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Abstract

In this paper, we first introduce the definition raftational sets for cellular
automataf,, using Misiurewicz’s rotational sets. After thate wefine rotational
entropy functions for cellular automafa from Bowen’s definiton of rotational
entropy. Finally, we compare rotational entropy d¢tian with topologic entropy
function for cellular automat#,.
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1  Introduction and Background

In this paper, we study rotational entropy of delluautomatsf,,. We define
rotational entropy for cellular automafaand prove that it is a topological
invariant closely related to the rotation set Pard@ssociated to each orientation
preserving homeomorphism of the circle a numbesjgiated rotation number
that quantifies the asymptotic behaviour of différerbits. Furthermore there are
orbits whose rotational behaviour is so chaoti¢ tree cannot associate a single
number to its wrapping. In general, the rotationeath orbit is captured by its
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rotational interval. The unions of all rotationentals of a map is designated the
rotation set of the given mapping ([1], [2], [3]).

Frank in ([4],[ 5]) proved that any orbit of an artins homeomorphism isotopic to
the identity, with finitely many periods has rotatinumber. Therefore examples
with chaotic rotations are a topological invaridnat roughly tells how many
different orbits a map has. However we may have asitipe entropy
homeomorphism with trivial rotation set. Bowen’sfidi#ion of topological
entropy suggests a natural way of measuring thetichaotation of a given
homeomorphism.

We give an introduction to additive cellular autaantheory then discuss and the
rotation entropy of additive cellular automgfa. Cellular automata were
introduced by Ulam and Von Neumann, have been swdteally studied by
Hedlund from a purely mathematical point of view]([[6]). The study of such
dynamics called cellular automata has received negihée attention in the last
few years ([4], [6], [7]). For a definition and senproperties of additive one
dimensional cellular automata we refer to [8].

The Notion of the rotation number of an orientatmeserving homeomorphism
of a circle was introduced by PoinédB], and since then it has proved to be very
useful. It was generalized to the case of contisunaps of a circle of degree one
by Newhous, Palis and Takens in 1979 [10]. In tase one gets a rotational
interval. This concept also is very useful. Thisadappears in the papers of Kim,
MacKay and Guckenheimer [11]. In section this wespnt definition of the
rotation set. The straightforward generalizationhef definition of the rotation set
would be the following.

Consider the circlé = R/Z with the natural projection:R - T.Iff: T —» Tis a
continuous map, then there is a continubus — Rsuch that the diagram

Definition 1.1: (see [1]): Letd = {a4, a,, ..., a;} be a finite set of symbols and
0=A"=w={w,;w, €A, g€Z} be the space of configurations with
Tychonoff topologyr be the shift in this configuration space:

(@IwW)p =wg-1, ,g,hEZ™

Assume that a functiofiw_g, ..., w,) with values in A is given. This function
generated a cellular automgaof by the formula:

fOO(W) = (yn)zj:—oo lyn = f(W_g, ...,Wg)
Lemma 1.2: Cellular automataf,, is continuous and commutes with left shift [4].

Definition 1.3: f is additive if and only if it can be written as



10 Bunyamin Aydin

g
f(wn_g, ...,Wn+g) = Z AWy 1 (modr)
i=—g
wherel; € A.
Let us consider particular case when

fF(Wnegs s Wnag) = Z‘ig=_g ;. Wy .1 (modr).

Given integes < t and a block

I = (iy,ig e in) €ZM—g; < ;< g,j: 1,2, ,n || = 229 + D™
Let £(s,t) denote the partition of into the cylinder sets of the forin=
(iy, iz, ., ip) € Z™.

Lemma 14: Suppose thatf(wy_g, .., Wnig) = X{__, Wny1(modr) and
&(—g,9) is a partition of @ whereg > 2, then the partitioné(—g,g) is a
generator for additive automai@, [6].

2 Rotations Sets and Rotational Entropy

The Notion of the rotation number of an orientatmeserving homeomorphism
of a circle was introduced by Poiné§r]., and since then it has proved to be very
useful. It was generalized to the case of contisunaps of a circle of degree one
by Newhous, Palis and Takens in 1979 [14]. In ttase one gets a rotational
interval. This concept also is very useful. Thisadappears in the papers of Kim,
MacKay and Guckenheimer [13]. In section this wespnt definition of the
rotation set. The straightforward generalizationhef definition of the rotation set
would be the following.

