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Abstract
In this paper, we define some new types of separation axioms in topolog-

ical spaces by using g?b-open set also the concept of g?b-R0 and g?b-R1 are
introduced. Several properties of these spaces are investigated.
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1 Introduction

Mashhour et al [12] introduced and investigated the notion of preopen sets
and precontinuity in topological spaces. Since then many separation axioms
and mappings have been studied using preopen sets. In [[1], [9]], weak pre-
separation axioms, namely, pre-T0, pre-T1 and pre-T2 are introduced and stud-
ied. Further, the notion of preopen sets are used to introduce some more
pre-separation axioms called pre-R0, pre-R1 spaces. Caldas and Jafari [3], in-
troduced and studied b − T0, b − T1, b − T2, b − D0, b − D1 and b − D2 via
b-open sets after that Keskin and Noiri [10], introduced the notion of b− T 1

2
.

The aim of this paper is to introduce new types of separation axiom via g?b-
open sets, and investigate the relations among these concepts.
Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y ) represents
the non-empty topological spaces on which no separation axiom are assumed,
unless otherwise mentioned. For a subset A of X, Cl(A) and Int(A) rep-
resents the closure of A and Interior of A respectively. A subset A is said



g?b-Separation Axioms 15

to be preopen set [12] if A ⊆ IntCl(A), b-open [2] or(γ-open) [6] if A ⊆
Cl(Int(A))∪ Int(Cl(A)). The family of all b-open sets in (X, τ) is denoted by
bO(X, τ).

2 Preliminaries

Definition 2.1 A subset A of a topological space (X, τ) is called:

1. generalized closed set ( briefly g-closed) [11], if Cl(A) ⊆ U whenever
A ⊆ U and U is open in X.

2. g?b-closed [?], if bCl(A) ⊆ U whenever A ⊆ U and U is g-open in X.

Definition 2.2 [3] A subset A of a topological space X is called a bdifference
set (briefly, bD-set) if there are U, V ∈ bO(X, τ) such that U 6= X and A =
U \ V .

Definition 2.3 [3] A space X is said to be:

1. b − T0 if for each pair of distinct points x and y in X, there exists a
b-open set A containing x but not y or a b-open set B containing y but
not x.

2. b − T1 if for each pair x; y in X, x 6= y, there exists a b-open set G
containing x but not y and a b-open set B containing y but not x.

3. b-D0 (resp., b-D1) if for any pair of distinct points x and y of X there
exists a bD-set of X containing x but not y or (resp., and) a bD-set of
X containing y but not x.

4. b−D2 if for any pair of distinct points x and y of X, there exist disjoint
bD-sets G and H of X containing x and y, respectively.

Definition 2.4 [13] A space X is said to be b− T2 if for any pair of distinct
points x and y in X, there exist U ∈ BO(X, x) and V ∈ BO(X, y) such that
U ∩ V = φ.

Definition 2.5 [10] A topological space X is called b − T 1
2

if every gb-closed
set is b-closed.

Definition 2.6 [8] Let X be a topological space. A subset S ⊆ X is called a
pre-difference set (briefly pD-set), if there are two preopen sets A1, A2 in X
such that A1 6= X and B = A1 \ A2.

Definition 2.7 ([1], [9]) A space X is said to be:
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1. pre-T0 if for each pair of distinct points x, y of X, there exists a preopen
set containing one but not the other.

2. pre-T1 if for each pair of distinct points x, y of X, there exist a pair of
preopen sets, one containing x but not y, and the other containing y but
not x.

3. pre-T2 if for each pair of distinct points x, y of X, there exist a pair of
disjoint preopen sets, one containing x and the other containing y.

Definition 2.8 [8] A topological space X is said to be pre-D0 (resp., pre-D1)
if for x, y ∈ X with x 6= y, there exists an pD-set of X containing x but not y
or (resp., and) an pD-set containing y but not x.

Definition 2.9 [8] A topological space X is said to be pre-D2 if for each x, y ∈
X and x 6= y, there exist disjoint pD-sets S1 and S2 such that x ∈ S1 and
y ∈ S2.

Definition 2.10 [7] A space X is said to be:

1. pre-R0 if for each preopen set G and x ∈ G implies Clx ⊆ G.

2. pre-R1 if for x, y ∈ X with Clx 6= Cly, there exist disjoint preopen sets
U and V such that Clx ⊆ U and Cly ⊆ V .

Definition 2.11 ([4], [5]) 1. A topological space (X, τ) is called b-R0 ( or
γ−R0) if every b-open set contains the b-closure of each of its singletons.

2. A topological space (X, τ) is called b-R1 ( or γ − R1) if for every x and
y in X with bCl({x}) 6= bCl({y}), there exist disjoint b-open sets U and
V such that bCl({x}) ⊆ U and bCl({y}) ⊆ V .

3 g?b-Tk Space (k = 0, 1
2, 1, 2)

In this section, some new types of separation axioms are defined and studied
in topological spaces called g?b-Tk for k = 0, 1

2
, 1, 2 and g?b-Dk for k = 0, 1, 2,

and also some properties of these spaces are explained.
The following definitions are introduced via g?b-open sets.

Definition 3.1 A topological space (X, τ) is said to be:

1. g?b-T0 if for each pair of distinct points x, y in X, there exists a g?b-open
set U such that either x ∈ U and y /∈ U or x /∈ U and y ∈ U .

