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Abstract

In this paper, we study Menger Probabilistic Nornfedll) spaces in a detailed
way; we introduce the notation of a finite produmt Menger Probabilistic
Normed spaces, show that a finite product of coteapMenger probabilistic
normed spaces is itself complete and every Cauedayemnce in a Menger
probabilistic normed space is norm totally boundedier certain conditions. We
also introduce the notion of L-Menger PN spaces simow that in a L-Menger
PN space (O, *), the distribution mapF determines and is determined by a
single distribution function ofR.
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1 Introduction

It is well known that the theory of probabilistionmed spaces is a new frontier
branch between probabilistic theory and functicaralysis and has an important
background which contains the common metric spaca special case. One can
study the completeness theorems in probabilistrened spaces. This study has
important applications, for example on the fixedptheory etc.
Now, we begin with the following definitions

Definition 1.1. [2] A function F: R —» R* is called a distribution function if it is
non-decreasing, left continuougf, .gx F(x) = 0 and sup,g F(x) = 1.
The set of distribution functiod&such that”(0) = 0 is denoted b*.

- e . _(1ift>0
Also denote I8, the Heaviside distribution functidin(t) = {0 ift<0
Definition 1.2. [2] Let S be a non-empty set and IBtSxS —» D*. For any
p,q € S. We denote the image of the p@i, q) by F, ; which is a distribution
function so thaf, ,(t) € [0,1], for every reat. Supposé satisfies:

a) E,,(t)=1forallt>0ifandonlyifp =q

b) E,q(t) = F,,(t)
C) If E, ,(t;) = 1andF,,(t;) = 1thenE,,(t; + t,) = 1 wherep,q,7 €.

Then(S, F) is called a Probabilistianetricspace (PM space).

Definition 1.3. [2] A triangular norm=: [0,1] x [0,1] — [0,1] is a function
satisfying the following conditions

) axl=a Va €][01]

(i) a*b=bxa Vab € [01]

(iily) c¢c*d>=axb Va,b,cd € [01] withc=aandd = b
(iv) (a*b)*c=ax(bxc) Vab,ce[0,1]

A triangular norm is also denoted by t-norm.
Definition 1.4. [2] A Menger Probabilistic metric space (Menger Rdace) is
a triplet (S, F,x) where (S,F) is a Probabilistic metric space,* is a t-norm

satisfying the condition

E, - (t; +ty) = E, 4(t1) * Fy . (t;) forall t;,t, = 0 and p,q,7 € S.
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We observe that a Menger PM space is a probalulisgtric space.

Definition 1.5. [2] A triplet (S, F,*) is called a Menger Probabilistic normed
space (Menger PN space)dfis a real vector spacd;:S —» D*(for x € S, the
distridution functionF (x) is denoted by, and F,(t) is the value off, att € R)
and= is a t-norm, satisfying the following conditions:

) F0)=0
(i) F.(t) = H(t) foreveryt >0iff x =0

(i) Fu(t) = E (ﬁ) VaeRa %0
(V) Feqy(ty +t5) 2 F(t) * F,(t) V x,y € Sand ty,t, € RT

Remark 1.6. [1] Let (S, F,x) be a Menger PN space afide a real vector space.
Then (S, F,*) is a Menger PM space whefg, (t) = F,_,(t). (S,F,*) is called
the induced Menger PM space of the Menger PN s{faétx).

Schweizer, Sklar and Thorp [3] proved thafSfF,*) is a Menger PM space with
Supg<i<1(t *t) =1, then (S, F,*) is a Hausdorff topological space in the
topology 7" induced by the family ofe( 1) neighbourhoodsl,(e,1):p € S, e >
0,4 > 0} whereU,(e,4) = {u € S:F, ,(e) > 1 — 1}.

Definition 1.7. [2] Let (S, F,*) be a Menger PM space witlupg;,(t *t) = 1

(1) A sequencéu,} in S is T-convergent tau € S(u, kA u) if for any given
e >0 and A1 > 0, there exists a positive integdr = N(¢,1) such that
E, .(e) >1—Awheneven = N.