Consider the circlé = R/Zwith the natural projectiom:R > T.Iff: T—>T is a
continuous map, then there is a continuBus — R such that the diagram

R F__.R

T - T

commutes. Suchis called a lifting off. It is unique up to a translation by an
integer '(x) =T(x)+k, k € Z). There is an integet such thaf'(x + 1) =
T(x) + d for allx € R. It is called the degree of the choice of liftimdenote byC
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the family all lifting of continuous degree one rsayl into itself.

LetT € C. If k € Z, therF(x) = F(x) + k. All iterates ofF also belong t&,so
T™"(x + k) = F™"(x) + k. We define upper and lower rotation numberg af R
for F e Cas

- ] F'(x) —x
p(F,x) = lim sup ———,
n—oo n
o FM) —x
p(F,x) = lim inf ———.
—_— n—oo n
If
- F'"(x) —x
p(F,x) = lim sup———
n—>00
() —x
p(F,x) = lim inf ——,
_— n—-oo n

p(F,x) = p(F,x).
we writep(F, x) and call it rotation number offor F.

Definition 2.1: The set of rotation vectors at all points whereytlegist is called
the rotation set of .

Theorem 2.2: If F € Cis a lifting of a circle map thenp(F, x) exists for all
x € R and is independent af Moreover, it sit rotational if and if has a periodic
point [2].

In [1] Botelho, the definition of rotation entrofpased on Bowen'’s interpretation
of the topological entropy is introduced. lfdte an annulus endomorphism ahd
be one of its lifts. By using the definitions otabon entropy and Misiurewicz’s
rotation set, spectrum of rotation entropy funcsiovill be defined.

Definition 2.3: A subset E of A is callga, )-rotational spanning iff for alk €
A there existy € E so that

Proposition 2.4: There exists minimdh, €)-rotational spanning sets and is finite
[10].

We denote byE}, . a minimal (n, ) -rotational spanning and by B . its
cardinality. The following two facts are straightiard:

If n < m, then #} . < #E}, ..
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If &, < &, then #7 . < #E7,

Definition 2.5: The(n, £)-rotational entropy,. < (f), is given by
lim,,_, sup%log #(E%e).

Obviously ife; < &, thenh, ., < h,. . .

Definition 2.6: The(n, €)-rotational entropy of’, h,(f), is the limit ofh, ¢ (f)as
€ approach to zero.

Definition 2.7: LetD € X be a non-empty set. Fer> 0, a setD € X is called
an (n, )-rotational separated set &f if x,y € D, x # y imlplies

lx —y| > ean4w| > ¢

Letn, (D, e)denote the largest cardinality @f, )-rotational separated sets for

Definition 2.8: The(n, €)-rotational entropyh, <(f), is given by
lim,_ . sup %log#(D,Z,g).
Theorem 2.9: The following limits are equals:

he (F) = limy e, sup —log #(Ef¢) = lim,,_.c, sup~log #(E} ) [10].

3  Entropy for Celular Automata f

Definition 3.1: Let4 = {ay,a,, ..., a;} be a finite set of symbols ahd= AZ" =
w = {w,:w, € 4, g € Z} be the space of configurations with Tychonoff kngg
o be the shift in this configuration space:

(a9IW)p, =w,-1, ,g,h€Z™

g

Assume that a functigifw_,, ..., w,) with values in A is given. This function
generated a cellular automaja of € by the formula:

foo(W) = (yn)fq":_oo yVn = f(W_g, ...,Wg) .
Lemma 3.2: Cellular automatgf,, is continuous and commutes with left shift [5].

Definition 3.3: f is additive if and only if it can be written as
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g
f(wn_g, ...,Wn+g) = Z Ai-Wyp1 (modr)
i=—g

wherel; € A.
Let us consider particular case Wii€a,_g, ..., Wy g) = Xi__; Ai. Wpiq (modr).
Given integes < t and a block

I] = (il,iz, ...,in) E Zn:_gi S i]

<9J:12, .., =22g + D™

Let (s, t) denote the partition of2 into the cylinder sets of the forif =
(i, iz, ., ip) € Z™.

