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Abstract
The purpose of this paper is to prove some coincidence point theorems for
non-linear hybrid contraction involving two pairs of single-valued and multi-
valued mappings on complete metric space.
Keywords: Coincidentally commuting mapping, Hybrid Contraction, Multi-
Valued Mappings, Metrical fized point.

1 Introduction

Nadler [8] was the first mathematician who obtained a set-valued version of
Banach contraction principle. Since then there is multitude of metrical fixed
point theorem for set valued mappings which are indeed extension of various
singled-valued metrical fixed point theorems.The work of Asina-Massa-Rous
[1], Circ [3], Bos and Mukherjee [2], Reich [11] [12], Kaulkud and Pai [7] are
special mention in this context. Hausdorff metric is ordinary distance functions
between points and set.

2 Preliminaries and Notations
A nonempty subset S of a metric space (X,d) is said to be proximinal if for

each x € X there exists a point y € S such that d(x,y) = d(z,S). It is well
known that every compact set is proximinal. We denote
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CB(X) ={S: S is closed bounded subset of X},
PB(X) ={S:S is proziminal bounded subet of X},
C(X)={S:Sis compact subset of X}

Since every proximinal set is closed, we have C'(X) C PB(X) C CB(X).
Kaneko and Sessa [6]extended the notion of weak commutativity for single-
valued mappings to the settings of single-valued and multi-valued mappings
whereas for compatible mappings the same is done by Singh et al [13]. Now
we need to recall relevant definitions.

Definition 2.1 [6] The mappings T and F' are said to be weakly commuting
it for all v € X, fTx € CB(X) and H(T fz, fTx) < d(fx,Tx), where H is
the Hausdorff metric defined on CB(X).

The Hausdorff H on CB(X) induced by the metric d is defined as
H(A, B) = maz {supyea d(z, B), supyep d(y, A)}
for all A, B € CB(X),where d(z,A) = infyea d(z, y).

It is well known that (C'B(X), H) is a metric space, and if a metric space
(X, d) is complete, then so is (CB(X), H).

Definition 2.2 [6/ The mappings T and F are said to compatible if and
only if fTx € CB(X) forz€ X and H(T fx,, fTz,) = 0 as n— oo, whenever
{z,} C X such that Tx, — M € CB(X) and fx, —t € M asn — oc.

Kaneko and Sessa [6] has furnish an example which shows that compatibil-
ity does not implies weak commutativity. Pathak [9] introduced the concept of
weak compatible mappings for a hybrid pair of single-valued and multi-valued
mappings as follows:

Definition 2.3 [9] The mappings [ and T are said to be f-weak compatible
if fT(X) € CB(X) for all z € X and the following limits exists and satisfy
the relevant inequality.

iy oo H(f T, Tf ) < limy oo H(T f,,, Tay),

where{x,} is a sequence in X such that f(x,) — t and Tz, — M €
CB(X) as n — oc.

Compatible pairs are weakly compatible but not conversely. FExamples
supporting this fact can be found in Pathak [9]
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Definition 2.4 [}/ Let K be a non empty subsets of a metric space (X, d)
where F': K — CB(X) and T : K — X. Then the pair (F,T) is said to
weakly commuting if for every x,y in K such that x € Fy and Ty € K, imply
that d(Tz, FTy) € d(Ty, Fy).

Definition 2.5 [}/ Let (X,d) be a metric space. A mappings T : X —
CB(X) is said to be continuous at xy € X if for any €> 0 there exists a 6 > 0
such that H(Tx,Txy) <€ whenever d(x,zo) < 0. If T is continuous at every
point of X, then we say that T is continuous on X.

Definition 2.6 [5] A pair of mappings (S,T) is said to be coincidently
commuting (resp.weakly compatible) if they commute at coincidence points.

Lemma 2.7 [8] Let A, B € CB(X) and k > 1.Then for each a € A, there
exists a point b € B such that d(a,b) < kH(A, B).

3 Main Result

In this section we give some coincidence and fixed points theorems for non-
linear hybrid generalized contractions using the notion of weak compatible
mappings introduce by Pathak et al [10].