(i) A sequencéu,} in S is a 7'-Cauchy sequence if for amy> 0 andA > 0,
there exists a positive integéf = N(¢,1) such thatf, , (e) >1—41
wheneverm,n > N.

@iif) A Menger PM spacés, F,*) is said to ber'-complete if eacli-Cauchy
sequence if§ is 7'-convergent to some point$h

Example 1.8. (i) Let (E,|| |lz) be a normed real vector space. Deffhef —
D by
t .
E(6) = {t+||x||E iye>0
0ift<0

Then(E, F ,*) is a Menger PN space wherés any t-norm.
(i) For x € E, defineF,(t) = H(t — ||x|) V t € R.
Then(E, F ,*) is also a Menger PN space.

Lemma 1.9 ([1], Lemma 2.6). If (R, F,*) is a Menger PN space th¢n| < |y| =
E.(t) < E,(t) forallx,y € Randt = 0.
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Definition 1.10. [1] Let (R, F,*) be a Menger PN space and,| ||) be a
normed real vector space. We define the mapBirij—» D* by F.(t) = Fj ().
(We observe tha, (¢) = £,(t) if Ilx]l = lIyl})

Then the following proposition says th{&, F ,*) is a Menger PN space.

Proposition 1.11 ([1], Proposition 2.8). Let (R, F,*) be a Menger PN space then
(E,F ) is also a Menger PN space.
The following theorem also is proved in [1].

Theorem 1.12 ([1], Theorem 3.1). Let (S, F,*x) be a Menger PM space with a
continuous t- norm. Supposéx,} is a Cauchy sequence which has a convergent
subsequence. Thén,} is convergent.

The following theorem also is proved in [1], buisithot well formed

Theorem 1.13 ([1], Theorem 3.2). Let (E, F',x) be a complete Menger PN space,
whereE is a real vector space anfl: R » D is defined by, (t) = Fj (0.
Then(R, F,*) is complete.

In this theoremF is not well defined. In fact when= y and||x|| = ||yll, £ (t)
may be different frorﬁy(t) as seen in the following Example.

Examplel.14: Let X = RX R, for any x = (ay,a;) € X, ||x|| = |a;| + |a;].

DefineF,(t) = — ' vxeX and+= min.
t+|aq|+2]az|

Then(X, F,x) is a Menger PN space.
Lete; = (1,0) ande, = (0,1) so that|le || =1 = ||ey]|
BUL Fl, () # File, (t)

t

. t
SlnCGF”el”(t) = E31 ) = Py where as Fllez||(t) =T

The following theorem says that a Menger PN sp@gd-,«) may induce a
number of probabilistic distribution mags on R. This theorem can be easily
established.

Theorem 1.15. Let (E, F,x) be a Menger PN space. For anye X,x # 0,
defineF;(t) = F x (t) and F,(t) = F; (ﬁ) for a # 0.

[
Then(R, F,*) is a Menger PN space. (E, F,*) is complete, then so (R, F,*).

The following theorem is a kind of converse to Téenl1.15. This theorem says
that every distribution function induces a probdpildistribution map on a
normed linear space under any t-norm

Theorem 1.16. Let X be a normed linear space, be a t-norm andf be a
distribution function such thdt(t) < 1 for at least one > 0. For x € X, define
E;:E - Dt by

t

E() = {F(uxu ifx#0
H({t)if x=0
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Then(X, F,*) is a Menger PN space.
Proof. The result can be easily established.

Definition 1.17. A Menger PN spacgX, F,+) is said to be a L- Menger PN space
it llxll =llyll = K =F

We observe thatX, F ,x) of Theorem 1.16 is a L-Menger PN space.

It may be noted that the Menger PN spé&eF,*) of Example 1.14 is not a L-
Menger PN space.

The following theorem shows that a L-Menger PN spdetermines and is
determined by a distribution functighwith0 < F(t) < 1 for at least one > 0.

Theorem 1.18. Let (R, F,*) be a Menger PN space ar be a vector space.

Define F:X - D" by E.(t) = Fl(ﬁ). Then(X, F,x) is a L-Menger PN space.

