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Abstract
We introduced the notion of Hoehnke Radical class for associative semirings
in [7]. We give here some consequences of Hoehnke radical and hereditary
Kurosh-Amitsur radical class.
Keywords: Semirings, Ideal, Radical class, Hoehnke radical class, Hered-
itary class.

1 Introduction

For the general radical theory of rings, the reader is referred to the classical
monograph of N. J. Divinsky [3]. For definitions and properties of semirings,
ideals, homomorphism, the reader is referred to [4]. The concepts of radical
class for hemirings were given by D. M. Olson and T. L. Jenkins in 1983, see [6].
Moreover we introduced the notion of Hoehnke Radical class for associative
semirings in [7]. In the present paper we have given some consequences of
Hoehnke radical and hereditary Kurosh-Amitsur radical class.

2 Preliminaries
There are many different definitions of a semiring appearing in the literature.

Throughout this paper, a Semirings, additively cancellative semirings, com-
mutative semirings, semimodules, additively cancellative semimodules, ideals,
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k-ideals (subtractive ideals), homomorphisms semiring will be defined as fol-
lows:

Definition 2.1. [J]] A semiring is a set R together with two binary oper-
ations called addition (+) and multiplication () such that (R,4) is a com-
mutative monoid with identity element Ogr; (R,-) is a monoid with identity
element 1; multiplication distributes over addition from either side and 0 is
multiplicative absorbing, that is, a-0=0-a =0 for each a € R.

Definition 2.2. [/ A semiring R is said to have a unity if there exists
1gr € R such that 1 -a=a-1g = a for each a € R.

For e.g. The set N of non-negative integers with the usual operations of
addition and multiplication of integers is a semiring with 1y.

Definition 2.3. [}/ A semiring R is commutative if (R, -) is a commutative
Semigroup.

Definition 2.4. [J]] A subset I of a semiring R will be called an ideal of R
if I is an additive subsemigroup of (R,+), IR C I and RI C I.

Definition 2.5. [}/ An ideal I of a semiring R will be called subtractive
(k-ideal) if fora € I,a+be I,b€ R imply b e I.

Definition 2.6. [} A semiring R is said to be semisubtractive if for any
arbitrary a # b in R there is always some x € R satisfying b+ x = a or some
y € R satisfying a + 1y = 0.

Each homomorphism ¢: S — T of semirings corresponds to a congruence
k of S and the homomorphic image ¢(.S) is isomorphic to the semiring S/k of
congruence classes. In this paper we mainly use congruences that are deter-
mined by an ideal I of S according to sk;s’ < there are

a; € I satisfying s + a1 = s’ + as.

In this case one usually denotes S/k; by S/I. Moreover, k; = ky and thus
S/I = S/T hold for all ideals I of S with the same k-closure I, S/I has always
an absorbing zero, namely the congruence class I = [a]; = [a]; determined
by each a € I. We also mention that a semiring has in general much more
congruences than those determined by its ideals. For a last concept of this
kind, let ¢: S — T be a surjective homomorphism for semirings which have
a zero. Then ¢ is called a semi-isomorphism and denoted by ¢: S = T if
#(0g) = Or and ¢~'(07) = Og are satisfied. We emphasize here that such
a semi-isomorphism, despite of misleading name, has in general very little in
common with an isomorphism.

Convention: Throughout R — S is a surjective homomorphism.
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Theorem 2.7. [5] Let S be a semiring, T a semiring with an absorbing zero
Or, and ¢: S — T a surjective homomorphism. Then K = ¢~1(07) is a k-ideal
of S (also called the kernel of ¢ ) and ¢([s|k) = ¢(s) for all s € S defines
a semi-isomorphism ¢: S/K = T which satisfies ¢ o kg™ = ¢, where kg™
denotes the natural homomorphism of S onto S/K = S/kk.

Theorem 2.8. [J] For a semiring S with an absorbing zero 0 let S be a
subsemiring which contains 0 and B an ideal of S. Then ¢([a],~5) = [a]B
foralla e A C A+ B defines a semi-isomorphism

¢: AJANB = A+ B/B.

Theorem 2.9. [5] Let A, B be ideals of a semiring S with the additional con-
dition A C B. Then ¢([s]p) = [[s|alga for all s € S defines an isomorphism

¢: S/B — (S/A)/(B/A).

3 Radical Class

There are some definitions of radical class appearing in the semiring literature.
But we were looking for the definition given by HMJ-Althani [I], who has
introduced the definition of radical class in a different way. In [8] we have
discuss useful equivalent conditions for a subclass of a fixed universal class to
be a semisimple radical class and given some consequences of Upper radical
class. In this paper we give some useful interrelationship between Hereditary
Kurosh-Amitsur radical and Hoehnke radical.

Definition 3.1. [1/ Let R be a class of semirings. A semiring (ideal) be-
longing to the class R, will be called a R-semiring (R-ideal).

