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Abstract

The t-pebbling number, ft(G), of a connected graph G, is the smallest pos-
itive integer such that from every placement of ft(G) pebbles, t pebbles can be
moved to any specified target vertex by a sequence of pebbling moves, each move
taking two pebbles off a vertex and placing one on an adjacent vertex. A graph
G satisfies the 2t-pebbling property if 2t pebbles can be moved to a specified
vertex when the total starting number of pebbles is 2ft(G) − q + 1 where q is
the number of vertices with at least one pebble. In this paper, we are going to
show that the graph J2,m (m ≥ 3) satisfies the 2t-pebbling property.
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1 Introduction

An n-dimensional cube Qn, or n-cube for short, consists of 2n vertices labelled
by (0, 1)-tuples of length n. Two vertices are adjacent if their labels are dif-
ferent in exactly one entry. Saks and Lagarias (see [1]) propose the following
question: suppose 2n pebbles are arbitrarily placed on the vertices of an n-
cube. Does there exist a method that allows us to make a sequence of moves,
each move taking two pebbles off one vertex and placing one pebble on an ad-
jacent vertex, in such a way that we can end up with a pebble on any desired
vertex? This question is answered in the affirmative in [1].
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A configuration C of pebbles on a graph G = (V,E) can be thought of as a
function C : V (G) → N ∪ {0}. The value C(v) equals the number of pebbles
placed at vertex v, and the size of the configuration is the number |C| =∑

v∈V (G) C(v) of pebbles placed in total on G. Suppose C is a configuration

of pebbles on a graph G. A pebbling move (step) consists of removing two
pebbles from one vertex and then placing one pebble at an adjacent vertex.
We say a pebble can be moved to a vertex v, the target vertex, if we can apply
pebbling moves repeatedly (if necessary) so that in the resulting configuration
the vertex v has at least one pebble.

Definition 1.1 ([8]) The t-pebbling number of a graph G, ft(G), is the least
n such that, for any configuration of n pebbles to the vertices of G, we can move
t pebbles to any vertex by a sequence of moves, each move taking two pebbles
off one vertex and placing one on an adjacent vertex. Clearly, f1(G) = f(G),
the pebbling number of G.

Fact 1.2 ([12]) For any vertex v of a graph G, f(v,G) ≥ n where n =
|V (G)|.

Fact 1.3 ([12]) The pebbling number of a graph G satisfies

f(G) ≥ max{2diam(G), |V (G)|}.

Saks and Lagarias question then reduces to asking whether f(Qn) ≤ n, where
Qn is the n-cube. Chung [1] answered this question in the affirmative, by
proving a stronger result.

Theorem 1.4 ([1]) In an n-cube with a specified vertex v, the following are
true:

• If 2n pebbles are assigned to vertices of the n-cube, one pebble can be
moved to v.

• Let q be the number of vertices that are assigned an odd number of pebbles.
If there are all together more than 2n+1− q pebbles, then two pebbles can
be moved to v.

Definition 1.5 ([3]) Given the t-pebbling of G, let p be the number of peb-
bles on G, let q be the number of vertices with at least one pebble. We say
that G satisfies the 2t-pebbling property if it is possible to move 2t pebbles
to any specified target vertex of G starting from every configuration in which
p ≥ 2ft(G)− q + 1 or equivalently p + q > 2ft(G) for all t.

If q stands for the number of vertices with an odd number of pebbles, we call
the property, the odd 2t-pebbling property.
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Definition 1.6 ([3]) We say a graph satisfies the odd 2t-pebbling property
for all t. If, for any arrangement of pebbles with at least 2ft(G)−r+1 pebbles,
where r is the number of vertices in the arrangement with an odd number
of pebbles, it is possible to put 2t pebbles on any target vertex using pebbling
moves.

It is easy to see that a graph which satisfies the 2t-pebbling property also
satisfies the odd 2t-pebbling property for all t.
With regard to t-pebbling number of graphs, we find the following theorems:

Theorem 1.7 ([9]) Let Kn be the complete graph on n vertices where n ≥ 2.
Then ft(Kn) = 2t + n− 2.

Theorem 1.8 ([2]) Let K1 = {v}. Let Cn−1 = (u1, u2, · · · , un−1) be a
cycle of length n − 1. Then the t-pebbling number of the wheel graph Wn is
ft(Wn) = 4t + n− 4 for n ≥ 5.

Theorem 1.9 ([5]) For G = K∗s1,s2,··· ,sr ,

ft(G) =

{
2t + n− 2, if 2t ≤ n− s1

4t + s1 − 2, if 2t ≥ n− s1
.

Theorem 1.10 ([9]) Let K1,n be an n-star where n > 1. Then ft(K1,n) =
4t + n− 2.

Theorem 1.11 ([9]) Let Cn denote a simple cycle with n vertices, where

n ≥ 3. Then ft(C2k) = t2k and ft(C2k+1) = 2k+1−(−1)k+2

3
+ (t− 1)2k.

Theorem 1.12 ([9]) Let Pn be a path on n vertices. Then ft(Pn) = t(2n−1).

Theorem 1.13 ([9]) Let Qn be the n-cube. Then ft(Qn) = t(2n).

With regard to the 2t-pebbling property of graphs, we find the following the-
orems:

Theorem 1.14 ([12]) All diameter two graphs satisfy the two-pebbling prop-
erty.

Theorem 1.15 ([3]) All paths satisfy the 2t-pebbling property for all t.

Theorem 1.16 ([3]) All even cycles satisfy the 2t-pebbling property for all
t.

Theorem 1.17 ([3]) The n-cube Qn satisfies the 2t-pebbling property for
all t.
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Theorem 1.18 ([4]) Let Kn be a complete graph on n vertices. Then Kn

satisfies the 2t-pebbling property for all t.

Theorem 1.19 ([5]) The star graph K1,n, where n > 1 satisfies the 2t-
pebbling property.

Theorem 1.20 ([5]) Any complete r-partite graph satisfies the 2t-pebbling
property.

In Section 2, we state the pebbling results of the Jahangir graph J2,m and
then we prove that J2,m satisfies the 2t-pebbling property in Section 3 and
Section 4.

2 Jahangir Graph Definition and its Known

Pebbling Results

Definition 2.1 ([11]): Jahangir graph Jn,m for m ≥ 3 is a graph on nm+1
vertices, that is, a graph consisting of a cycle Cnm with one additional vertex
which is adjacent to m vertices of Cnm at distance n to each other on Cnm.

Labeling for J2,m (m ≥ 3): Let v2m+1 be the label of the center vertex and
v1, v2, · · · , v2m be the label of the vertices that are incident clockwise on cycle
C2m so that deg(v1) = 3.

The t-pebbling number of Jahangir graph J2,m (m ≥ 3)is as follows:

Theorem 2.2 ([6, 8]) For the Jahangir graph J2,3, ft(J2,3) = 8t.

Theorem 2.3 ([6, 8]) For the Jahangir graph J2,4, ft(J2,4) = 16t.

Theorem 2.4 ([6, 8]) For the Jahangir graph J2,5, ft(J2,5) = 16t + 2.

Theorem 2.5 ([6, 7, 8]) For the Jahangir graph J2,m, ft(J2,m) = 16(t −
1) + f(J2,m) where m ≥ 6.

Notation 2.6 Let p(v) denote the number of pebbles on the vertex v and
p(A) denote the number of pebbles on the set A ⊆ V (G). We define the sets
S1 = {v1, v3, · · · , v2m−1} and S2 = {v2, v4, · · · , v2m} from the labeling of J2,m.