2. g?b-T1 if for each pair of distinct points x, y in X, there exist two g?b-open
sets U and V such that x ∈ U but y /∈ U and y ∈ V but x /∈ V .
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3. g?b-T2 if for each distinct points x, y in X, there exist two disjoint g?b-
open sets U and V containing x and y respectively.

4. g?b-T 1
2

if every g?b-closed set is g-closed.

5. g?b-space if every g?b-open set of X is open in X.

The following result can be simply obtained from the definitions.

Proposition 3.2 For a topological space (X, τ), the following properties hold:

1. If (X, τ) is b-Tk, then it is g?b-Tk, for k = 0, 1
2
, 1, 2.

2. If (X, τ) is Pre-Tk, then it is g?b-Tk, for k = 0, 1, 2.

The converse of Proposition 3.2 is not true in general as it is shown in the
following examples.

Example 3.3 Consider X = {a, b, c} with the topology τ = {φ, {a}, X}. Then
the space X is g?b-Tk but it is not pre-Tk for k = 1, 2.

Example 3.4 Consider X = {a, b, c} with the topology τ = {φ, {a}, {a, c}, X}.
Then the space X is g?b-Tk but it is not b-Tk for k = 1, 2.

Proposition 3.5 A topological space (X, τ) is g?b-T0 if and only if for each
pair of distinct points x, y of X, g?bCl({x}) 6= g?bCl({y}).

Proof. Necessity. Let (X, τ) be a g?b-T0 space and x, y be any two distinct
points of X. There exists a g?b-open set U containing x or y, say x but not y.
Then X \U is a g?b-closed set which does not contain x but contains y. Since
g?bCl({y}) is the smallest g?b-closed set containing y, g?bCl({y}) ⊆ X \U and
therefore x /∈ g?bCl({y}). Consequently g?bCl({x}) 6= g?bCl({y}).
Sufficiency. Suppose that x, y ∈ X, x 6= y and g?bCl({x}) 6= g?bCl({y}).
Let z be a point of X such that z ∈ g?bCl({x}) but z /∈ g?bCl({y}). We claim
that x /∈ g?bCl({y}). For, if x ∈ g?bCl({y}) then g?bCl({x}) ⊆ g?bCl({y}).
This contradicts the fact that z /∈ g?bCl({y}). Consequently x belongs to the
g?b-open set X \ g?bCl({y}) to which y does not belong.

Proposition 3.6 A topological space (X, τ) is g?b-T1 if and only if the single-
tons are g?b-closed sets.

Proof. Let (X, τ) be g?b-T1 and x any point of X. Suppose y ∈ X \ {x},
then x 6= y and so there exists a g?b-open set U such that y ∈ U but x /∈ U .
Consequently y ∈ U ⊆ X \ {x}, that is X \ {x} = ∪{U : y ∈ X \ {x}} which
is g?b-open.
Conversely, suppose {p} is g?b-closed for every p ∈ X. Let x, y ∈ X with
x 6= y. Now x 6= y implies y ∈ X \ {x}. Hence X \ {x} is a g?b-open set
contains y but not x. Similarly X \ {y} is a g?b-open set contains x but not
y. Accordingly X is a g?b-T1 space.
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Proposition 3.7 A topological space (X, τ) is g?b-T 1
2

if each singleton {x} of
X is either g-open or g-closed.

Proof. Suppose {x} is not g-closed, then it is obvious that (X \ {x}) is g?b-
closed. Since (X, τ) is g?b-T 1

2
, so (X \ {x}) is g-closed, that is {x} is g-open.

Proposition 3.8 The following statements are equivalent for a topological
space (X, τ):

1. X is g?b-T2.

2. Let x ∈ X. For each y 6= x, there exists a g?b-open set U containing x
such that y /∈ g?bCl(U).

3. For each x ∈ X, ∩{g?bCl(U) : U ∈ g?bO(X) and x ∈ U} = {x}.

Proof. (1)⇒ (2). Since X is g?b-T2, there exist disjoint g?b-open sets U and V
containing x and y respectively. So, U ⊆ X \V . Therefore, g?bCl(U) ⊆ X \V .
So y /∈ g?bCl(U).
(2)⇒ (3). If possible for some y 6= x, we have y ∈ g?bCl(U) for every g?b-open
set U containing x, which contradicts (2).
(3) ⇒ (1). Let x, y ∈ X and x 6= y. Then there exists a g?b-open set U
containing x such that y /∈ g?bCl(U). Let V = X \ g?bCl(U), then y ∈ V and
x ∈ U and also U ∩ V = φ.

Proposition 3.9 Let (X, τ) be a topological space, then the following state-
ments are true:

1. Every g?b-T2 space is g?b-T1.

2. Every g?b-space is g?b-T 1
2
.

3. Every g?b-T1 space is g?b-T 1
2
.

Proof. The proof is straightforward from the definitions and proposition 3.6.

Definition 3.10 A subset A of a topological space X is called a g?b difference
set (briefly, g∗bD-set) if there are U, V ∈ g∗bO(X, τ) such that U 6= X and
A = U \ V .

It is true that every g?b-open set U different from X is a g∗bD-set if A = U
and V = φ. So, we can observe the following.