Theorem 3.1 Let S, T be two multi-valued continuous mappings of a com-
plete metric space (X,d) in CB(X), whereas I, J be two continuous self
mappings of X. Suppose that (S,I) and (T,J) are compatible mappings with
S(X)C J(X) and T(X) C I(X) satisfying

H(Sz,Ty) < hlaL(Iz, Jy) + (1 —a)N(lz, Jy)] (3.1.1),
for all z,y in X, (0 < h<1,0<a<1), where

L(Iz, Jy) = maz{d(Iz, Jy),d(Iz, Sx),d(Jy, Ty), 5ld(Ix, Ty)+d(Jy, Sx)]}
and

N(Iz, Jy)= [maz{d*(Ix, Jy),d(Iz, Sx)d(Jy, Ty), d(Iz, Ty)d(Jy, Sz),

N

N = —

(7, S2)d(Jy, S2)), 3 (T, Ty)d(Jy, Ty))]

Then there exists a point ¢t € X such that It = Jt € St NTt, i.c the point
t is a coincidence point of I, J, S and T.

Proof: Assume k = ﬁ Let o € X and y; be an arbitrary point in Sx.Then
there is x; € X such that Jz; = y; which is possible as S(X)C J(X). By
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Lemma 2.7 we can find a yo € T'zy such that d(y1,y2) < kH(Sxg,Tz1). Let
us set yo = Ixg as T(X) C I(X). Thus in general one can choose yoni1o =
Ixonio € Txopyr and youp1 = Jxoni1 € Sxe, such that d(yenio, dyoni1) <
kH(Sxon, Txoni1) for m = 1,2,3........... If h = 0, the result is obvious, hence
we consider the case when h # 0. Now, for n > 1 we have

d(y2n+27y2n+1) = d(J$2n+1, [$2n+2) < k’H(Sflfzmean)

< VhlaL(Ize,, Jroni1) + (1 — a)N(Ixa,, Jroni1)],

where
L(II%, J$2n+1) = maq;{d([xgn, J«'U2n+1), d(lx2n7 S«’Em)u
1
d(Jxon i1, T2n11), §[d([5€2m Txoni1) + d(Jxoni1, Son)]}
< max{d(ygn, Z/2n+1), d(y2n+1, d(y2n+2)}
and

N([fﬂzm J$2n+1) < [m&x{dZ([@m J952n+1), d(h?Qm SxZn)d(JxQnJrla Tx2n+1)7

1
d([l’gn, Tan—i—l)d(JxQn—&—h Sx2n)a §(d(1x2n7 Sx?n)d(JxQn-l—la SxZn))7

NG

1
id(fﬂﬂzm T9€2n+1)d(J$2n+1, Tl’znﬂ)}]

< [maz{d*(Yan; Y2ns1), dY2ns Y2ni1)d(Yons1, Yonia), 0,0,

1
5((d(?/2n> Yon+1) + A(Yant1, Yon+2) ) A(Y2nt1, Yont2) H 2 -

N

[SIE

< [maﬂf{dz(?bn, y2n+1)7 d(y2n7 y2n+l)d(y2n+l> y2n+2)7 d2(1/2n+1, y2n+2)}] .

Suppose on contrary that d(yeni1,Yoni2) > Vhd(Yon, Yons1) for some n €
N. Then we have d(yan+1, Yoni2) < d(Y2ns1, Yonr2) which is contradiction and
SO

d(Yon+1, Yont2) < VEA(Y2n+1, Yon) (3.1.2)
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Similarly one can show that
d<y2n+17 an) S \/hd(ana an—l)

which in general yields that

A(Yni1,Yn) < Vhd(Yn,yn—1) for all n establishing that the sequence y,
described by

{IZL’(),JZEhIZ'Q,JCL’n .......... JxQn_l,]xQn,Jx2n+1 .................... } (313)

is a Cauchy sequence and get limit ¢ in X. Hence the sequences {/z5,} and
{Jx9n+1} which are subsequences of {y,} also converge to the point ¢t. Also
by the fact that H(Sxa,, Troni1)< hd(Iza,, Jxe, 1) together with (3.1.3)one
can conclude that

{Sl’o,TiL'l,S.I'Q,TLCQ, ........... Tl'gn,l,SCCQn,TZCQn+1 ............. } (314)

is a Cauchy sequence in (CB(X),H). Hence he sequences {Szs,} and
{Tx9p 41} converge to some M in CB(X). Now, one can have

d(t, M) < d(t, [xe,)+d(Ixe,, M) < d(t, [x2,)+H(Tx2—1, M) — 0asn — oo,

establishing that ¢ € M as M is closed. Now, by the weak compatibility of
(S, 1), one can write

limp oo H(ISxopn, STxa,) < limy oo H (SIxo,, STay,) (3.1.5)

limp—ood(ISTon, 179,) < limy, oo H(STx,, STay) (3.1.6)