Remark 2.7 Consider a graph G with n vertices and 2f(G)− q+ 1 pebbles
on it and we choose a target vertex v from G. If p(v) = 1, then the number of
pebbles remained in G is 2f(G) − q ≥ f(G), since f(G) ≥ n and q ≤ n, and
hence we can move the second pebble to v. Let us assume that p(v) = 0. We
let p(u) ≥ 2 where uv ∈ E(G). We move one pebble to v from u. Then the
graph G has at least 2f(G)− q + 1− 2 ≥ f(G), since f(G) ≥ n and q ≤ n− 1,
and hence we can move the second pebble to v. So, we always assume that
p(v) = 0 and p(u) ≤ 1 for all uv ∈ E(G) when v is the target vertex.
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3 The 2-Pebbling Property of the Jahangir

Graph J2,m

Theorem 3.1 The graph J2,3 satisfies the 2-pebbling property.

Proof: The graph J2,3 has at least 2f(J2,3)−q+1 ≥ 17−q ≥ 10 pebbles on it.

Case 1: Let v7 be the target vertex.

Clearly, by the Remark 2.7, we have p(v7) = 0 and p(vi) ≤ 1 for all viv7 ∈
E(J2,3). Thus, one of the non-adjacent vertices of v7 has at least d17−q−3

3
e ≥

d8
3
e ≥ 3. Without loss of generality, we let p(v2) ≥ 3. If p(v1) = 1 or p(v3) = 1

then we can move one pebble to v7 using at most three pebbles through v2 and
v1 or v2 and v3. Then, the graph J2,3 has at least 17− q − 3 ≥ 8, since q ≤ 6
and hence we are done by Theorem 2.2. Assume that p(v1) = 0 and p(v3) = 0.
Since q ≤ 4, we have 17 − q − 1 ≥ 12, and hence one of the non-adjacent
vertices of v7, say v2, has at least four pebbles. So, we move one pebble to v7
from v2 at a cost of four pebbles and then the remaining number of pebbles
on J2,3 are 17− q− 4 ≥ 9, since q ≤ 4 and hence we are done by Theorem 2.2.

Case 2: Let v1 be the target vertex.

Clearly, by the Remark 2.7, we have p(v1) = 0, p(v2) ≤ 1, p(v6) ≤ 1 and
p(v7) ≤ 1. We assume that p(v3) ≥ 2. If p(v2) = 1 or p(v7) = 1 then we move
one pebble to v1 using at most three pebbles. Then the number of pebbles
remained on J2,3 is 17 − q − 3 ≥ 8, since q ≤ 6 and hence we are done by
Theorem 2.2. Let p(v2) = 0 and p(v7) = 0. So, 17− q ≥ 13. If p(v3) ≥ 4 then
we move one pebble to v1 using at most four pebbles and then 17− q − 4 ≥ 9
pebbles have remained in J2,3 and hence we are done. So, we assume that
p(v3) ≤ 3. Similarly, we assume p(v5) ≤ 3. Let p(v3) = 2 or 3. If p(v5) ≥ 1
then we can move two pebbles to v7 at a cost of at most five pebbles, since
p(v4) ≥ 4 and hence one pebble is moved to v1. Then, the remaining number
of pebbles on J2,3 are 17− q − 5 ≥ 8 and hence we are done by Theorem 2.2.
Let p(v5) = 0. Since p(v3) ≥ 2 and p(v4) ≥ 4, we can move one pebble to v1 at
a cost of at most six pebbles. Then, 17− q − 6 ≥ 8, since q ≤ 3 and hence we
are done by Theorem 2.2. So, we assume that p(v3) ≤ 1. Similarly, we assume
p(v5) ≤ 1. Thus, p(v4) ≥ 6. Let p(v3) = 1.

If p(v2) = 0 and p(v7) = 0 then we move three pebbles to v3 from v4 and
hence one pebble is moved to v1. Thus, p(v4) − 6 ≥ 5. If p(v6) = 1 then
we can move one pebble to v6 from v4 and hence another one pebble can be
moved to v1. Let p(v5) = 1 and p(v6) = 0. We can move two pebbles to v7
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since p(v4) ≥ 12 and hence one another pebble is moved to v1. Now, we let
p(v5) = p(v6) = 0. Clearly, p(v4) = 15 and hence we can move two pebbles to
v1 through v3.

If p(v2) = 0 and p(v7) = 1 then we can move one pebble to v1 using at
most four pebbles through v3 and v7, since p(v4) ≥ 8. Thus 17 − q − 4 ≥ 8
(q ≤ 5) and hence we are done by Theorem 2.2.

If p(v2) = 1 and p(v7) = 1 then we move three pebbles to v3 from v4 since
p(v4) ≥ 6 and hence we can move one pebble each from v2 and v7 to v1.

So we assume that p(v3) = 0. Similarly, p(v5) = 0. Since p(v4) ≥ 10,
if p(v2) = p(v7) = 1 or p(v2) = p(v6) = 1 or p(v6) = p(v7) = 1 then
clearly we can move two pebbles to v1. Next we let p(v2) = 1. Clearly,
p(v6) = p(v7) = 0. Thus, p(v4) = 14 and hence we can move two pebbles
to v1 by moving three pebbles to v2 from v4. Assume p(v2) = 0. Similarly,
we assume p(v6) = p(v7) = 0. Then p(v4) = 16 and hence we can move two
pebbles to v1 easily.

Case 3: Let v2 be the target vertex.

Clearly, by the Remark 2.7, we have p(v2) = 0, p(v1) ≤ 1, and p(v3) ≤ 1.
Let p(v4) ≥ 4. If p(v3) = 1 then we can move one pebble to v2 using at most
three pebbles. Thus the graph J2,3 has at least 17 − q − 3 ≥ 8 (since q ≤ 6)
pebbles and hence we are done. Let p(v3) = 0. Thus we move one pebble to
v2 using four pebbles from v4 then the remaining number of pebbles on J2,3 is
17− q−4 ≥ 8 and hence we are done. So we assume that p(v4) ≤ 3. Similarly,
we assume that p(v6) ≤ 3 and p(v7) ≤ 3.Let p(v4) = 2 or 3. If p(v3) = 1 or
p(v7) ≥ 2 then clearly we can move two pebbles to v2. Assume p(v3) = 0 and
p(v7) ≤ 1. Let p(v6) = 2 or 3. If p(v1) = 1 then we are done. If not, then
17−q ≥ 13 implies that p(v5) ≥ 6. If p(v7) = 1 then we can move one pebble to
v2 at a cost of at most five pebbles and hence we are done, since 17−q−5 ≥ 8.
If not, then 17 − q ≥ 14 implies that p(v5) ≥ 8. We can move one pebble to
v2 at a cost of at most six pebbles and then the remaining number of pebbles
on J2,3 is at least 17 − q − 6 ≥ 8 and hence we are done. Assume p(v6) ≤ 1.
If p(v1) = p(v6) = 1 or p(v1) = p(v7) = 1 then we can move one pebble to v2
at a cost of four pebbles, since p(v5) ≥ 6. If not, then 17 − q ≥ 13. We can
move one pebble to v3 using three pebbles from v5, if p(v7) = 1. Then we move
another one pebble to v3 from v4 and hence one pebble is moved to v2 at a
cost of at most five pebbles. Then we have at least 17− q− 5 ≥ 8 pebbles and
hence we are done. If p(v7) = 0 then 17 − q ≥ 14. Clearly, we can move two
pebbles to v3 using at most six pebbles from v4 and v5 and then J2,3 has at
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least eight pebbles remained on it and hence we are done. Assume p(v4) ≤ 1.
Similarly, p(v6) ≤ 1. Clearly, p(v5) ≥ 6. Let p(v1) = 1. We move one pebble
to v2 using four pebbles from v5 and one pebble from v1.

If p(v3) = p(v4) = 1 or p(v3) = p(v7) = 1 then we can move another one
pebble to v2, since p(v5)− 4 ≥ 2 and hence we are done.

If not, then p(v5) − 4 ≥ 4. If p(v7) = p(v4) = 1 or p(v7) = p(v6) = 1 then we
can move one pebble to v2 and hence we are done. Otherwise, p(v5)− 4 ≥ 6.
If p(v7) = 1 or p(v6) = 1 or p(v4) = 1 then also we can move one pebble to
v2. Assume p(v7) = p(v6) = p(v4) = 0. Thus p(v5) − 4 ≥ 8 and hence we can
move one pebble to v2.