Lemma 3.4: Suppose thfi{(wy,_g, ..., Wn1g) = Xi__, Wni1(modr) andé(—g, 9)
is a partition of@ whereg > 2, then the partitionZ(—g, g) is a generator for
additive automatgt,[6].

Definition 3.5: Letp(f.., x) be the set of all limits of convergent subsequete

the sequence
(f£(X) ~ x>°°
n
n=1

However, we shall mainly use another definitione Thotivation is a follows. The
aim of the rotation set is to measure the averageement of many point. This
average movement is measured by finite parts otsprthen passing with the
lenghts to infinity. Therefore we shall not do fiidawe shall taken the limits of all
convergent sequences

<f£(xi)

©o
) x; ER™ n; - oo,
m n=1

The set obtained in such away we shall the rotatitnof cellular automata for

fwoandp (fo).

Now, we introduce the definition of the rotatiomaitropy of cellular automata iff
for all £, ., based on Bowen’s and Botelho’s [11] interpietabf the topological
entropy.

Definition 3.6: A subsetE of © is called (n, ¢, f,,) rotational spanning for
cellular automata iff for allk € Qthere existy € E so that
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Ix _ yl < Saanw (x);foo (Y)| <

Proposition 3.7: There exists a miniméh, ¢, f, )rotational spanning for cellular
automatg,, and it is finite.

Proof: For fixednande, givenx € w there exist® < § < ¢ so that

M <e=12..,n-1

lx —y| < eand|

andy € B(x,6).

SinceA is compact, there are balls with centers;, x,, ..., x, that cover the
whole annulus. The s¢ty, x,, ..., x,} is (n, ¢, f,) rotational spannig.

We denote by a minimal(n, ¢, f,,) rotational spannig for cellular automata and
by # Ey ¢ its cardinality. The follows two cellular automatee straight-forward:

a) If n < mthen® Eyg <# E;% .
b) If &, < &, then# Eys, <# E;%. .

Definition 3.8: The(n, ¢, f,,) rotation entropy for cellular automatg, , hyg , is
given by

1
lim sup—log + E. ;.

n—-oo
Obviously ife; < e;then0 < hyz, < hye, [3].

Definition 3.9: The rotational entropy for cellular automafa, ho*(f.,) , is limit
of hy’¢ ase approaches zero.

Lemma 3.10: It can be written as
hn, (foo) = Ry (fio)-

Proof: If the setE,; is a minimal(n, ¢, foo)rotational spanning set then it is
(n = ny, &, f,,) rotational spanning, thereferel, s >+ E,ifn ¢ This implies that

hca(foo) = hr no(foo)

To prove the other inequality, one notice thatefor 0 there existd$ < ¢ so that
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fool(x) fool(y)

lx — y| <6and| <ei=12,..,n—1.

Consequently we haveE; s ># E,5. . and

nzng,&

1 c,a
lim lim sup—log *+E

50 11500 nznq,8

1 c,a
> lim lim sup—log # Eyong e

-0 n—-oo

proving thath, 7y (fio) = A" (fe).

Definition 3.11: Letf,, be any uniformly continuous map metric sp&egs), a
setE c 2 is said to bdn, ¢, f,,) seperated undef, if for every pairx # y in E
there is a € {1,2,...,n — 1} with the property that

For each compact s&tc 1 let

Ax(n, g, foo) = max{E:E c Kis(n, ¢, f,,)separatedunderf,},

1
hy*(foo, €) = lim ;log(;t A,leé)
n—00
and
h?a(foo) = limh?a(foorg)-
E—0C0

Proposition 3.12: The topological entropy is defined bi(f). If 2 represents a
lift of £, is uniformly continuous and the following defioiti due to Bowen
makes sence:

h(@) = sup h%(fo) .

kcompact
It is known fact that(f) = h(2). Thereforeh;*(f,,) < h(f) = h(Q).
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