Remark 3.11 Every proper g?b-open set is a g∗bD-set. But, the converse is
not true in general as the next example shows.
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Example 3.12 Consider X = {a, b, c, d} with the topology
τ = {φ, {b}, {c}, {a, b}, {b, c}, {a, b, c}, X}. So,
g∗bO(X, τ) = {φ, {a, b, d}, {a, c, d}, {b, c, d}, {c, d}, {b, d}, {a, d}, {d}, X}, then
U = {a, b, d} 6= X and V = {a, c, d} are g?b-open sets in X and A = U \ V =
{a, b, d} \ {a, c, d} = {b}, then we have A = {b} is a g∗bD-set but it is not
g?b-open.

Now we define another set of separation axioms called g?b-Dk, for k =
0, 1, 2, by using the g∗bD-sets.

Definition 3.13 A topological space (X, τ) is said to be:

1. g?b-D0 if for any pair of distinct points x and y of X there exists a g∗bD-
set of X containing x but not y or a g∗bD-set of X containing y but not
x.

2. g?b-D1 if for any pair of distinct points x and y of X there exists a g∗bD-
set of X containing x but not y and a g∗bD-set of X containing y but
not x.

3. g?b-D2 if for any pair of distinct points x and y of X there exist disjoint
g∗bD-set G and E of X containing x and y, respectively.

Remark 3.14 For a topological space (X, τ), the following properties hold:

1. If (X, τ) is g?b-Tk, then it is g?b-Dk, for k = 0, 1, 2.

2. If (X, τ) is g?b-Dk, then it is g?b-Dk−1, for k = 1, 2.

3. If (X, τ) is Pre-Dk, then it is g?b-Dk, for k = 0, 1, 2.

Proof. Obvious.

Proposition 3.15 A space X is g?b-D0 if and only if it is g?b-T0.

Proof. Suppose that X is g?b-D0. Then for each distinct pair x, y ∈ X, at
least one of x, y, say x, belongs to a g∗bD-set G but y /∈ G. Let G = U1 \ U2

where U1 6= X and U1, U2 ∈ g∗bO(X, τ). Then x ∈ U1, and for y /∈ G we have
two cases: (a) y /∈ U1, (b) y ∈ U1 and y ∈ U2.
In case (a), x ∈ U1 but y /∈ U1.
In case (b), y ∈ U2 but x /∈ U2.
Thus in both the cases, we obtain that X is g?b-T0.
Conversely, if X is g?b-T0, by Remark 3.14 (1), X is g?b-D0.

Proposition 3.16 A space X is g?b-D1 if and only if it is g?b-D2.
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Proof. Necessity. Let x, y ∈ X, x 6= y. Then there exist g∗bD-sets G1, G2

in X such that x ∈ G1, y /∈ G1 and y ∈ G2, x /∈ G2. Let G1 = U1 \ U2 and
G2 = U3 \ U4, where U1, U2, U3 and U4 are g?b-open sets in X. From x /∈ G2,
it follows that either x /∈ U3 or x ∈ U3 and x ∈ U4. We discuss the two cases
separately.
(i) x /∈ U3. By y /∈ G1 we have two sub-cases:
(a) y /∈ U1. Since x ∈ U1 \U2, it follows that x ∈ U1 \ (U2 ∪U3), and since y ∈
U3\U4 we have y ∈ U3\(U1∪U4). Therefore (U1\(U2∪U3))∩(U3\(U1∪U4)) = φ.
(b) y ∈ U1 and y ∈ U2. We have x ∈ U1 \ U2, and y ∈ U2. Therefore
(U1 \ U2) ∩ U2 = φ.
(ii) x ∈ U3 and x ∈ U4. We have y ∈ U3\U4 and x ∈ U4. Hence (U3\U4)∩U4 =
φ. Therefore X is g?b-D2.
sufficiency. Follows from Remark 3.14 (2).

Corollary 3.17 If (X, τ) is g?b-D1, then it is g?b-T0.

Proof. Follows from Remark 3.14 (2) and Proposition 3.15.
Here is an example which shows that the converse of Corollary 3.17 is not

true in general.

Example 3.18 Consider X = {a, b} with the topology τ = {φ, {a}, X}. Then
(X, τ) is g?b-T0, but not g?b-D1, since there is no g∗bD-set containing b but
not a.

From Proposition 3.9, Remark 3.14, and Proposition 3.2 we obtain the
following diagram of implications:

g?b-T2 // g?b-T1 // g?b-T 1
2

g?b-T0

b-T2

��

OO

// b-T1

��

OO

// b-T 1
2

OO

// b-T0

��

OO

b-D2

��

// b-D1

��

//oo ... // b-D0

OO

��
g?b-D2

// g?b-D1
oo // ... // g?b-D0

Diagram 3

The following examples show that implications in Diagram 3, are not re-
versible.
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Example 3.19 Consider X = {a, b, c, d} with the topology
τ = {φ, {b}, {c}, {a, b}, {b, c}, {a, b, c}, X}. Then (X, τ) is g?b-T0 but not g?b-
T 1

2
.

Example 3.20 Consider X = {a, b, c} with the topology τ = {φ, {c}, {a, c}, {b, c}, X}.
Then (X, τ) is g?b-T 1

2
but not g?b-T1.

Remark 3.21 From Example 3.18, it is clear that X is g?b-D0 but not g?b-D1.
And from Example 3.4, the space X is g?b-Dk but it is not b-Dk for k = 0, 1, 2.
In Example 3.3, the space X is g?b-Dk but it is not pre-Dk for k = 0, 1, 2.