So, we assume that p(v1) = 0. Similarly, p(v3) = 0. Clearly p(v5) ≥ 10.
Let v6 = 1. We move three pebbles to v6 from v5 and hence one pebble is
moved to v2 from v6.
If p(v7) = 1 and p(v4) = 1 then we can move another one pebble to v2, since
p(v5)− 6 ≥ 4.

If p(v7) = 1 and p(v4) = 0 then we can move another one pebble to v2,
since p(v5)− 6 ≥ 6.

If p(v7) = 0 and p(v4) = 0 then we can move another one pebble to v2,
since p(v5)− 6 ≥ 8.

So we assume that p(v6) = 0. Similarly, p(v4) = 0. Let p(v7) = 1. Thus
p(v5) = 14 and so we can move seven pebbles to v7 and hence we are done.
Otherwise, p(v5) = 16 and hence we can move two pebbles to v2.

Theorem 3.2 The graph J2,4 satisfies the 2-pebbling property.

Proof: The graph J2,4 has at least 2f(J2,4)−q+1 ≥ 33−q ≥ 24 pebbles on it.

Case 1: Let v9 be the target vertex.

Clearly, p(v9) = 0, and p(vi) ≤ 1 for all viv9 ∈ E(J2,4) (by Remark 2.7).
Thus one of the non-adjacent vertices of v9 has at least d33−q−4

4
e ≥ d21

4
e ≥ 6.

Without loss of generality, we let p(v2) ≥ 6. Since p(v2) ≥ 6, we move one
pebble to v9 from v2 at a cost of four pebbles and then the remaining number
of pebbles on J2,4 are 33− q − 4 ≥ 21, since q ≤ 8 and hence we are done by
Theorem 2.3.

Case 2: Let v1 be the target vertex.



The 2t-Pebbling Property on the Jahangir... 25

Clearly, by the Remark 2.7, we have p(v1) = 0 and p(vi) ≤ 1 for all viv1 ∈
E(J2,4). Let p(v2) = 1. If p(v3) + p(v4) ≥ 4 then we can move one pebble
to v2 and hence we move one pebble to v1 at a cost of at most five pebbles.
Then the graph J2,4 has at least 33− q − 5 ≥ 20 and hence we can move one
more pebble to v1, by Theorem 2.3. We assume p(v3) +p(v4) ≤ 3 such that we
cannot move a pebble to v2. Also, we may assume that, p(v5) +p(v9) ≤ 3 such
that one pebble cannot be moved to v1. Thus p(v6) + p(v7) ≥ 33− q − 8 ≥ 17
and hence we can move two pebbles to v1.

Case 3: Let v2 be the target vertex.

Clearly, p(v2) = 0, p(v1) ≤ 1 and p(v3) ≤ 1. Let p(v3) = 1. Clearly, p(v4) ≤ 1
and p(v9) ≤ 1. If p(v5) ≥ 4 or p(v7) ≥ 4 or p(v5) ≥ 2 and p(v7) ≥ 2 then we can
move one pebble to v3 and then one pebble is moved to v2 at a cost of five peb-
bles. Then the remaining number of pebbles on J2,4 are 33 − q − 5 ≥ 20
and hence we can move another one pebble to v2, by Theorem 2.3. As-
sume p(v5) + p(v7) ≤ 4 such that we cannot move one pebble to v3. Thus
p(v6) ≥ 33−q−9 ≥ 15. We move one pebble to v3 using eight pebbles from v6
and hence we move one pebble to v2. Then We have 33− q − 9 ≥ 16 pebbles
remain on J2,4 and hence we can move another one pebble to v2 by Theorem
2.3. Assume p(v3) = 0. Similarly, we assume p(v1) = 0. Let p(v8) = 2 or
3 (Since, p(v8) ≤ 3). If p(v9) ≥ 2 then we move one pebble to v2 through
v1 at a cost of four pebbles and hence we have 33 − q − 4 ≥ 23 and we are
done. Assume p(v9) ≤ 1. We have p(v5) + p(v6) + p(v7) ≥ 20, since q ≤ 6 and
p(v4) ≤ 3. So we can move one pebble to v1 using at most eight pebbles from
the vertices v5, v6 and v7. Then we move one pebble to v1 from v8 and hence
we move one pebble to v2 at a cost of at most ten pebbles. Thus the remaining
number of pebbles on J2,4 is 33− q− 10 ≥ 17 and hence we can move another
one pebble to v2 by Theorem 2.3. Assume p(v8) ≤ 1. In a similar way, we may
assume that p(v4) ≤ 1 and p(v9) ≤ 1. Thus, p(v5) + p(v6) + p(v7) ≥ 24. Let
p(v7) ≥ 2. If p(v9) = 1 or p(v8) = 1 then we move one pebble to v1 and then we
can move one more pebble to v1 using at most eight pebbles from the vertices
v5, v6 and v7 and hence one pebble is moved to v2 at a cost of at most eleven
pebbles. Thus, the graph J2,4 has at least 33− q− 11 ≥ 16 pebbles and hence
we are done by Theorem 2.3. Assume p(v8) = p(v9) = 0. If p(v5) + p(v6) ≥ 4
with p(v5) ≥ 1 then we can move one pebble to v3 through v9. Then we move
another one pebble to v3 using at most eight pebbles from the vertices v5, v6
and v7. Thus we move one pebble to v2 at a cost of at most thirteen pebbles
and hence we have 33− q−13 ≥ 16 pebbles remain on J2,4 and we are done by
Theorem 2.3. Assume p(v5) = 0. Since p(v6) + p(v7) ≥ 29, we can move one
pebble to v2 through v9 and v1 at a cost of at most fourteen pebbles. Then
the number of pebbles remaining on J2,4 is 33 − q − 14 ≥ 16 and hence we
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are done by Theorem 2.3. Assume p(v7) ≤ 1. Similarly, we assume p(v5) ≤ 1.
That is, p(v6) ≥ 22. Let p(v4) = 1 then we move one pebble to v4 from v6 and
hence one pebble is moved to v3 at a cost of five pebbles. If p(v9) = 1 then
we move one pebble to v9 from v6 and so we move one pebble to v3. So we
move one pebble to v2 at a cost of at most ten pebbles and then the graph
J2,4 has at least 33 − q − 10 ≥ 17 and we are done by Theorem 2.3. Assume
p(v9) = 0. If p(v5) = 1 or p(v7) = 1 then we move three pebbles to v5 or v7
and then one more pebble is moved to v3 and so v2 at a cost of at most twelve
pebbles. Thus 33− q− 12 ≥ 16 and hence we are done. Let p(v5) = p(v7) = 0.
Then we can move two pebbles to v3 using the pebbles at v4 and v6 and hence
one pebble is moved to v2 at a cost of at most thirteen pebbles. Thus the
graph J2,4 has at least 33− q− 13 ≥ 17 and hence we are done. So, we assume
p(v4) = 0. Similarly, we may assume that p(v8) = 0 and p(v9) = 0. We have
p(v5)+p(v6)+p(v7) ≥ 30. Clearly, we can move eight pebbles to v9 from these
pebbled vertices and hence two pebbles can be moved to v2.

Theorem 3.3 The graph J2,5 satisfies the 2-pebbling property.

Proof: The graph J2,5 has at least 2f(J2,5)−q+1 ≥ 37−q ≥ 26 pebbles on it.

Case 1: Let v11 be the target vertex.

Clearly, p(v11) = 0, and p(vi) ≤ 1 for all viv11 ∈ E(J2,5) (by Remark 2.7).
Thus one of the non-adjacent vertices of v11 has at least d37−q−5

5
e ≥ d22

5
e ≥ 5.