Using the above mentioned inequality, we obtained

limy oo A(L oy, [9y,) < limy, oo (112, [STo,)+limy, oo A(1SToy,, [22,)

< limp oo d(I 129, [SToy) + limy, oo H(STx,, STay,) (3.1.7)

Since S and [ are continuous, making n — 00,(3.1.5) (3.1.6)(3.1.7) we get
H(I(M), St) < H(St, M) and d(It,t) < H(St, M)

Similarly using the continuity and weak compatibility of the pair (T, J) one
can show that
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H(J(M), Tt) < H(Tt,M) and d(Jt,t) < H(Tt, M)
Now
d(Jt, Tt) < d(Jt, JIxe,) + d(J1xza,, Tt)
S d(Jt, JILL’Qn) + H(JTIQn_17 Tt)
S d(Jt, JIIQn) +H(JTZEQTL_1, TJIQn_l) +d(TJZL'2n_1, Tt)
Which on letting n— oo, reduces to

d(Jt,Tt) < H(Tt, M)
Now using (3.1.1) we have

H(Safgn, Tt) S h[aL([ﬂTgn, Jt) + (1 — (I)N([[L’Qn, Jt)],
Where

L(Izay,, Jt) < max{d(Ixe,, Jt), d(Ixe,, Sxay),d(Jt, Tt),
1
5[61([5(]2”, Tt) + d(Jt, ][L‘Qn) + d([l’gn7 SZEQn)]}

which on letting n — oo, reduce to

Uit oo L(1220, Jt) < maz{H(Tt,M),0, H(Tt, M), =[H(Tt, M)+H(Tt, M)+0]}

DN —

= H(M,Tt)
and

N(Iwgn, Jt) < max{d*(Ixy,, Jt), d(I79,, Sxapn)d(Jt, Tt),
d([l’gn, Tt)[d(Jt, IJ/’Qn) + d(]xgn, Sl’gn)],

%d(u%, Swan)[d(Jt, Twan)+d(Tzam, Stan)], %[d([xgn, TH)d(Jt, TN,

which on letting n — oo, reduces to
iy, sooN (179, Jt) < [maz{d*(t, Jt),d(t, M)d(Jt, Tt),d(t, Tt)[d(Jt,t)+d(t, M)],

St M)A(Tt, 1)+ d(t, M), S[d(e, To)d(It, T}

< [maz{H*(Tt, M),0, H(Tt, M)[H(Tt, M) + 0], 0, %HQ(Tt, M)},
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< H(M,Tt) (3.1.8)

Thus
H(M,Tt) = limy, oo H (Sxoy, Tt)

< hla limy, oo L(122,, Jt) + (1 — a)limy, oo N (2o, Jt)]
< hlaH(M,T#) + (1 — a)H(M, Tt)] = hH (M, Tt)
which implies that H(M,Tt) = 0. Therefore d(Jt,Tt) = 0 which in turn

yields Jt € T't as Tt is closed. Similarly, one can also show that It € St.
Now it remains to show that It = Jt. For this we consider

d(It, Jt) < d(It, STx,) + H(SIxa,, TIxsn-1) + d(TJ20,_1, Jt)

< d(It, STzo,)+d(TJxen 1, Jt)+hla mazd([*wey,, J*Ton_1), d([*Ta,, STxa,),
d(J2$2n_1, Tszn_l), %[d([QZL’Qn, Jt)—l—d(Jt, TJQL’Qn_l)—i-d(JQ.Z'Qn_l, It)—Fd([t, SIQZzn)]
+(1 — a)[maz{d*(I*z9,, J*Ton_1), d(I*Tan, ST, )d(J*Topn_1, TJT2,_1),

(d(Iszm J25€2n71)+d(u725172n717 TJ$2n71))(d(J2$2n717 125172n)+d([25€2n, Slxsy,)),

d(]2l’2n, SIxQn)d(J2x2n—17 SIxQn)7

(NN ORI

[d(ﬂ%m J2$2n—1) + d(ﬂ%n—l, TJI2n—1)]d(J2=T2n—1, TJxQn—l)})]%

which on letting n — oo, reduces
d(It,Jt) < hd(It,Jt)
yielding thereby It = Jt
Thus we have shown that It = Jt € St N1t establishing that ¢ is a coinci-
dence point of I, J,S and T.

This completes the proof.
In order to obtain a fixed point result corresponding to Theorem 3.1 one
requires additional hypotheses. In this regard the following lemma from Pathak

et al[10] is useful.

