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Abstract 

     In this study the role of vaccination of new born babies against tuberculosis 
and treatment of both latently and activity infected individuals in controlling the 
spread of tuberculosis was mathematically modelled based on the standard SEIR 
model. The disease - free equilibrium state of the model was established and its 
stability analyzed using the Routh-Hurwitz theorem. The result of the analysis of 
the stability of the disease-free equilibrium state shows that tuberculosis can 
totally be eradicated if effort is made to ensure that the sum of the rate of 
recovery of the latent class, the rate at which latently infected individuals become 
actively infected and the rate of natural death , must have a lower bound.  

     Keywords: Latent TB infection, Active TB infection, Disease-free equilibrium 
state; Endemic equilibrium state; Stability analysis. 
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1      Introduction 
 
Tuberculosis or TB (short for tubercles bacillus) is a highly infectious diseases 
caused by infection with the bacteria mycobacterium tuberculosis (Cohen et 
al.2004). The disease is airborne and so it is primarily transmitted through the 
respiratory route. When people who are infected with the disease cough, sneeze, 
spit or talk, they propel TB germs, (in mucus droplets), known as bacilli, into the 
air. A previously uninfected person needs only to inhale a small number of these 
germs to be infected. (Cohen et al., 2004).  
Once infected, an individual enters a period of latency during which he exhibits 
no symptoms of the disease and is not infectious to others. Such a person is said to 
have a Latent TB infection. This latent period can be of extremely variable length 
of time. A great majority of those infected (≈ 90 %) may live with the disease as 
long as possible without it degenerating or progressing into Active TB. However, 
a small proportion of those infected (≈ 10 %) will progress from the latent TB to 
Active TB, falling ill within months or several years after infection (Colijn et al., 
2006). Some may be asymptotically infected for decades before they become sick. 
Once ill and infectious, individuals may recover without treatment, may be cured 
with antibiotics or may die from the disease. Recovered individuals may relapse to 
disease or be re-infected. The degree of protection afforded by a previous 
infection and the mechanism by which individuals with partial immunity are 
protected are controversial. The highest risk group to acquire TB when exposed to 
it are children under five years old, persons who are immuno-compromised (i.e. 
have weakened immunity), especially those who are HIV-Positive, persons who 
have diabetes or kidney failure, people that take excessive alcohol and drugs, 
those with poor nutrition and lack of food, those suffering from stress and those 
living in poorly ventilated rooms (Sanga, 2008).Tuberculosis usually attacks the 
lungs but can also attack other parts of the body like the kidney, Spine, brain, 
bones, joints etc. The classic symptoms of TB of the lungs are a chronic cough 
which may result in blood-tinged sputum, fever, night sweats, loss of appetite, 
weight loss and fatigue. Infection of other organs causes a wide range of 
symptoms. Pneumonia, lung collapse and enlarged lymph nodes may also occur. 
(WHO; 2007). Two forms of tuberculosis that become life- threatening are 
Miliary TB, which means the bacteria have spread throughout the lungs and into 
the bloodstream and TB meningitis (infection of the covering of the spinal cord 
and /or brain by TB bacteria). Diagnosis relies on radiology (commonly chest X- 
ray), a tuberculin skin text, blood tests, as well as microscopic examination and 
microbiological culture of bodily fluids (such as sputum).  
The introduction of Directly Observed Treatment Short (DOTS) Course has 
helped in the control and management of tuberculosis. DOTS, the internationally 
recommended  strategy for TB control  cures patients, saves lives, prevents the 
development and spread of drugs resistance, and reduces disease transmission. 
DOTS makes sure that TB diagnosis and medicine are available for all TB 
patients free-of-charge. Prevention relies on screening programmes and 
vaccination, usually with Bacillus calmette-Guérin (BCG) vaccine (Colditz et al.; 
1994). 
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TB and HIV are the leading causes of death from infectious diseases among adults 
globally and the number of TB cases has risen significantly since, the start of the 
HIV epidemic, particularly in sub-Saharan Africa where the HIV epidemic is most 
severe (Dye: 2006).  
TB progression from latent infection to active disease varies greatly. For instance, 
people with AIDS are more likely to develop to Active TB after infection.  A 
patient with AIDS who becomes infected with Mycobacterium tuberculosis has a 
50% chance of developing Active tuberculosis within 2 months and a 5 to 10% 
chance of developing Active disease each year thereafter. According to the World 
Health Organization (WHO), infants and young children infected with 
mycobacterium tuberculosis are also more likely to develop Active TB than older 
people since their immune system are not yet well developed. (Okyere, 2007). 
Treatment for tuberculosis uses antibiotics to kill the bacteria. Effective TB 
treatment is difficult, due to the unusual structure and chemical composition of the 
mycobacterium cell wall, which makes many antibiotics ineffective and hinders 
the entry of drugs. (Migliore et al., 1966;, Acharya et al. 1970 and Brennan and 
Nikaido, 1995).   
The two antibiotics most commonly used are Rifampicin and Isoniazid. However, 
instead of the short course of antibiotics typically used to cure other bacterial 
infections, TB requires much longer periods of treatment (around 6 to 24 months) 
to entirely eliminate mycobacterium from the body. (Center for Disease Control 
and Prevention (CDC), 2000).  
Latent TB treatment usually uses a single antibiotic, while Active TB infection is 
best treated with combinations of several antibiotics, to reduce the risk of the 
bacteria developing antibiotic resistance. (O’Brien,1994). People with latent 
infections are treated to prevent them from progressing to Active TB disease later 
in life.  
 