Without loss of generality, we let p(v2) ≥ 5. Since p(v2) ≥ 5, we move one
pebble to v11 from v2 at a cost of four pebbles and then the remaining number
of pebbles on J2,5 is 37 − q − 4 ≥ 23, since q ≤ 8 and hence we are done by
Theorem 2.4.

Case 2: Let v1 be the target vertex.

Clearly, by the Remark 2.7, we have p(v1) = 0 and p(vi) ≤ 1 for all viv1 ∈
E(J2,5). If p(v3) ≥ 4 or p(v3) ≥ 2 and p(v5) ≥ 2 then we can move one pebble
to v1. Then the graph J2,5 has at least 37− q − 4 ≥ 23 pebbles and hence we
are done by Theorem 2.4. So, we assume that p(vi) ≤ 3, for all viv11 ∈ E(J2,5)
and at most one adjacent vertex only, of v11 can contain more than two pebbles
(Otherwise, we can move one pebble to v1 through v11 and hence we can do
easily). Thus, p(v4) + p(v6) + p(v8) ≥ 18. Clearly, we can move one pebble to
v1 at a cost of at most eight pebbles from the vertices v4, v6 and v8 and then
the number of pebbles remained on J2,5 is at least 37− q − 8 ≥ 21 and hence
we are done by Theorem 2.4.
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Case 3: Let v2 be the target vertex.

Clearly, p(v2) = 0, p(v1) ≤ 1 and p(v3) ≤ 1. We may assume that p(v1) =
p(v3) = 0, p(v4) ≤ 1, p(v10) ≤ 1 and p(v11) ≤ 1. Let p(v5) ≥ 4. If p(v7) ≥ 4 or
p(v9) ≥ 4 or p(v7) ≥ 2 and p(v9) ≥ 2 then we can move one pebble to v1 through
v11 and v3 at a cost of at most eight pebbles. Thus we have 37 − q − 8 ≥ 21
pebbles remained on J2,5 and hence we are done by Theorem 2.4. Assume
p(v7) ≤ 3 and p(v9) ≤ 3 and p(v7) + p(v9) ≤ 4 such that two pebbles cannot
be moved to v11. Let p(v7) ≥ 2. If p(v11) = 1 or p(v5) ≥ 6 then we can
move one pebble to v2 and hence we can do easily. Assume p(v11) = 0 and
p(v5) = 4 or 5. This implies that p(v6) + p(v8) ≥ 19 and hence we can move
one pebble to v2 from the vertices v5, v7, and v6 or v8. Then the remaining
number of pebbles on J2,5 is at least 37− q − 10 ≥ 20 and hence we are done
by Theorem 2.4. Assume p(v7) ≤ 1 and p(v9) ≤ 1. Since p(v6) + p(v8) ≥ 18,
we can move one pebble to v3 using eight pebbles from the vertices v6 and v8.
If p(v3) = 1 or p(v11) = 1 then we move another one pebble to v3 at a cost of
three pebbles. Thus we move a pebble to v2 at a total cost eleven pebbles and
then the remaining number of pebbles on J2,5 is at least 37− q − 11 ≥ 18 and
hence we are done by Theorem 2.4. Assume p(v3) = p(v11) = 0. Again we can
move one pebble to v2 at a cost of at most twelve pebbles from the vertices
v5, v6 and v8. Then the graph J2,5 has at least 37− q− 12 ≥ 19 and hence we
are done by Theorem 2.4. So, we assume p(v5) ≤ 3. In a similar way, we may
assume that p(v9) ≤ 3 and p(v7) ≤ 3.

Three vertices of S1 − {v1, v3} have two or more pebbles each: If
p(v11) = 1 then we can move one pebble to v2 using at most seven pebbles
and hence we are done since 37 − q − 7 ≥ 22 and by Theorem 2.4. Assume
p(v11) = 0. This implies that p(v6) + p(v8) ≥ 19 and hence we can move one
pebble to v11 from v6 or v8 at a cost of four pebbles. Thus we can move one
pebble to v2 at a total cost of ten pebbles then the remaining number of peb-
bles on J2,5 is at least 37 − q − 10 ≥ 20 and hence we are done by Theorem
2.4.

Two vertices of S1−{v1, v3} have two or more pebbles each: Clearly,
we can move one pebble to v2 easily at a cost of eleven pebbles if p(v11) = 1
and then J2,5 has at least 37−q−11 ≥ 18 and hence we are done. If p(v11) = 0,
then we can move one pebble to v2 using the pebbles at v6, v8 and the two
vertices of S1−{v1, v3}. Then we have 37−q−12 ≥ 18 and hence we are done.

One vertex of S1−{v1, v3} has two or more pebbles: Clearly, we can
move one pebble to v2 easily at a cost of eleven pebbles if p(v11) = 1 and then
J2,5 has at least 37− q − 11 ≥ 18 and hence we are done. Let p(v11) = 0 and
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also let v5 be the vertex with p(v5) ≥ 2. If p(v4) = 1 then we move one pebble
to v3 and then we can move one more pebble to v3 using the pebbles at v6,
v8, since p(v6) + p(v8) ≥ 23. Thus we move one pebble to v2 from v3, and
then we have 37− q − 11 ≥ 18 and hence we are done. Assume p(v4) = 0 and
thus p(v6) + p(v8) ≥ 25. If p(v7) = 1 then we can move three pebbles to v11
at a cost of at most thirteen pebbles from the vertices v6, v7 and v8. Assume
p(v7) = 0 then p(v6) + p(v8) ≥ 25 and hence we can move four pebbles from
the vertices v5, v6 and v8 at a cost of fourteen pebbles. Then J2,5 has at least
37 − q − 14 ≥ 18 and hence we are done. In a similar way, we can move two
pebbles to v2 if p(v9) ≥ 2 and p(v7) ≥ 2.

No vertex of S1 − {v1, v3} has two or more pebbles each: Clearly,
p(v6) + p(v8) ≥ 23. Let p(v6) + p(v8) = 23. Without loss of generality, we let
p(v6) ≥ 12. If p(v8) ≥ 2 then we move one pebble to v3 through v7 and v11.
Using two pebbles from the vertex v6, we move one more pebble to v3 and
hence one pebble is moved to v2. Then p(v6) + p(v8) = 19 and so we can move
eight pebbles to v7 and hence we can move one more pebble to v2. Assume
p(v8) ≤ 1 This implies that we have p(v6) ≥ 22, so we move one pebble to v7
and then we move five pebbles to v4. Thus v3 receives four pebbles and hence
we are done.

Assume p(v6) + p(v8) ≥ 24. Without loss of generality, we let p(v8) ≥ 12.
Let p(v10) = 1. If p(v9) = 1 then we move one pebble to v10 from v8 then we
move one pebble to v1. And then we move one more pebble to v1 from the
vertices v6 and v8 through v7 and v11. Thus we can move a pebble to v2 at a
total cost of twelve pebbles and so the graph J2,5 has at least 37− q− 12 ≥ 18
and hence we are done. Assume p(v9) = 0. Clearly, we can move one pebble to
v2 using at most thirteen pebbles and hence the remaining number of pebbles
on J2,5 is at least 37− q− 13 ≥ 18 and hence we are done. Assume p(v10) = 0.
In a similar way, we may assume that p(v4) = 0.

If p(v11) = 1 then we can move one pebble to v2 at a cost of thirteen peb-
bles from the vertices v6, v8 and v11. Then J2,5 has at least 37 − q − 13 ≥ 18
and hence we are done. Assume p(v11) = 0 and thus p(v6) + p(v8) ≥ 29. Let
p(v8) ≥ 15. If p(v7) = p(v9) = 1, then we move two pebbles to v11 using four
pebbles from v8. Clearly, we can move six pebbles from the vertices v6 and
v8 through v7 and hence we can move two pebbles to v2. Assume p(v7) = 0
or p(v9) = 0 and thus we move one pebble to v11 from v8 and then we can
move seven pebbles to v11 through v7 since p(v6) + p(v8) − 2 ≥ 31. Assume
p(v7) = p(v9) = 0 and thus p(v6) + p(v8) ≥ 33. So, we can move 16 pebbles to
v7 from the vertices v6 and v8 and hence we are done.