Conversely if(X, F ,*) is a L-Menger space, theiR, F,*) is a Menger PN space
where F,(t) = F,(t) for any x ( and hence every) with ||x|| =1 and 0 <
F;(t) < 1 for at least one > 0.

The following theorem also may be taken as a nuadifin of Theorem 1.13.

Theorem 1.19. Let (X,F,x) be a L-Menger PN space. DefileR —» D* by
E,(t) = E,,.(¢t) for anyx € E with ||x|| = 1. Then(R, F,*) is a Menger PN space.

Proof. The proof of this theorem can be easily estabtishe

Definition 1.20. Let{(R, F;,*):i = 1,2, .., k} be Menger PN spaces.

Write e; = (0,0, ...,1,0, ...,0) where 1 is in the' place. Ther{ey, e, ...,ex} is a
basis to the real vector spai¥. Define F: R - D* is defined by

Fe(t) = Fiy () # F, (£) * oo.% Fip, (t) Where x = x1e3 + X565 + -+ + g€y
Then it can be easily verified th@R¥, F',) is a Menger PN space.

(R¥, F %) is called the product Menger PN spacd@, F;,*):i = 1,2, ..,k}.

F; is called the'! component of'.

The following theorem can be easily established.

Theorem 1.21. Let(R¥, F,x) be a Menger PN space. Suppose

E () = F e, (t) * e, (t) * ... x E, o, (£) Whenever = (xq, Xy, ..., Xx).
Then(R¥, F %) is the product Menger PN space{0R, F;,x):i = 1,2, ..,k}.
The following theorem is proved in [1].

Theorem 1.22 ([1], Theorem 3.5). Let (R, F,x) be a Menger PN space where
F,(*) is continuous at zero an€ is a continuous t-norm. ThefR, F,*) is a
complete Menger PN space.

In the next section, we prove this theorem wittibatrestriction that F,(e) is
continuous at zero andis a continuous t-norm”.
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2 Main Results

In this section, we show that a Menger PN spa@d,*) is complete { is not
assumed to be continuousjRk, F,«) is complete fork =1,2,...if * is
continuous.

Incidentally, we also show that a Cauchy sequem¢R,iF,*) is bounded.

Theorem 2.1. If (R, F,*) is a Menger PN space, then

(1) Every Cauchy sequence(R, F,*) is bounded and
(i) (R, F,x) is complete.

Proof. Suppos€R, F,*) is a Menger PN space
0] Let{x,} be a Cauchy sequence(iR, F,*).

We show thafx,} is bounded iR, F,*).

Otherwise, there exists a sub sequege} such thafx,, | - «

Since{x,} is a Cauchy sequence (R, F,*), for a givenie (0,1) there exists N
suchthat}, _, (1)>1-AVmn=N

HenceF; (—

>>1—A Vnk>N ......... (1)

|xnk_xN|

SinceF, is increasingF,; (07) exists. Write F; (0%) = «, thena € [0,1].
a=1=F(t)=1=1=0, acontradiction

Hencea < 1

Choosel € (0,1) suchthat1 — 1>«

From (1), lettingc — o

a = F,(07) >1— 2> a, acontradiction.

Thereforex = 1, so thatF; (0%) = 1, again a contradiction.
Hence{x,,} is a bounded sequencelin

(i) Let {x,,} be a Cauchy sequence(iR, F,*). Then by (i).{x,} is bounded.

Hence there exists a subsequencg J of {x,,} that converges tp (say).
ThenF,, _g(t) = F; (xn:_ ;
“ Xp,, = BIn (R, F,*)
Hence{x, } is convergent by Theorem 1.12.

Therefore(R, F,*)is complete.

Now we state a Lemma, whose proof is a consequsrtbe continuity o# at 1.

) — 1 ask - «.

Lemma 2.2. Supposex: [0,1] X [0,1] - [0,1] is a continuous t-norm ankl is a
positive integer.
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Then for a giverd € (0,1) there existd’ € (0,1) such that

A-2H)«A-AD)*..xQ-21)>1-A
— _/

Y

k-times

Making use of the above Lemma, in the followingrtm, we establish that
(Rk, F %) is complete if is continuous.
This theorem may be taken as a modification to fémed..13.