2 The Global Perspective of Tuberculosis  
 
Tuberculosis (TB) remains a leading cause of infectious mortality in the world 
despite many decades of study, the widespread availability of vaccines, an arsenal 
of anti-microbial drugs and more recently, a highly visible World Health 
Organization (WHO) effort to promote a unified global control strategy. The 
world health organization declared TB a global emergency in 1993. It has been 
approximated that one third of the world’s population is infected with 
mycobacterium tuberculosis. (Cohen et al. 2004). Data released by the health 
protection Agency in 2000 shows that 8 million new incidences of TB occur per 
year. 2 million persons die from the disease per year and 80% of new incidence 
lives in high burden countries like Zimbabwe, Kenya, Uganda, United Republic of 
Congo and India (Blower et al.; 1995). 
 

3 Methodology 
 
Mathematical models have played a key role in the formulation of TB control 
strategies and the establishment of interim goals for intervention programme. 
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Many types of mathematical models exist. They include: the stochastic model ,the 
deterministic (compartmental)  model such as:the SIR, SIS, SIRS, SEIS, SEIR, 
MSIR, MSEIR, and the MSEIRS models. (Where S = Susceptible class;                
I = Infective class; M = passively immune infants; E = Exposed class; and             
R = Removed or Recovered class) etc. 
Our model is a deterministic or compartmental, SEIR type model where the 
population is partitioned into components or classes based on the epidemiological 
state of individuals, and it is assumed that the population size in a compartment is 
differentiable with respect to time and that the epidemic process is deterministic. 
Therefore, the TB transmission dynamics between the compartments shall be 
described by a system of differential equation which shall be solved to obtain  the 
disease-free equilibrium state. 
The stability analysis of the disease-free equilibrium state shall be carried out 
using the Routh-Hurwitz theorem. 
 

 4 Assumption of the Model 
 
The model is based on the following assumptions.  
1. That the population is heterogeneous. That is, the individuals that make up the 

population can be grouped into different compartments or groups according to 
their epidemiological state.  

2. That the population size in a compartment is differentiable with respect to 
time and that the epidemic process is deterministic. In other words, that the 
changes in population of a compartment can be calculated using only history 
to develop the model.   

3. That a proportion of the population of newborns is immunized against TB 
infection through vaccination.  

4. That the immunity conferred on individuals by vaccination expires after some 
time at a given rate.  

5. That the population mixes homogeneously. That is, all susceptible individuals 
are equally likely to be infected by infectious individuals in case of contact.  

6. That the infection does not confer immunity to the cured and recovered 
individuals and so they go back to the susceptible class at a given rate.  

7. That people in each compartment have equal natural death rate of β. 
8. That all newborns are previously uninfected by TB and therefore join either 

the immunized compartment or the susceptible compartment depending on 
whether they are vaccinated or not.  

9. That there are no immigrants and emigrants. The only way of entry into the 
population is through new – born babies and the only way of exit is through 
death from natural causes or death from TB-related causes.  

 

5 Model Variables and Parameters 
 
The following variables and parameters shall be used in this model.  
M(t):  the number of individuals who are immunized against TB through 

Vaccination at time t 
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S(t):  the number of susceptible individuals at time t  
L(t): the number of latently infected / exposed individuals at time t.  
I(t): the number of infectious individuals at time t. 
R(t):  the number of individuals who have been treated and have recovered from 

the infection at time t.  
φ:  the rate of expiration of vaccine efficacy.  
κ:  the rate at which susceptible individuals become latently infected by TB.  
µ:  the rate at which latently infected individuals become actively infected.  
ψ:  the rate at which actively infected individuals recover from TB infection.  
q:  the rate at which individuals who are latently infected recover from TB 

through treatment. 
π:   the rate at which recovered individuals become susceptible to TB Infection 

again. η:  the tuberculosis-induced mortality / death rate.  
β:  the natural mortality / death rate 
P:  population of new births joining the population N.  
cP:  the proportion of new births that have been immunized through 