Theorem 3.4 The graph J2,6 satisfies the 2-pebbling property.
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Proof: The graph J2,6 has at least 2f(J2,6)−q+1 ≥ 43−q ≥ 30 pebbles on it.

Case 1: Let v13 be the target vertex.

Clearly, p(v13) = 0, and p(vi) ≤ 1 for all viv13 ∈ E(J2,6) (by Remark 2.7).
Thus one of the non-adjacent vertices of v13 has at least d43−q−6

6
e ≥ d25

6
e ≥ 5.

Without loss of generality, we let p(v2) ≥ 5. Since p(v2) ≥ 5, we move one
pebble to v13 from v2 at a cost of four pebbles and then the remaining number
of pebbles on J2,6 is 43 − q − 4 ≥ 27, since q ≤ 12 and hence we are done by
Theorem 2.5.

Case 2: Let v1 be the target vertex.

Clearly, by the Remark 2.7, we have p(v1) = 0 and p(vi) ≤ 1 for all viv1 ∈
E(J2,6). If p(v3) ≥ 4 or p(v3) ≥ 2 and p(v5) ≥ 2 then we can move one pebble
to v1. Then the graph J2,6 has at least 43− q − 4 ≥ 27 pebbles and hence we
are done by Theorem 2.5. So, we assume that p(vi) ≤ 3, for all viv13 ∈ E(J2,6)
and at most one adjacent vertex only, of v13 can contain more than two pebbles
(Otherwise, we can move one pebble to v1 through v13 and hence we can do
easily). Thus, p(S2 − {v2, v12}) ≥ 21. Clearly, we can move one pebble to v1
at a cost of at most eight pebbles from the vertices S2−{v2, v12} and then the
number of pebbles remained on J2,6 is at least 43 − q − 8 ≥ 23 and hence we
are done by Theorem 2.5.

Case 3: Let v2 be the target vertex.

Clearly, p(v2) = 0, p(v1) ≤ 1 and p(v3) ≤ 1. Also, we may assume that
p(v1) = p(v3) = 0, p(v4) ≤ 1, p(v10) ≤ 1 and p(v11) ≤ 1. Let p(v5) ≥ 4. If
a vertex of S1 − {v1, v3, v5} has more than three pebbles or two vertices of
S1 − {v1, v3, v5} contains more than one pebble each then we can move one
pebble to v2 at a cost of eight pebbles. Thus the remaining number of pebbles
on J2,6 is at least 43 − q − 8 ≥ 25 and hence we are done by Theorem 2.5.
So assume that p(vi) ≤ 3 where vi ∈ S1 − {v1, v3, v5} and at most one vertex
only of S1 − {v1, v3, v5} can contain two or three pebbles. Let p(v7) ≥ 2. If
p(v13) = 1 or p(v5) = 6 or 7, then we can move one pebble to v2 at a cost of
at most eight pebbles and hence we are done since 43 − q − 8 ≥ 25. Assume
p(v13) = 0 and p(v5) = 4 or 5. Clearly, p(S2−{v2, v4, v12}) ≥ 24 and hence we
can move one pebble to v13 from the vertices of S2 − {v2, v4, v12} and then we
move another three pebbles to v13 from the vertices v5 and v7. Thus, we can
move one pebble to v2 from v13 and the remaining pebbles on J2,6 is at least
43− q−10 ≥ 24 and hence we are done by Theorem 2.5. Assume p(vi) ≤ 1 for
all vi ∈ S1 − {v1, v3, v5}. Clearly, p(S2 − {v2, v4, v12}) ≥ 20 and hence we can
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move one pebble to v1 at a cost of at most eight pebbles and then we move
one more pebble to v1 from v5. Thus we can move one pebble to v2 from v1
and then J2,6 has at least 43 − q − 12 ≥ 21 and hence we are done. Assume
p(vi) ≤ 3 for all vi ∈ p(S1−{v1, v3}). If four vertices of S1−{v1, v3} have two
or more pebbles each then clearly we can move one pebble to v2 through v13
and hence we are done since 43− q − 8 ≥ 25.

Three vertices of S1 − {v1, v3} have two or more pebbles each: If
p(v13) = 1 then we can move one pebble to v2 using at most seven pebbles
and hence we are done since 43 − q − 7 ≥ 26 and by Theorem 2.5. Assume
p(v13) = 0. This implies that p(S2−{v2, v4, v12}) ≥ 21 and hence we can move
one pebble to v13 from the vertices of S2−{v2, v4, v12} at a cost of four pebbles.
Thus we can move one pebble to v2 at a total cost of ten pebbles, then the
remaining number of pebbles on J2,6 is at least 43− q− 10 ≥ 24 and hence we
are done by Theorem 2.5.

Two vertices of S1−{v1, v3} have two or more pebbles each: Clearly,
we can move one pebble to v2 easily at a cost of eleven pebbles if p(v13) = 1
and then J2,6 has at least 43 − q − 11 ≥ 22 and hence we are done. If
p(v13) = 0, then we can move one pebble to v2 using the pebbles at the
vertices of S2−{v2, v4, v12} and the two vertices of S1−{v1, v3}. Then we have
43− q − 12 ≥ 22 and hence we are done.

One vertex of S1−{v1, v3} has two or more pebbles: Clearly, we can
move one pebble to v2 easily at a cost of eleven pebbles if p(v13) = 1 and then
J2,6 has at least 43− q − 11 ≥ 22 and hence we are done. Let p(v13) = 0 and
also let v5 be the vertex with p(v5) ≥ 2. If p(v4) = 1 then we move one pebble
to v3 and then we can move one more pebble to v3 using the pebbles at the
vertices of S2 − {v2, v4, v12}, since p(S2 − {v2, v4, v12}) ≥ 26. Thus we move
one pebble to v2 from v3, and then we have 43− q− 11 ≥ 22 and hence we are
done. Assume p(v4) = 0 and thus p(S2 − {v2, v4, v12}) ≥ 28. If p(v7) = 0 or
p(v9) = 0 or p(v7) = p(v9) = 0 then we can move four pebbles from v5 and the
vertices of S2 − {v2, v4, v12} at a cost of at most fourteen pebbles. Then J2,6
has at least 43− q− 14 ≥ 21 and hence we are done. In a similar way, we can
move two pebbles to v2 if p(vi) ≥ 2 where vi ∈ S1 − {v1, v3, v5}.

No vertex of S1 − {v1, v3} has two or more pebbles each: Clearly,
p(S2 − {v2, v4, v12}) ≥ 27. Let p(S2 − {v2, v4, v12}) = 27. Without loss of
generality, we let p(v6) ≥ 9. If p(v8) ≥ 2 or p(v10) ≥ 2 then we move one
pebble to v3 through v9 and v13. Using two pebbles from the vertex v6, we
move one more pebble to v3 and hence one pebble is moved to v2. Then
p(S2−{v2, v4, v12})−4 = 23 and so we can move four pebbles to v13 and hence
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we can move one more pebble to v2. Assume p(v8) ≤ 1 and p(v10) ≤ 1. This
implies that we have p(v6) ≥ 25, so, from v6, we move one pebble to v7 and
then we move five pebbles to v4. Thus v3 receives four pebbles and hence we
are done.

Assume p(S2 − {v2, v4, v12}) ≥ 28. Without loss of generality, we let p(v10) ≥
10. Let p(v12) = 1. If p(v11) = 1 then we move one pebble to v12 from v10 then
we move one pebble to v1. And then we move one more pebble to v1 from
the vertices of S2 − {v2, v4, v12} through v7, v9 and v11. Thus we can move a
pebble to v2 at a total cost of twelve pebbles and so the graph J2,6 has at least
43− q − 12 ≥ 21 and hence we are done. Assume p(v11) = 0. Clearly, we can
move one pebble to v2 using at most thirteen pebbles and hence the remaining
number of pebbles on J2,6 is at least 43− q − 13 ≥ 21 and hence we are done.
Assume p(v12) = 0. In a similar way, we may assume that p(v4) = 0.