Lemma 3.2 [10] Let S,T : X — CB(X) and I,J : X — X be continuous
mappings if Tw = Jw € Tw N Sw for some w € X and Theorem 3.1 holds for
all x,y in X, then JTw = TJw, and [Sw = STw.
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Proof: Let x, = w for all n € N. Hence if Iw=Jw € Tw N Sw, then by
weak compatibility of (S, 1) and (7, J) one can have

H(ISw,SIw) < H(STw, Sw) (3.2.1),

H(JTw, TJw) < H(TJw,Tw),

d(IPw, Jw) < d(IP*w, ISw) + d(ISw, [w) + d(Iw, Jw) < H(STw, Sw),
and similarly

d(Tw, J*w) < H(STw, Sw).
Now

H(STw, Sw) = H(STw, Tw)

< hlaL(IPw, Jw) + (1 — a)N(I*w, Jw)] (3.2.2)

where

L(IPw, Jw) = max{d([*w, Jw),d([*w, STw),d(Jw, Tw), %[d(.ﬂw, Tw)+d(Jw, STw)]}
< mazx{H(STw,Sw), H(STw, Sw),0, H(SITw, Sw)},
and

N(IPw, Jw) = [maz{d*(I*w, Jw), d(I*w, STw)d(Jw, Tw), d(I*w, Tw)d(Jw, STw),

%[d(ﬂw, STw)d(Jw, STw), %[d(IQw, Tw)d(Jw, Tw)}]%

< [maz{H?*(STw, Sw),0, H*(STw, Sw), %HQ(S]w, Sw),0, }z,

= H(STw, Sw)
which in turn yields that

H(SITw,Sw) = H(SITw, Tw) < hla.H(STw, Sw) + (1 — a)H(STw, Sw)]

= hH(SIw, Sw)
which is a contradiction.Therefore, we have STw = Sw.Hence from (3.2.1)
STw = ISw
Similarly we can show that T Jw = JTw.
Now we formulate a fixed point theorem as follows:
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Theorem 3.3 Let S, T, I and J satisfy all the conditions of Theorem 3.1.
Assume that for each x € X either

(i)Ix # IPx = Iz ¢ Sx(resp, Jv # J*v = Jo ¢ Tx

(it)[x € Sx = ["x — wforsome w € X (respJz € Tx = J'z — w'

for some w' € X, then S, T, I and J have a common fixed point in X.

Proof: By Theorem 3.1 there exists a point z in X such that Iz = Jz €
SzNTz Since Iz € Sz, Lemma 3.2 yields ISz = S1z. If (i) holds, Iz =
I?2 € 1Sz = SIz. Thus w = Iz is the fixed point of I and S.

If (ii) holds, then it is clear that Jw = w as I is continuous. Now we assert
that I"z € SI" 'z for each n. To verify this, we consider 2z = Iz € ISz =
SIz. Using Lemma3.2 (w = [z) we can have I3z = [I%2 € I(ISz) = SI?z.
Thus inductively we get 1"z = SI" 1z and hence the continuity implies that

d(w, Sw) < d(w,I"z) + d(I"z, Sw)

<d(w, ["z) 4+ d(SI" 'z, Sw)
which tends to zero as n — oo. Hence w = ITw € Sw as Sw is closed.
Similarly one can show that w' = Jw' € Tw'.
Now using contraction condition, one can obtains

d(w,w") = d(Iw, Jw')
= H(Sw,Tw')

< hlad(Iw, Ju') + (1 — a)d(ITw, Jw')]

< hd(w,w’)
implying thereby w = w’

Thus we prove have that w = [w = Jw € SwNTw. Hence w is a common
fixed point of S, 7,1 and J.

If we replace weak compatibility[6],[10] by weak commutativity due to
Hadzic-Gajic [4], then the continuity of S and T can be relaxed and no ad-
ditional hypotheses are needed to ensure the existence of coincidence point
which appears to be a noted improvement over Theorem 3.1.

Theorem 3.4 Let S, T, I, J, X and CB(X) be the same as in Theorem
3.1. If we replace the weak compatibility with weak commutativity in Theorem
3.1 with I and J continuous then there is a point t in X such that It = Jt €
St NTt.
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Proof: Proceeding as in Theorem 3.1, we can show that the subsequences
lxo,, Jxo, 1 converge to some t in X whereas the sequences Sxo,, Txo,11
converge to some M in CB(X).