Definition 3.22 A point x ∈ X which has only X as the g?b-neighbourhood
is called a g?b-neat point.

Proposition 3.23 For a g?b-T0 topological space (X, τ) the following are equiv-
alent:

1. (X, τ) is g?b-D1.

2. (X, τ) has no g?b-neat point.

Proof. (1)⇒ (2). Since (X, τ) is g?b-D1, then each point x of X is contained
in a g∗bD-set A = U \ V and thus in U . By definition U 6= X. This implies
that x is not a g?b-neat point.
(2)⇒ (1). If X is g?b-T0, then for each distinct pair of points x, y ∈ X, at least
one of them, x (say) has a g?b-neighbourhood U containing x and not y. Thus
U which is different from X is a g∗bD-set. If X has no g?b-neat point, then y
is not a g?b-neat point. This means that there exists a g?b-neighbourhood V
of y such that V 6= X. Thus y ∈ V \ U but not x and V \ U is a g∗bD-set.
Hence X is g?b-D1.

Corollary 3.24 A g?b-T0 space X is not g?b-D1 if and only if there is a unique
g?b-neat point in X.

Proof. We only prove the uniqueness of the g?b-neat point. If x and y are two
g?b-neat points in X, then since X is g?b-T0, at least one of x and y, say x,
has a g?b-neighbourhood U containing x but not y. Hence U 6= X. Therefore
x is not a g?b-neat point which is a contradiction.

Definition 3.25 A topological space (X, τ) is said to be g?b-symmetric if for
x and y in X, x ∈ g?bCl({y}) implies y ∈ g?bCl({x}).

Proposition 3.26 If (X, τ) is a topological space, then the following are equiv-
alent:
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1. (X, τ) is a g?b-symmetric space.

2. {x} is g?b-closed, for each x ∈ X.

Proof. (1) ⇒ (2). Assume that {x} ⊆ U ∈ g?bO(X), but g?bCl({x}) 6⊆ U .
Then g?bCl({x}) ∩ X \ U 6= φ. Now, we take y ∈ g?bCl({x}) ∩ X \ U , then
by hypothesis x ∈ g?bCl({y}) ⊆ X \ U and x /∈ U , which is a contradiction.
Therefore {x} is g?b-closed, for each x ∈ X.
(2) ⇒ (1). Assume that x ∈ g?bCl({y}), but y /∈ g?bCl({x}). Then {y} ⊆
X \ g?bCl({x}) and hence g?bCl({y}) ⊆ X \ g?bCl({x}). Therefore x ∈ X \
g?bCl({x}), which is a contradiction and hence y ∈ g?bCl({x}).

Corollary 3.27 If a topological space (X, τ) is a g?b-T1 space, then it is g?b-
symmetric.

Proof. In a g?b-T1 space, every singleton is g?b-closed (Proposition 3.6) and
therefore is by Proposition 3.26, (X, τ) is g?b-symmetric.

Corollary 3.28 If a topological space (X, τ) is g?b-symmetric and g?b-T0, then
(X, τ) is g?b-T1.

Proof. Let x 6= y and as (X, τ) is g?b-T0, we may assume that x ∈ U ⊆ X \{y}
for some U ∈ g?bO(X). Then x /∈ g?bCl({y}) and hence y /∈ g?bCl({x}).
There exists a g?b-open set V such that y ∈ V ⊆ X \ {x} and thus (X, τ) is a
g?b-T1 space.

Corollary 3.29 If a topological space (X, τ) is g?b-T1, then (X, τ) is g?b-
symmetric and g?b-T 1

2
.

Proof. By Corollary 3.27 and Proposition 3.9, it is true.

Corollary 3.30 For a g?b-symmetric space (X, τ), the following are equiva-
lent:

1. (X, τ) is g?b-T0.

2. (X, τ) is g?b-D1.

3. (X, τ) is g?b-T1.

Proof. (1)⇒ (3). Follows from Corollary 3.28.
(3)⇒ (2)⇒ (1). Follows from Remark 3.14 and Corollary 3.17.

Definition 3.31 Let A be a subset of a topological space (X, τ). The g?b-
kernel of A, denoted by g?bker(A) is defined to be the set
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g?bker(A) = ∩{U ∈ g?bO(X): A ⊆ U}.

Proposition 3.32 Let (X, τ) be a topological space and x ∈ X. Then y ∈
g?bker({x}) if and only if x ∈ g?bCl({y}).

Proof. Suppose that y /∈ g?bker({x}). Then there exists a g?b-open set V
containing x such that y /∈ V . Therefore, we have x /∈ g?bCl({y}). The proof
of the converse case can be done similarly.

Proposition 3.33 Let (X, τ) be a topological space and A be a subset of X.
Then, g?bker(A) = {x ∈ X: g?bCl({x}) ∩ A 6= φ}.

Proof. Let x ∈ g?bker(A) and suppose g?bCl({x}) ∩ A = φ. Hence x /∈
X \ g?bCl({x}) which is a g?b-open set containing A. This is impossible, since
x ∈ g?bker(A). Consequently, g?bCl({x}) ∩A 6= φ. Next, let x ∈ X such that
g?bCl({x}) ∩ A 6= φ and suppose that x /∈ g?bker(A). Then, there exists a
g?b-open set V containing A and x /∈ V . Let y ∈ g?bCl({x}) ∩ A. Hence, V
is a g?b-neighbourhood of y which does not contain x. By this contradiction
x ∈ g?bker(A) and the claim.