If p(v13) = 1 then we can move one pebble to v2 at a cost of thirteen pebbles
from the vertices of S2 − {v2, v4, v12}. Then J2,6 has at least 43− q − 13 ≥ 21
and hence we are done. Assume p(v13) = 0 and thus p(S2−{v2, v4, v12}) ≥ 32.
Let p(v10) ≥ 11. If p(v9) = p(v11) = 1, then we move two pebbles to v13
using four pebbles from v10. Clearly, we can move six pebbles to v13 from
the vertices of S2 − {v2, v4, v12} through v7, v9 and hence we can move two
pebbles to v2. Assume p(v9) = 0 or p(v11) = 0 and thus we move one pebble
to v13 from v10 and then we can move seven pebbles to v13 through v7 and
v9 since p(S2 − {v2, v4, v12}) − 2 ≥ 34. Assume p(v7) = p(v9) = 0 and thus
p(S2 − {v2, v4, v12}) ≥ 35. So, we can move 8 pebbles to v13 from the vertices
S2 − {v2, v4, v12} and hence we are done.

Theorem 3.5 The graph J2,7 satisfies the 2-pebbling property.

Proof: The graph J2,7 has at least 2f(J2,7)−q+1 ≥ 47−q ≥ 32 pebbles on it.

Case 1: Let v15 be the target vertex.

Clearly, p(v15) = 0, and p(vi) ≤ 1 for all viv15 ∈ E(J2,7) (by Remark 2.7).
Thus one of the non-adjacent vertices of v15 has at least d47−q−7
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Without loss of generality, we let p(v2) ≥ 4. Since p(v2) ≥ 4, we move one
pebble to v15 from v2 at a cost of four pebbles and then the remaining number
of pebbles on J2,7 is 47 − q − 4 ≥ 29, since q ≤ 14 and hence we are done by
Theorem 2.5.

Case 2: Let v1 be the target vertex.

Clearly, by the Remark 2.7, we have p(v1) = 0 and p(vi) ≤ 1 for all viv1 ∈
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E(J2,7). If p(v3) ≥ 4 or p(v3) ≥ 2 and p(v5) ≥ 2 then we can move one pebble
to v1. Then the graph J2,7 has at least 47− q − 4 ≥ 29 pebbles and hence we
are done by Theorem 2.5. So, we assume that p(vi) ≤ 3, for all viv15 ∈ E(J2,7)
and at most one adjacent vertex only, of v15 can contain more than two pebbles
(Otherwise, we can move one pebble to v1 through v15 and hence we can do
easily). Thus, p(S2 − {v2, v14}) ≥ 23. Clearly, we can move one pebble to v1
at a cost of at most eight pebbles from the vertices of S2 − {v2, v14} and then
the number of pebbles remained on J2,7 is at least 47− q − 8 ≥ 25 and hence
we are done by Theorem 2.5.

Case 3: Let v2 be the target vertex.

Clearly, p(v2) = 0, p(v1) ≤ 1 and p(v3) ≤ 1. We may assume that p(v1) =
p(v3) = 0, p(v4) ≤ 1, p(v14) ≤ 1 and p(v15) ≤ 1. Let p(v5) ≥ 4. If a vertex of
S1−{v1, v3, v5} has more than three pebbles or two vertices of S1−{v1, v3, v5}
contains more than one pebble each then we can move one pebble to v2 at a
cost of eight pebbles. Thus the remaining number of pebbles on J2,7 is at least
47−q−8 ≥ 27 and hence we are done by Theorem 2.5. So assume that p(vi) ≤ 3
where vi ∈ S1 − {v1, v3, v5} and at most one vertex only of S1 − {v1, v3, v5}
can contain two or three pebbles. Let p(v7) ≥ 2. If p(v15) = 1 or p(v5) = 6 or
7, then we can move one pebble to v2 at a cost of at most eight pebbles and
hence we are done since 47− q − 8 ≥ 27. Assume p(v15) = 0 and p(v5) = 4 or
5. Clearly, p(S2−{v2, v4, v14}) ≥ 24 and hence we can move one pebble to v15
from the vertices of S2−{v2, v4, v14} and then we move another three pebbles
to v15 from the vertices v5 and v7. Thus, we can move one pebble to v2 from v15
and the remaining pebbles on J2,7 is at least 47−q−10 ≥ 26 and hence we are
done by Theorem 2.5. Assume p(vi) ≤ 1 for all vi ∈ S1 − {v1, v3, v5}. Clearly,
p(S2−{v2, v4, v14}) ≥ 22 and hence we can move one pebble to v1 at a cost of
at most eight pebbles and then we move one more pebble to v1 from v5. Thus
we can move one pebble to v2 from v1 and then J2,7 has at least 47−q−12 ≥ 23
and hence we are done. Assume p(vi) ≤ 3 for all vi ∈ p(S1 − {v1, v3}). If four
vertices of S1 − {v1, v3} have two or more pebbles each then clearly we can
move one pebble to v2 through v15 and hence we are done since 47−q−8 ≥ 27.

Three vertices of S1 − {v1, v3} have two or more pebbles each: If
p(v15) = 1 then we can move one pebble to v2 using at most seven pebbles
and hence we are done since 47 − q − 7 ≥ 28 and by Theorem 2.5. Assume
p(v15) = 0. This implies that p(S2−{v2, v4, v14}) ≥ 23 and hence we can move
one pebble to v15 from the vertices of S2−{v2, v4, v14} at a cost of four pebbles.
Thus we can move one pebble to v2 at a total cost of ten pebbles, then the
remaining number of pebbles on J2,7 is at least 47− q− 10 ≥ 26 and hence we
are done by Theorem 2.5.
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Two vertices of S1−{v1, v3} have two or more pebbles each: Clearly,
we can move one pebble to v2 easily at a cost of eleven pebbles if p(v15) = 1
and then J2,7 has at least 47 − q − 11 ≥ 24 and hence we are done. If
p(v15) = 0, then we can move one pebble to v2 using the pebbles at the
vertices of S2−{v2, v4, v14} and the two vertices of S1−{v1, v3}. Then we have
47− q − 12 ≥ 23 and hence we are done.

One vertex of S1−{v1, v3} has two or more pebbles: Clearly, we can
move one pebble to v2 easily at a cost of eleven pebbles if p(v15) = 1 and then
J2,7 has at least 47− q − 11 ≥ 24 and hence we are done. Let p(v15) = 0 and
also let v5 be the vertex with p(v5) ≥ 2. If p(v4) = 1 then we move one pebble
to v3 and then we can move one more pebble to v3 using the pebbles at the
vertices of S2 − {v2, v4, v14}, since p(S2 − {v2, v4, v14}) ≥ 27. Thus we move
one pebble to v2 from v3, and then we have 47− q− 11 ≥ 25 and hence we are
done. Assume p(v4) = 0 and thus p(S2 − {v2, v4, v14}) ≥ 28. If p(v7) = 0 or
p(v9) = 0 or p(v7) = p(v9) = 0 then we can move four pebbles from v5 and the
vertices of S2 − {v2, v4, v14} at a cost of at most fourteen pebbles. Then J2,7
has at least 47− q− 14 ≥ 23 and hence we are done. In a similar way, we can
move two pebbles to v2 if p(vi) ≥ 2 where vi ∈ S1 − {v1, v3, v5}.