Theorem 2.3. If (R,F,x) is a Menger PN space with continuous t-norm, then
(R¥, F,%) is complete wherg is defined byF, (t) = F,, (t) * F,, (t) * ....x F,, (t)
wherex = (ay, ay, ..., ay) € RX.

Proof. By Definition 1.20, R¥, F,*) is a Menger PN space.

Now we show that it is complete.

Let {x,} be a Cauchy sequence R¥( F ).

Then for a givene > 0 and A € (0,1) there existsN, € N such that for any
m,n = N

Fepox, (€)>1-2

Letx, = (@1 Aany o) A ), 1 = 1,2, ...

Now1l—2A<FE, _, (€)= Fig,—1a,,(€) * Flay,—ap)(€) * ¥ Fiap —ar, 3 (€)

= Flap-1a,(6) > 1 =4 i By g, () >1 =2
Therefore{a;,, } is a Cauchy sequence(R, F,*) for1 <i<k.
Hence{a;,} converges, say, @, i = 1,2, ... k.

Write x = (aq, ay, ..., )

By Lemma 2.2, choos¥ € (0,1) such that

Q-)+A-2)x..x(1-2)>1-21
~

k-times

ForA' € (0,1) there exist®V; such that fon > N;

Fam_ai(e) >1-A fori=1.2,...k

Put N = max {N;,N,, ..., N}, sothatfon > N

ﬁxn—x(e) = Fayp-ay (€) * Foyp-a, (€) * ....x Fakn—ak(e)
>S(1-A)«xA-A)*x.x(1-21")
>1-2

Therefore {,} converges ta.

Hence R¥, F,*) is complete
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Definition 2.4. If X is a normed space an, F,*) is a Menger PN space, then
we say that(X, F,*) is a normed Menger PN space.

Definition 2.5. If X is a finite dimensional vector space afi] F,*) is a Menger
PN space, then we say th&t, F,*) is a finite dimensional Menger PN space

Theorem 2.6. Let X be a finite dimensional vector space with, e,, ...,e,) as a
basis forX. Then(X, F‘,*), wherex is continuous, is a complete Menger PN space
whenever(R, F;,*), i = 1,2, ... are Menger PN spaces afdsatisfies

Fe(t) = Fig, (£) * Faq, (£) * ... % Fiq, (t) Wherex = aje; + aze; + - + aey

Proof. Same as in Theorem 2.3.

In Theorem 2.1, we have shown that every Cauchyesesp in the Menger PN
space(R, F,x) is bounded and hence totally boundedRn In the following
Theorem we extend it to a general Menger PN spamer certain conditions.

Theorem 2.7. Let (X, F,*) be a normed Menger PN space, where
{E.():||x]| = 1} is equicontinuous at zero andis a continuous t-norm. Then
every Cauchy sequence(iX, F,*) is norm totally bounded.

Proof. Suppos€x,} is a Cauchy sequence(l) F,*).

We have to provéx,} is totally bounded in norm.

Suppos€x,} is not totally bounded in norm.

Then there exists > 0 such that what eve¥ be there existay > N such that
Xny €& UL, Se (x)

i.e.||xN —an” >e fori=12,....N ... (1)

Since{FE,(*): ||x|| = 1} is equicontinuous at zero, for the given— 1) > 036 >
0 suchthaf,(t) <1—A1 foreveryt<d§and|x|]|=1 ...... (2)

Since{x,} is a Cauchy sequence(iH, F,*),

for the givende > 0 andZ € (0,1) there exist3/ € N such that

Fy —x,(6€) >1—=21 foralln,m =M.
e

Now, by (1)———— < 1, so tha <.
Al ra— [ ra—
Consequently xn,,—xy ( o ) >1—-1 ("ny=M)

Ty —n]
Therefore by (2), we have
1= A<F xny-ru ( o

— 1 \[xny,—xm
Fonsg =]
Hence{x,,} is totally bounded.
We conclude the paper with an open problem.

) < 1 — 2, a contradiction.

Open problem 2.8. Is Theorem 2.3 valid if “continuity of t-norm” igdpped?
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