Definition 3.2. [1] A class R of semirings is called a radical class whenever
the following three conditions are satisfied:

(a) R is homomorphically closed; i.e. if S is a homomorphic image of a
R-semiring R then S is also a R-semiring

(b) Every semiring R contains a R-ideal R(R) which in turn contains every

other R-ideal of R.

(c) The factor semiring R/R(R) does not contain any nonzero R-ideal; i.e.

R(R/R(R)) = 0.

Proposition 3.3. [7] Assuming conditions (a) and (b) on a class R of
semirings, condition (c) is equivalent to
(¢’) If I is an ideal of the semiring R and if both I and R/I are in R, then R
itself is in R.
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Proposition 3.4. [7] Assuming conditions (a) and (¢’) on a class R of
semirings, condition (b) is equivalent to
(b°)if Iy C Iy C -+ C I\ C ... is an ascending chain of ideals of a semiring
R and if each I is in R, then |J I, is in R.

Theorem 3.5. [7] A non-empty sub class R of a universal class U is a radical
class if and only if

a) R is homomorphically closed.

b’) R has the inductive property.

¢’) R is closed under extensions.

4 Hoehnke and Hereditary Radical Class

Definition 4.1. [7/ From an aziomatic point of view a radical R may be
defined as an assignment R : R — R(R) designating a certain ideal R(R) to
each semiring R. Such an assignment R s called Hoehnke radical if

(1) 6(R(R)) C R(P(R)) for any homomorphism ¢ : R — ¢(R).

(ii) R(R/R(R)) = 0.
A Hoehnke radical R may also satisfy the following conditions:

(iii) R is complete: If [ <R and R(I) =1, then I C R(R).
(v) R is idempotent: R(R(R)) = R(R), for every semiring R.

Theorem 4.2. [7] If R is a Kurosh-Amitsur radical then the assignment R —
R(R) is a complete, idempotent, Hoehnke radical. Conversely, if R is a com-
plete, idempotent, Hoehnke radical, then there is a Kurosh-Amitsur radical o

such that R(R) = o(R) for every semiring R. Moreover o = {R | R(R) = R}.

Definition 4.3. [5] A class R of semirings is a hereditary radical class if
R € R and I is an ideal of R, then I € R.

Definition 4.4. [5] A class R is said to be regular if for every semiring
R € R, every nonzero ideal of R has a nonzero homomorphic image in R.

In particular, every hereditary class is regular.

Proposition 4.5. A radical class R is hereditary if and only if INR(R) C
R(I) for every ideal I of a semiring R.

Proof. 1f I < R and R is hereditary, then I N R(R) is an ideal in R(R) € R,
implies that I N R(R) € R. Therefore, by I N R(R) is an ideal in I and
INR(R) CR(I).

Conversely, assume that /<R € R and INR(R) C R(I). Then I = INR =
INR(R) CR(I) € R, showing that I € R. Thus every ideal I of a semiring
R € R is also in R. Hence R is hereditary. O



Hoehnke and Hereditary Radical Class 13

In ring theoretic sense, for a ring R, <1J<R does in general not imply I<R.
Therefore it was an important result for the radical theory of (associative) rings
by T. Anderson N. Divinsky and A. Sulinski in [2] that at least each radical
R(I) of an ideal I of a ring R is an ideal of R.

In this context one speaks about the A-D-S-property of a radical class. In
[5] it has been proved that this property also holds true for each radical class
of semirings, and we deal with some consequences of the A-D-S-property.

Lemma 4.6. [5] Assume [ <J <R and r € R for a semiring R. Then

rl + I is an ideal of R and ¢(b) = [rb]; defines a surjective homomorphism
o: 1 —(rl+1)/1I.

Theorem 4.7. [5] Let R be a radical class of a universal class U of semirings
and p = pr the corresponding radical operator. Then, for each ideal I of a
semiring R € U the radical p(I) of I is an ideal of R, which in particular yields
p(I) € p(R)N 1.

Theorem 4.8. [3] Let R be a radical class of U and o = or the corresponding
radical operator. Then R is hereditary if and only if o(I) D I N o(R) holds
for each ideal I of any semiring R € U. By Theorem [{.7 this inclusion is
equivalent to o(I) = 1N o(R).

Together with these results we can prove the following.

Corollary 4.9. A radical class R is hereditary if and only if R(I) = I N
R(R), for any ideal I of a semiring R.

Theorem 4.10. A Hoehnke radical R satisfies the condition
R(I)=1INR(R) forall I<R (1)
if and only if R is a hereditary Kurosh-Amitsur radical.

Proof. Let R be a Hoehnke radical with (I)). In a view of Theorem and
above corollary it suffices to show that R is complete and idempotent. If I <R
and R(I) = I, then I = R(I) = I N R(R) holds implying that I C R(R).
Shows that R is complete.

Further, for I = R(R) we have R(R(R)) = R(R) N R(R) = R(R), and
hence R is idempotent.

Conversely, a hereditary Kurosh -Amitsur radical R is a Hoehnke radical
by Theorem and satisfies by above corollary. O
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