No vertex of S1 − {v1, v3} has two or more pebbles each: Clearly,
p(S2 − {v2, v4, v14}) ≥ 27. Let p(S2 − {v2, v4, v14}) = 27. Without loss of gen-
erality, we let p(v6) ≥ 7. If a vertex of S2−{v2, v4, v14} contains more than one
pebble then we can move one pebble to v3 through v15. Using two pebbles from
the vertex v6, we move one more pebble to v3 and hence one pebble is moved
to v2. Then p(S2 − {v2, v4, v14})− 4 = 23 and so we can move four pebbles to
v13 and hence we can move one more pebble to v2. Assume p(vi) ≤ 1 for all
vi ∈ S2−{v2, v4, v6, v14} This implies that we have p(v6) ≥ 20, so, from v6, we
move one pebble to v7 and then we move nine pebbles to v5. Thus v3 receives
four pebbles and hence we are done.

Assume p(S2−{v2, v4, v14}) ≥ 28. Without loss of generality, we let p(v12) ≥ 7.
Let p(v14) = 1. If p(v13) = 1 then we move one pebble to v14 from v12 then
we move one pebble to v1. And then we move one more pebble to v1 from the
vertices of S2−{v2, v4, v14} through v15. Thus we can move a pebble to v2 at a
total cost of twelve pebbles and so the graph J2,7 has at least 47− q− 12 ≥ 23
and hence we are done. Assume p(v13) = 0. Clearly, we can move one peb-
ble to v2 using at most thirteen pebbles and hence the remaining number of
pebbles on J2,7 is at least 47 − q − 13 ≥ 23 and hence we are done. Assume
p(v14) = 0. In a similar way, we may assume that p(v4) = 0.
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If p(v15) = 1 then we can move one pebble to v2 at a cost of thirteen pebbles
from the vertices of S2 − {v2, v4, v14}. Then J2,7 has at least 47− q − 13 ≥ 24
and hence we are done. Assume p(v15) = 0 and thus p(S2−{v2, v4, v14}) ≥ 33.
Let p(v12) ≥ 9. If p(v11) = p(v13) = 1, then we move two pebbles to v15 using
four pebbles from v12. Clearly, we can move six pebbles to v15 from the ver-
tices of S2 − {v2, v4, v14} and hence we can move two pebbles to v2. Assume
p(v11) = 0 or p(v13) = 0 and thus we move one pebble to v15 from v12 and then
we can move seven pebbles to v15 since p(S2 − {v2, v4, v14})− 2 ≥ 35. Assume
p(v11) = p(v13) = 0 and thus p(S2 − {v2, v4, v14}) ≥ 37. So, we can move 8
pebbles to v15 from the vertices S2 − {v2, v4, v14} and hence we are done.

Theorem 3.6 The graph J2,m satisfies the 2-pebbling property, where m ≥
8.

Figure 1: Jahangir graph J2,8

Proof: The graph J2,m has at least 2f(J2,m)−q+1 ≥ 4m+21−q ≥ 2m+20
pebbles on it.

Case 1: Let v2m+1 be the target vertex.

Clearly, p(v2m+1) = 0, and p(vi) ≤ 1 for all viv2m+1 ∈ E(J2,m) (by Remark
2.7). Thus one of the non-adjacent vertices of v2m+1 has at least d4m+21−q−m

m
e ≥

dm+21
m
e ≥ 2. Without loss of generality, we let p(v2) ≥ 2. Since p(v2) ≥ 2, we

can move one pebble to v2m+1 from v2 at a cost of at most four pebbles and
then the remaining number of pebbles on J2,m is 4m + 21− q − 4 ≥ 2m + 16,
since q ≤ 2m and hence we are done by Theorem 2.5.

Case 2: Let v1 be the target vertex.

Clearly, by the Remark 2.7, we have p(v1) = 0 and p(vi) ≤ 1 for all viv1 ∈
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E(J2,m). If p(v3) ≥ 4 or p(v3) ≥ 2 and p(v5) ≥ 2 then we can move one pebble
to v1. Then the graph J2,m has at least 4m + 21 − q − 4 ≥ 2m + 16 pebbles
and hence we are done by Theorem 2.5. So, we assume that p(vi) ≤ 3, for all
viv2m+1 ∈ E(J2,m) and at most one adjacent vertex only, of v2m+1 can contain
more than two pebbles (Otherwise, we can move one pebble to v1 through
v2m+1 and hence we can do easily). Thus, p(S2−{v2, v2m}) ≥ m+ 16. Clearly,
we can move one pebble to v1 at a cost of at most eight pebbles from the
vertices of S2 − {v2, v2m} and then the number of pebbles remained on J2,m is
at least 4m + 21− q − 8 ≥ 2m + 13 and hence we are done by Theorem 2.5.

Case 3: Let v2 be the target vertex.

Clearly, p(v2) = 0, p(v1) ≤ 1 and p(v3) ≤ 1. We may assume that p(v1) =
p(v3) = 0, p(v4) ≤ 1, p(v2m) ≤ 1 and p(v2m+1) ≤ 1. Let p(v5) ≥ 4. If
a vertex of S1 − {v1, v3, v5} has more than three pebbles or two vertices of
S1 − {v1, v3, v5} contains more than one pebble each then we can move one
pebble to v2 at a cost of eight pebbles. Thus the remaining number of peb-
bles on J2,m is at least 4m + 21 − q − 8 ≥ 2m + 13 and hence we are done
by Theorem 2.5. So assume that p(vi) ≤ 3 where vi ∈ S1 − {v1, v3, v5} and
at most one vertex only of S1 − {v1, v3, v5} can contain two or three peb-
bles. Let p(v7) ≥ 2. If p(v2m+1) = 1 or p(v5) = 6 or 7, then we can move
one pebble to v2 at a cost of at most eight pebbles and hence we are done
since 4m + 21 − q − 8 ≥ 2m + 13. Assume p(v2m+1) = 0 and p(v5) = 4
or 5. Clearly, p(S2 − {v2, v4, v2m}) ≥ m + 18 and hence we can move one
pebble to v2m+1 from the vertices of S2 − {v2, v4, v2m} and then we move an-
other three pebbles to v2m+1 from the vertices v5 and v7. Thus, we can move
one pebble to v2 from v2m+1 and the remaining pebbles on J2,m is at least
4m + 21− q − 10 ≥ 2m + 14 and hence we are done by Theorem 2.5. Assume
p(vi) ≤ 1 for all vi ∈ S1 − {v1, v3, v5}. Clearly, p(S2 − {v2, v4, v2m}) ≥ m + 18
and hence we can move one pebble to v1 at a cost of at most eight pebbles and
then we move one more pebble to v1 from v5. Thus we can move one pebble
to v2 from v1 and then J2,m has at least 4m+ 21− q−12 ≥ 2m+ 12 and hence
we are done. Assume p(vi) ≤ 3 for all vi ∈ p(S1 − {v1, v3}). If four vertices of
S1−{v1, v3} have two or more pebbles each then clearly we can move one peb-
ble to v2 through v2m+1 and hence we are done since 4m+21−q−8 ≥ 2m+16.

Three vertices of S1 − {v1, v3} have two or more pebbles each: If
p(v2m+1) = 1 then we can move one pebble to v2 using at most seven pebbles
and hence we are done since 4m + 21− q − 7 ≥ 2m + 16 and by Theorem 2.5.
Assume p(v2m+1) = 0. This implies that p(S2 − {v2, v4, v2m}) ≥ m + 18 and
hence we can move one pebble to v2m+1 from the vertices of S2 − {v2, v4, v2m}
at a cost of at most four pebbles. Thus we can move one pebble to v2 at a
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total cost of ten pebbles, then the remaining number of pebbles on J2,m is at
least 4m + 21− q − 10 ≥ 2m + 14 and hence we are done by Theorem 2.5.

Two vertices of S1−{v1, v3} have two or more pebbles each: Clearly,
we can move one pebble to v2 easily at a cost of eleven pebbles if p(v2m+1) = 1
and then J2,m has at least 4m+ 21− q− 11 ≥ 2m+ 13 and hence we are done.
If p(v2m+1) = 0, then we can move one pebble to v2 using the pebbles at the
vertices of S2 − {v2, v4, v2m} and the two vertices of S1 − {v1, v3}. Then we
have 4m + 21− q − 12 ≥ 2m + 12 and hence we are done.