Proposition 3.34 The following properties hold for the subsets A,B of a
topological space (X, τ):

1. A ⊆ g?bker(A).

2. A ⊆ B implies that g?bker(A) ⊆ g?bker(B).

3. If A is g?b-open in (X, τ), then A = g?bker(A).

4. g?bker(g?bker(A)) = g?bker(A).

Proof. (1), (2) and (3) are immediate consequences of Definition 3.31. To prove
(4), first observe that by (1) and (2), we have g?bker(A) ⊆ g?bker(g?bker(A)).
If x /∈ g?bker(A), then there exists U ∈ g∗bO(X, τ) such that A ⊆ U and
x /∈ U . Hence g?bker(A) ⊆ U , and so we have x /∈ g?bker(g?bker(A)). Thus
g?bker(g?bker(A)) = g?bker(A).

Proposition 3.35 If a singleton {x} is a g∗bD-set of (X, τ), then g?bker({x})
6= X.

Proof. Since {x} is a g∗bD-set of (X, τ), then there exist two subsets U1, U2 ∈
g∗bO(X, τ) such that {x} = U1 \ U2, {x} ⊆ U1 and U1 6= X. Thus, we have
that g?bker({x}) ⊆ U1 6= X and so g?bker({x}) 6= X.
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4 g?b-Rk Space (k = 0, 1)

In this section, new classes of topological spaces called g?b-R0 and g?b-R1

spaces are introduced.

Definition 4.1 A topological space (X, τ) is said to be g?b-R0 if U is a g?b-
open set and x ∈ U then g?bCl({x}) ⊆ U .

Proposition 4.2 For a topological space (X, τ) the following properties are
equivalent:

1. (X, τ) is g?b-R0.

2. For any F ∈ g?bC(X), x /∈ F implies F ⊆ U and x /∈ U for some
U ∈ g?bO(X).

3. For any F ∈ g?bC(X), x /∈ F implies F ∩ g?bCl({x}) = φ.

4. For any distinct points x and y of X, either g?bCl({x}) = g?bCl({y})
or g?bCl({x}) ∩ g?bCl({y}) = φ.

Proof. (1) ⇒ (2). Let F ∈ g?bC(X) and x /∈ F . Then by (1), g?bCl({x}) ⊆
X \ F . Set U = X \ g?bCl({x}), then U is a g?b-open set such that F ⊆ U
and x /∈ U .
(2) ⇒ (3). Let F ∈ g?bC(X) and x /∈ F . There exists U ∈ g?bO(X) such
that F ⊆ U and x /∈ U . Since U ∈ g?bO(X), U ∩ g?bCl({x}) = φ and
F ∩ g?bCl({x}) = φ.
(3)⇒ (4). Suppose that g?bCl({x}) 6= g?bCl({y}) for distinct points x, y ∈ X.
There exists z ∈ g?bCl({x}) such that z /∈ g?bCl({y}) (or z ∈ g?bCl({y})
such that z /∈ g?bCl({x})). There exists V ∈ g?bO(X) such that y /∈ V and
z ∈ V ; hence x ∈ V . Therefore, we have x /∈ g?bCl({y}). By (3), we obtain
g?bCl({x}) ∩ g?bCl({y}) = φ.
(4) ⇒ (1). let V ∈ g?bO(X) and x ∈ V . For each y /∈ V , x 6= y and x /∈
g?bCl({y}). This shows that g?bCl({x}) 6= g?bCl({y}). By (4), g?bCl({x}) ∩
g?bCl({y}) = φ for each y ∈ X\V and hence g?bCl({x})∩(

⋃
y∈X\V g

?bCl({y})) =
φ. On other hand, since V ∈ g?bO(X) and y ∈ X \ V , we have g?bCl({y}) ⊆
X \ V and hence X \ V =

⋃
y∈X\V g

?bCl({y}). Therefore, we obtain (X \
V )∩ g?bCl({x}) = φ and g?bCl({x}) ⊆ V . This shows that (X, τ) is a g?b-R0

space.

Remark 4.3 Every pre-R0 and b-R0 spaces is g?b-R0 space but converse is
not true in general.

Example 4.4 X = {a, b, c}, τ = {φ, {a}, X}, is g?b-R0 but not pre-R0 and
b-R0, since for preopen (b-open) set {a}, a ∈ {a}, then Cl{a}(bCl{a}) = X 6⊆
{a}
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Proposition 4.5 If a topological space (X, τ) is g?b-T0 and a g?b-R0 space
then it is g?b-T1.

Proof. Let x and y be any distinct points of X. Since X is g?b-T0, there
exists a g?b-open set U such that x ∈ U and y /∈ U . As x ∈ U implies
that g?bCl({x}) ⊆ U . Since y /∈ U , so y /∈ g?bCl({x}). Hence y ∈ V =
X \ g?bCl({x}) and it is clear that x /∈ V . Hence it follows that there exist
g?b-open sets U and V containing x and y respectively, such that y /∈ U and
x /∈ V . This implies that X is g?b-T1.

Proposition 4.6 For a topological space (X, τ) the following properties are
equivalent:

1. (X, τ) is g?b-R0.

2. x ∈ g?bCl({y}) if and only if y ∈ g?bCl({x}), for any points x and y in
X.