Since J is continuous, sequence J/lxy, converges Jt. Now, using the
weak commutativity of (7', .J), we have [xs, € Tz, 1 and so

d(J Iz, TITon—1) = d(JTTon—1,TJxon-1) < d(JTon—1,T22p-1) < d(I 22y, JT2p—1)

which on letting n — oo, reduce to
d(Jt,TJZL’zn_1> — 0

Similarly, using the continuity of I and weak commutativity of (S, 1), we
can show that

d(It,SIzy,) — 0 as n — 0.

Now consider

d(It, Jt) < d(It, STxsn) + H(SIxom, TJwon1) + d(TJan-1, Jt)
< d(It, STzen)+d(Jt, T Jxe, 1)+h{[a maxd(I*Ton, J?Ton_1), d(I*Ton, STxa,),

d(JZ‘TQn,l, TJ.QZQn,l), %[d([2$2n, Jt) +d(Jt, TJLUanl) +d(g]2l’2n,1, [t) +
d(It,S1xe,)]}

+(1 — a)[maz{d*(I*zay, J*Ton_1), d(I*Tan, STz, )d(J*Ton_1, T 22,1,

1
[d([2$2m TJxanl)d(szanly SIxQn)]a §d(12$2n7 S[$2n)d(¢]2$2n71, S[fl’zn),

1 1
B [[2532717 TJanfl)d<J2x2n717 TJxon-1)})]2

which on letting n — oo, reduces

d(1t, Jt) < hd(It, Jt), yielding thereby [t = Jt.
Now

d(Jt,St) < d(Jt, TJxsn1) + H(TJxopn_1, St)
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S d(Jt, JTZL’Qn_l) + d(JTl’Qn_l, TJJ]Qn_l) + H(ST, TJ[L‘Qn_l, )
< d(Jt,JTxon_1) + d(JTxon 1, TJx2,_ 1) + hla maz{d(It, J*ze, 1),
d(It, St)d(J*xon—1, TJxon-1), 5|d(It, T Jxop_1) + d(J*2,_1, ST)]}

+(1 — a)[maxd*(I*t, Jx3, ), d(It, St)d(J*zo, 1, TJ o, 1)

1
d([t, TJxanl)d(J%TQn,l, St)], §d(1t, St)d(Jngn,l, St)

N =

1
§d(lt, Tngn_l)d(JQ.I’Qn_l, TJZL‘Qn_l)] }]

which on letting n — oo, reduce to
d(Jt, St) < hd(Jt, St),
yielding thereby Jt € St, as St is closed.

Similarly one can show that It € Tt . Thus we have shown that It = Jt €
StNnTt.

Remark:

(a) If we replace CB(X) by PB(X)(with ISz, JTx € PB(X))and choose
L(z,y) = d(Iz,Jy),a = 1 in Theorem 3.1 then we get an improve version of
Corollary 2.2 of Pathak et al.[10] as it involves four mappings instead of two.

(b) If we choose a = 1 in Theorem,then we get sharpen version of Theorem 2
of [9] which in tern generalizes the main result of Kaneko and Sessa|6]

Related Example: We present example to discuss the validity of the hy-
potheses of main results.

Example: Let X = [0,00) be endowed with the Euclidean metric d(z,y) =
|z —y |.Let I(X)=2(2* +2?), J(X)= 2(2? + 2), T(X) = [0,2? + 2], S(X) =
[0, 2% + 2] for each > 0. Then I,J,S and T are continuous and I(X) =
J(X)=T(X)=S(X). Since Sz,,, Tz, — [0, 3] and Iz, Jz, — 3 if z,, — 1.

We observe by the verification that

d(ISzy, Ix,) =0, H(ISxz,,SIx,) — 52, H(SIz,, Sx,) — 80,
d(JTxy, Jz,) — 0, H(JTz,, TJx,) — 17, H(TJz,, Tx,) — 8,
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Therefore (S, 1) and (T, J) are weak compatible but they are not compat-

ible. Also since

H(Sz, Ty) = | 2" —y* |

(z2+y)
(x24y+1)

|2? —y[la* +y+1]

2(z* +y)3 |2t
322 +y+ 1)2

—y+a’ -y

< =d(Iz,Jy) = hlaL(Iz, Jy) + (1 — a)N(Iz, Jy)]

[SVI N\

for all z,y € X, where h € [3,1] and 0 < a < 1. Thus all the conditions

of Theorem 3.1 are satisfied and 0 is the unique common fixed point of S T,
and J.
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