One vertex of S1 − {v1, v3} has two or more pebbles: Clearly, we
can move one pebble to v2 easily at a cost of eleven pebbles if p(v2m+1) = 1
and then J2,m has at least 4m + 21 − q − 11 ≥ 2m + 12 and hence we are
done. Let p(v2m+1) = 0 and also let v5 be the vertex with p(v5) ≥ 2. If
p(v4) = 1 then we move one pebble to v3 and then we can move one more
pebble to v3 using the pebbles at the vertices of S2 − {v2, v4, v2m}, since
p(S2 − {v2, v4, v2m}) ≥ m + 18. Thus we move one pebble to v2 from v3,
and then we have 4m+ 21− q−11 ≥ 2m+ 13 and hence we are done. Assume
p(v4) = 0 and thus p(S2 − {v2, v4, v2m}) ≥ m + 23. If p(v7) = 0 or p(v9) = 0
or p(v7) = p(v9) = 0 then we can move four pebbles from v5 and the ver-
tices of S2 − {v2, v4, v2m} at a cost of at most fourteen pebbles. Then J2,m
has at least 4m + 21 − q − 14 ≥ 2m + 11 and hence we are done. In a sim-
ilar way, we can move two pebbles to v2 if p(vi) ≥ 2 where vi ∈ S1−{v1, v3, v5}.

No vertex of S1 − {v1, v3} has two or more pebbles each: Clearly,
p(S2 − {v2, v4, v2m}) ≥ m + 23. Let p(S2 − {v2, v4, v2m}) = m + 23. Without
loss of generality, we let p(v6) ≥ 1 + d 26

m−3e. If a vertex of S2 − {v2, v4, v2m}
contains more than one pebble then we can move one pebble to v3 through
v2m+1. Using two pebbles from the vertex v6, we move one more pebble to v3
and hence one pebble is moved to v2. Then the remaining number of pebbles
on J2,m is at least 4m+ 21− q−8 ≥ 2m+ 15 and hence we can move one more
pebble to v2. Assume p(vi) ≤ 1 for all vi ∈ S2 − {v2, v4, v6, v2m}. This implies
that we have p(v6) ≥ 27, so, from v6, we move one pebble to v7 and then we
move nine pebbles to v5. Thus v3 receives four pebbles and hence we are done.

Assume p(S2 − {v2, v4, v2m}) ≥ m + 24. Without loss of generality, we let
p(v2m−2) ≥ 1 + d 26

m−3e. Let p(v2m) = 1. If p(v2m−1) = 1 then we move one
pebble to v2m from v2m−2 then we move one pebble to v1. And then we move
one more pebble to v1 from the vertices of S2 − {v2, v4, v2m} through v2m+1.
Thus we can move a pebble to v2 at a total cost of twelve pebbles and so the
graph J2,m has at least 4m + 21 − q − 12 ≥ 2m + 11 and hence we are done.
Assume p(v2m−1) = 0. Clearly, we can move one pebble to v2 using at most
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thirteen pebbles and hence the remaining number of pebbles on J2,m is at least
4m+ 21− q− 13 ≥ 2m+ 10 and hence we are done. Assume p(v2m) = 0. In a
similar way, we may assume that p(v4) = 0.

If p(v2m+1) = 1 then we can move one pebble to v2 at a cost of thirteen
pebbles from the vertices of S2 − {v2, v4, v2m}. Then J2,m has at least 4m +
21− q− 13 ≥ 2m+ 12 and hence we are done. Assume p(v2m+1) = 0 and thus
p(S2 − {v2, v4, v2m}) ≥ m + 24. Let p(v2m−2) ≥ 1 + d 27

m−3e. Assume p(v11) = 0
or p(v13) = 0 and thus we move one pebble to v2m+1 from v2m−2 and then
we can move seven pebbles to v2m+1 since p(S2 − {v2, v4, v2m})− 2 ≥ m + 22.
Assume p(v11) = p(v13) = 0 and thus p(S2 − {v2, v4, v2m}) ≥ m + 24. So, we
can move eight pebbles to v2m+1 from the vertices S2−{v2, v4, v2m} and hence
we are done.

4 The 2t-Pebbling Property of the Jahangir

Graph J2,m

In this section, we are going to prove that the Jahangir graph J2,m (m ≥
3) satisfies the 2t-pebbling property. Clearly, the technique to prove this is
Induction on t.

Theorem 4.1 The graph J2,3 satisfies the 2t-pebbling property.

Proof: For t = 1, this theorem is true by Theorem 3.1. Assume the result is
true for t − 1 ≥ 1. Consider the graph J2,3 with 2ft(J2,3) − q + 1 pebbles on
it. Clearly 2ft(J2,3)− q + 1 ≥ 16t + 1− q ≥ 24, since q ≤ 7 and t ≥ 2 and by
Theorem 2.2. So, we can move two pebbles to the target vertex vi of J2,3 at a
cost of at most sixteen pebbles by Theorem 2.2. Then the graph J2,3 has at
least 16t+ 1− q−16 = 16(t−1) + 1− q and hence we can move the additional
2(t− 1) pebbles to vi. Thus the graph J2,3 satisfies the 2t-pebbling property.

Theorem 4.2 The graph J2,4 satisfies the 2t-pebbling property.

Proof: For t = 1, this theorem is true by Theorem 3.2. Assume the result is
true for t − 1 ≥ 1. Consider the graph J2,4 with 2ft(J2,4) − q + 1 pebbles on
it. Clearly 2ft(J2,4)− q + 1 ≥ 32t + 1− q ≥ 55, since q ≤ 9 and t ≥ 2 and by
Theorem 2.3. So, we can move two pebbles to the target vertex vi of J2,4 at a
cost of at most 32 pebbles by Theorem 2.3. Then the graph J2,4 has at least
32t + 1 − q − 32 = 32(t − 1) + 1 − q and hence we can move the additional
2(t− 1) pebbles to vi. Thus the graph J2,4 satisfies the 2t-pebbling property.

Theorem 4.3 The graph J2,5 satisfies the 2t-pebbling property.



38 A. Lourdusamy et al.

Proof: For t = 1, this theorem is true by Theorem 3.3. Assume the result
is true for t − 1 ≥ 1. Consider the graph J2,5 with 2ft(J2,5) − q + 1 pebbles
on it. Clearly 2ft(J2,5) − q + 1 ≥ 32t + 5 − q ≥ 58, since q ≤ 11 and t ≥ 2
and by Theorem 2.4. So, we can move two pebbles to the target vertex vi
of J2,5 at a cost of at most 32 pebbles. Then the graph J2,5 has at least
32t+ 5− q− 32 = 2(16(t− 1) + 2) + 1− q pebbles and hence we can move the
additional 2(t− 1) pebbles to vi. Thus the graph J2,5 satisfies the 2t-pebbling
property.

Theorem 4.4 The graph J2,m satisfies the 2t-pebbling property, where m ≥
6.

Proof: For t = 1, this theorem is true by Theorem 3.4, 3.5, and 3.6. Assume
the result is true for t− 1 ≥ 1. Consider the graph J2,m with 2ft(J2,m)− q + 1
pebbles on it. Clearly 2ft(J2,m) − q + 1 = 2 [16(t− 1) + f(J2,m)] − q + 1 ≥
33 + f(J2,m) − q ≥ 37, since q ≤ 2m + 1 and t ≥ 2 and by Theorem 2.5. So,
we can move two pebbles to the target vertex vi of J2,m at a cost of at most 32
pebbles. Then the graph J2,m has at least 2 [16(t− 1) + f(J2,m)]−q+1−32 ≥
2 [16(t− 2) + f(J2,m)] − q + 1 pebbles and hence we can move the additional
2(t− 1) pebbles to vi. Thus the graph J2,m satisfies the 2t-pebbling property.
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