Amer. Math. Soc.*, 41(1937), 374-481.
- [12] M.K.R.S. Veera Kumar, \hat{g} -closed sets in topologycal spaces, *Bull. Allah. Math. Soc.*, 18(2003), 99-112.
- [13] N.V. Velicko, H-closed topological spaces, Amer. Math.Soc. Transl., 78(1968), 103-118.