Proof. (1)⇒ (2). Assume that X is g?b-R0. Let x ∈ g?bCl({y}) and V be any
g?b-open set such that y ∈ V . Now by hypothesis, x ∈ V . Therefore, every
g?b-open set which contain y contains x. Hence y ∈ g?bCl({x}).
(2)⇒ (1). Let U be a g?b-open set and x ∈ U . If y /∈ U , then x /∈ g?bCl({y})
and hence y /∈ g?bCl({x}). This implies that g?bCl({x}) ⊆ U . Hence (X, τ)
is g?b-R0.

From Definition 3.25 and Proposition 4.6, the notions of g?b-symmetric and
g?b-R0 are equivalent.

Proposition 4.7 The following statements are equivalent for any points x
and y in a topological space (X, τ):

1. g?bker({x}) 6= g?bker({y}).

2. g?bCl({x}) 6= g?bCl({y}).

Proof. (1) ⇒ (2). Suppose that g?bker({x}) 6= g?bker({y}), then there exists
a point z in X such that z ∈ g?bker({x}) and z /∈ g?bker({y}). From z ∈
g?bker({x}) it follows that {x}∩g?bCl({z}) 6= φ which implies x ∈ g?bCl({z}).
By z /∈ g?bker({y}), we have {y} ∩ g?bCl({z}) = φ. Since x ∈ g?bCl({z}),
g?bCl({x}) ⊆ g?bCl({z}) and {y} ∩ g?bCl({x}) = φ. Therefore, it follows
that g?bCl({x}) 6= g?bCl({y}). Now g?bker({x}) 6= g?bker({y}) implies that
g?bCl({x}) 6= g?bCl({y}).
(2) ⇒ (1). Suppose that g?bCl({x}) 6= g?bCl({y}). Then there exists a point
z in X such that z ∈ g?bCl({x}) and z /∈ g?bCl({y}). Then, there exists a
g?b-open set containing z and therefore x but not y, namely, y /∈ g?bker({x})
and thus g?bker({x}) 6= g?bker({y}).
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Proposition 4.8 Let (X, τ) be a topological space. Then ∩{g?bCl({x}) : x ∈
X} = φ if and only if g?bker({x}) 6= X for every x ∈ X.

Proof. Necessity. Suppose that ∩{g?bCl({x}) : x ∈ X} = φ. Assume that
there is a point y in X such that g?bker({y}) = X. Let x be any point of X.
Then x ∈ V for every g?b-open set V containing y and hence y ∈ g?bCl({x})
for any x ∈ X. This implies that y ∈ ∩{g?bCl({x}) : x ∈ X}. But this is a
contradiction.
Sufficiency. Assume that g?bker({x}) 6= X for every x ∈ X. If there exists
a point y in X such that y ∈ ∩{g?bCl({x}) : x ∈ X}, then every g?b-open set
containing y must contain every point of X. This implies that the space X
is the unique g?b-open set containing y. Hence g?bker({y}) = X which is a
contradiction. Therefore, ∩{g?bCl({x}) : x ∈ X} = φ.

Proposition 4.9 A topological space (X, τ) is g?b-R0 if and only if for every
x and y in X, g?bCl({x}) 6= g?bCl({y}) implies g?bCl({x})∩ g?bCl({y}) = φ.

Proof. Necessity. Suppose that (X, τ) is g?b-R0 and x, y ∈ X such that
g?bCl({x}) 6= g?bCl({y}). Then, there exists z ∈ g?bCl({x}) such that
z /∈ g?bCl({y}) (or z ∈ g?bCl({y}) such that z /∈ g?bCl({x})). There ex-
ists V ∈ g?bO(X) such that y /∈ V and z ∈ V , hence x ∈ V . Therefore, we
have x /∈ g?bCl({y}). Thus x ∈ [X \ g?bCl({y})] ∈ g?bO(X), which implies
g?bCl({x}) ⊆ [X \ g?bCl({y})] and g?bCl({x}) ∩ g?bCl({y}) = φ.
Sufficiency. Let V ∈ g?bO(X) and let x ∈ V . We still show that g?bCl({x}) ⊆
V . Let y /∈ V , that is y ∈ X \V . Then x 6= y and x /∈ g?bCl({y}). This shows
that g?bCl({x}) 6= g?bCl({y}). By assumption, g?bCl({x}) ∩ g?bCl({y}) = φ.
Hence y /∈ g?bCl({x}) and therefore g?bCl({x}) ⊆ V .

Proposition 4.10 A topological space (X, τ) is g?b-R0 if and only if for any
points x and y in X, g?bker({x}) 6= g?bker({y}) implies g?bker({x})∩g?bker({y}) =
φ.

Proof. Suppose that (X, τ) is a g?b-R0 space. Thus by Proposition 4.7, for
any points x and y in X if g?bker({x}) 6= g?bker({y}) then g?bCl({x}) 6=
g?bCl({y}). Now we prove that g?bker({x}) ∩ g?bker({y}) = φ. Assume
that z ∈ g?bker({x}) ∩ g?bker({y}). By z ∈ g?bker({x}) and Proposition
3.32, it follows that x ∈ g?bCl({z}). Since x ∈ g?bCl({x}), by Proposition
4.2, g?bCl({x}) = g?bCl({z}). Similarly, we have g?bCl({y}) = g?bCl({z}) =
g?bCl({x}). This is a contradiction. Therefore, we have g?bker({x})∩g?bker({y})
= φ.
Conversely, let (X, τ) be a topological space such that for any points x and
y in X, g?bker({x}) 6= g?bker({y}) implies g?bker({x}) ∩ g?bker({y}) =
φ. If g?bCl({x}) 6= g?bCl({y}), then by Proposition 4.7, g?bker({x}) 6=
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g?bker({y}). Hence, g?bker({x})∩g?bker({y}) = φ which implies g?bCl({x})∩
g?bCl({y}) = φ. Because z ∈ g?bCl({x}) implies that x ∈ g?bker({z}) and
therefore g?bker({x})∩g?bker({z}) 6= φ. By hypothesis, we have g?bker({x}) =
g?bker({z}). Then z ∈ g?bCl({x}) ∩ g?bCl({y}) implies that g?bker({x}) =
g?bker({z}) = g?bker({y}). This is a contradiction. Therefore, g?bCl({x}) ∩
g?bCl({y}) = φ and by Proposition 4.2, (X, τ) is a g?b-R0 space.

Proposition 4.11 For a topological space (X, τ) the following properties are
equivalent:

1. (X, τ) is a g?b-R0 space.

2. For any non-empty set A and G ∈ g?bO(X) such that A ∩G 6= φ, there
exists F ∈ g?bC(X) such that A ∩ F 6= φ and F ⊆ G.

3. For any G ∈ g?bO(X), we have G = ∪{F ∈ g?bC(X): F ⊆ G}.

4. For any F ∈ g?bC(X), we have F = ∩{G ∈ g?bO(X): F ⊆ G}.

5. For every x ∈ X, g?bCl({x}) ⊆ g?bker({x}).

Proof. (1) ⇒ (2). Let A be a non-empty subset of X and G ∈ g?bO(X)
such that A ∩ G 6= φ. There exists x ∈ A ∩ G. Since x ∈ G ∈ g?bO(X),
g?bCl({x}) ⊆ G. Set F = g?bCl({x}), then F ∈ g?bC(X), F ⊆ G and
A ∩ F 6= φ.
(2) ⇒ (3). Let G ∈ g?bO(X), then G ⊇ ∪{F ∈ g?bC(X): F ⊆ G}. Let x
be any point of G. There exists F ∈ g?bC(X) such that x ∈ F and F ⊆ G.
Therefore, we have x ∈ F ⊆ ∪{F ∈ g?bC(X): F ⊆ G} and hence G = ∪{F ∈
g?bC(X): F ⊆ G}.
(3)⇒ (4). Obvious.
(4) ⇒ (5). Let x be any point of X and y /∈ g?bker({x}). There exists
V ∈ g?bO(X) such that x ∈ V and y /∈ V , hence g?bCl({y}) ∩ V = φ. By (4),
(∩{G ∈ g?bO(X): g?bCl({y}) ⊆ G}) ∩ V = φ and there exists G ∈ g?bO(X)
such that x /∈ G and g?bCl({y}) ⊆ G. Therefore g?bCl({x}) ∩ G = φ and
y /∈ g?bCl({x}). Consequently, we obtain g?bCl({x}) ⊆ g?bker({x}).
(5) ⇒ (1). Let G ∈ g?bO(X) and x ∈ G. Let y ∈ g?bker({x}), then x ∈
g?bCl({y}) and y ∈ G. This implies that g?bker({x}) ⊆ G. Therefore, we
obtain x ∈ g?bCl({x}) ⊆ g?bker({x}) ⊆ G. This shows that (X, τ) is a g?b-R0

space.

Corollary 4.12 For a topological space (X, τ) the following properties are
equivalent:

1. (X, τ) is a g?b-R0 space.
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2. g?bCl({x}) = g?bker({x}) for all x ∈ X.

Proof. (1) ⇒ (2). Suppose that (X, τ) is a g?b-R0 space. By Proposition
4.11, g?bCl({x}) ⊆ g?bker({x}) for each x ∈ X. Let y ∈ g?bker({x}), then
x ∈ g?bCl({y}) and by Proposition 4.2, g?bCl({x}) = g?bCl({y}). There-
fore, y ∈ g?bCl({x}) and hence g?bker({x}) ⊆ g?bCl({x}). This shows that
g?bCl({x}) = g?bker({x}).
(2)⇒ (1). Follows from Proposition 4.11.

Proposition 4.13 For a topological space (X, τ) the following properties are
equivalent:

1. (X, τ) is a g?b-R0 space.

2. If F is g?b-closed, then F = g?bker(F ).

3. If F is g?b-closed and x ∈ F , then g?bker({x}) ⊆ F .

4. If x ∈ X, then g?bker({x}) ⊆ g?bCl({x}).

Proof. (1) ⇒ (2). Let F be a g?b-closed and x /∈ F . Thus (X \ F ) is a
g?b-open set containing x. Since (X, τ) is g?b-R0, g

?bCl({x}) ⊆ (X \ F ).
Thus g?bCl({x}) ∩ F = φ and by Proposition 3.33, x /∈ g?bker(F ). Therefore
g?bker(F ) = F .
(2) ⇒ (3). In general, A ⊆ B implies g?bker(A) ⊆ g?bker(B). Therefore, it
follows from (2), that g?bker({x}) ⊆ g?bker(F ) = F .
(3)⇒ (4). Since x ∈ g?bCl({x}) and g?bCl({x}) is g?b-closed, by (3), g?bker({x}) ⊆
g?bCl({x}).
(4) ⇒ (1). We show the implication by using Proposition 4.6. Let x ∈
g?bCl({y}). Then by Proposition 3.32, y ∈ g?bker({x}). Since x ∈ g?bCl({x})
and g?bCl({x}) is g?b-closed, by (4), we obtain y ∈ g?bker({x}) ⊆ g?bCl({x}).
Therefore x ∈ g?bCl({y}) implies y ∈ g?bCl({x}). The converse is obvious
and (X, τ) is g?b-R0.

Definition 4.14 A topological space (X, τ) is said to be g?b-R1 if for x, y in
X with g?bCl({x}) 6= g?bCl({y}), there exist disjoint g?b-open sets U and V
such that g?bCl({x}) ⊆ U and g?bCl({y}) ⊆ V .

Remark 4.15 Every pre-R1 and b-R1 space is g?b-R1 space but converse is
not true in general.

Example 4.16 X = {a, b, c}, τ = {φ, {a}, X}, is g?b-R1 but not pre-R1

and b-R1, since for b, c ∈ X, pCl{b} = bCl{b} = {b} 6= {c} = pCl{c} =
bCl{c}, there do not exist disjoint preopen (resp. b-open) sets containing
pCl{b}, bCl{b} and pCl{c}, bCl{c} resp.



g?b-Separation Axioms 29

Proposition 4.17 A topological space (X, τ) is g?b-R1 if it is g?b-T2.

Proof. Let x and y be any points of X such that g?bCl({x}) 6= g?bCl({y}). By
Proposition 3.9 (1), every g?b-T2 space is g?b-T1. Therefore, by Proposition 3.6,
g?bCl({x}) = {x}, g?bCl({y}) = {y} and hence {x} 6= {y}. Since (X, τ) is g?b-
T2, there exist disjoint g?b-open sets U and V such that g?bCl({x}) = {x} ⊆ U
and g?bCl({y}) = {y} ⊆ V . This shows that (X, τ) is g?b-R1.

Proposition 4.18 If a topological space (X, τ) is g?b-symmetric, then the fol-
lowing are equivalent:

1. (X, τ) is g?b-T2.

2. (X, τ) is g?b-R1 and g?b-T1.

3. (X, τ) is g?b-R1 and g?b-T0.

Proof. Straightforward.

Proposition 4.19 For a topological space (X, τ) the following statements are
equivalent:

1. (X, τ) is g?b-R1.

2. If x, y ∈ X such that g?bCl({x}) 6= g?bCl({y}), then there exist g?b-
closed sets F1 and F2 such that x ∈ F1, y /∈ F1, y ∈ F2, x /∈ F2 and
X = F1 ∪ F2.

Proof. Obvious.

Proposition 4.20 If (X, τ) is g?b-R1, then (X, τ) is g?b-R0.

Proof. Let U be g?b-open such that x ∈ U . If y /∈ U , since x /∈ g?bCl({y}),
we have g?bCl({x}) 6= g?bCl({y}). So, there exists a g?b-open set V such
that g?bCl({y}) ⊆ V and x /∈ V , which implies y /∈ g?bCl({x}). Hence
g?bCl({x}) ⊆ U . Therefore, (X, τ) is g?b-R0.

Corollary 4.21 A topological space (X, τ) is g?b-R1 if and only if for x, y ∈
X, g?bker({x}) 6= g?bker({y}), there exist disjoint g?b-open sets U and V such
that g?bCl({x}) ⊆ U and g?bCl({y}) ⊆ V .

Proof. Follows from Proposition 4.7.

Proposition 4.22 A topological space (X, τ) is g?b-R1 if and only if x ∈
X \ g?bCl({y}) implies that x and y have disjoint g?b-open neighbourhoods.
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Proof. Necessity. Let x ∈ X \ g?bCl({y}). Then g?bCl({x}) 6= g?bCl({y}),
so, x and y have disjoint g?b-open neighbourhoods.
Sufficiency. First, we show that (X, τ) is g?b-R0. Let U be a g?b-open set and
x ∈ U . Suppose that y /∈ U . Then, g?bCl({y}) ∩ U = φ and x /∈ g?bCl({y}).
There exist g?b-open sets Ux and Uy such that x ∈ Ux, y ∈ Uy and Ux∩Uy = φ.
Hence, g?bCl({x}) ⊆ g?bCl(Ux) and g?bCl({x}) ∩ Uy ⊆ g?bCl(Ux) ∩ Uy = φ.
Therefore, y /∈ g?bCl({x}). Consequently, g?bCl({x}) ⊆ U and (X, τ) is
g?b-R0. Next, we show that (X, τ) is g?b-R1. Suppose that g?bCl({x}) 6=
g?bCl({y}). Then, we can assume that there exists z ∈ g?bCl({x}) such that
z /∈ g?bCl({y}). There exist g?b-open sets Vz and Vy such that z ∈ Vz, y ∈ Vy
and Vz ∩ Vy = φ. Since z ∈ g?bCl({x}), x ∈ Vz. Since (X, τ) is g?b-R0, we
obtain g?bCl({x}) ⊆ Vz, g

?bCl({y}) ⊆ Vy and Vz ∩ Vy = φ. This shows that
(X, τ) is g?b-R1.
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