Vaccination.  
N:  the total population size   
 

6 Model Description  
 
Based on the standard SEIR model, the population is partitioned into 5 
compartments or classes namely: Immunized M(t), Susceptible S(t), Latent L(t), 
Infectious I(t) and Recovered R(t) compartments .  
The Immunized component increases due to the coming in of the immunized 
newborns into the population, where we assumed that a proportion, cP, of the 
incoming individuals are immunized through vaccination. The component reduces 
due to the expiration of the duration of vaccine efficacy at the rate of φ and also as 
a result of natural death at the rate of β.  
The susceptible component of the population grows due to the coming in of new- 
born babies not immunized against TB infection into the population at the rate of 
(1-c)P, the coming in of some recovered individuals due to the fact that the 
infection does not confer immunity to recovered individuals, at the rate of π and 
as a result of the expiration of the efficacy of the vaccine, at the rate of φ. This 
component decreases due to the latent infection of individuals at the rate of κ and 
due to death from natural causes at the rate of β.  
The population of the latent component grows as a result of infection of 
individuals in the susceptible class at the rate of κ. This class reduces due to the 
progression of latently infected individuals to active TB infection at the rate of µ, 
the successful treatment and cure of latent TB patients at the rate of q and as a 
result of death from natural causes at the rate of β.  
The infectious compartment increases due to the progression of latently infected 
individuals to active TB infection at the rate of µ .The component reduces as a 
result of successful cure of infectious TB patients at the rate of Ψ , death as a 
result of active TB infection at the rate of η and also due to death from natural 
causes at the rate of β. 
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Lastly, the recovered component grows as a result of successful treatment and 
cure of latent TB patients at the rate of q and that of the infectious TB patient at 
rate of ψ and decrease due to the fact that recovered individuals are not immune 
against the infection and so they return to the susceptible class at the rate of π and 
also as a result of death from natural cause at the rate of β (Enagi et. al.; 2011).  
 
The model can schematically be presented as shown below 

 

 

 

 

  

 

 

 

 

 

Fig 1: Schematic Presentation of the model 

  

7 The Model Equations  
 
Applying the assumptions and the inter-relations between the variables and the 
parameters as described above the role of vaccination and treatment on 
tuberculosis transmission dynamics can be describe by the following differential 
equations:  

( )M--cP        

M-M-cP

βϕ

βϕ

=

=
dt

dM
                             (1) 
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dt

dS
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( )IL

IIIL
dt

dI

βηψµ

βηψµ

++−=

−−−=

        
      (4) 

 

( )RIqL

RRIqL
dt

dR

βπψ

βπψ

+−+=

−−+=

        
       (5) 

 
( ) ( ) ( ) ( ) ( ) ( )tRtItLtStMtN ++++=       (6) 

                                                      

8 Results and Discussion 
 
8.1 Equilibrium Solutions  
 
Let E (M, S, L, I, R) be the equilibrium point of the system described by the 
equations (1) – (6). At the equilibrium state, we have  
 

0=====
dt

dR

dt

dI

dt

dL

dt

dS

dt

dM
 

 
That is,  

( ) 0=+− McP βϕ                   (7) 

( ) ( ) 01 =+−++− SIRMPc βκπϕ                               (8) 

( )LqSI βµκ ++−        (9) 

( ) 0=++− IL βηψµ                              (10) 

( ) 0=+−+ RIqL βπψ        (11) 
 
In order to obtain the disease-free equilibrium state we solve equations (7) – (11) 
simultaneously.  
 
8.2 The Existence of a Trivial Equilibrium State 
 
Let Eo (Mo, So, Lo, Io, Ro) be the trivial equilibrium state of the model. There is no 
trivial equilibrium state for the model since the population cannot be extinct so 
long as new babies are born into the population. In other words, so long as the 
recruitment terms cρ and (1 – c)ρ are not zero, the population will never be 
extinct.  
That is, Eo, (Mo , So , Lo , Io , Ro) ≠ (0,0,0,0,0) 
 
8.3 The Disease-Free Equilibrium State 
 
The disease-free equilibrium state is the state of total eradication of the disease. 
Let Eo (Mo, So, Lo, Io, Ro) be the disease-free equilibrium state. For disease-free 
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equilibrium state, both the infectious class and the latently infectious class must be 
zero. That is, for disease-free equilibrium state                

 0 = L = I oo              (12)  
Substituting I = L = 0 into Equations (7) – (11) and solving simultaneously we 
have:  
From Equation (7)  

( ) 0=+− McP βϕ  

( )βϕ +
=° cP

M         (13) 

 
From Equation (8)  

( ) 01 =−+
+

+− SR
cP

Pc βπ
βϕ

ϕ
     (14) 

 
From Equation (11)  

( ) 0=+−+ RIqL βπψ  

→   ( ) ,0=+ Rβπ  ( since L = I = 0)  

→    Either (π + β) = 0      (15) 
           Or      R = 0       (16) 
Since π and β are positive constants, (π + β) ≠ 0 
 
Therefore, Ro = 0 
 
If R = 0, Equation (14) becomes  

( ) 01 =−
+

+− S
cP

Pc β
βϕ

ϕ
  

→ 
( )( )

( )βϕβ
ϕβϕ

+
+−+=° cPPc

S
1

 

or 
( )

( )βϕβ
ββϕ

+
−+=° Pc

S       (17) 

 
Therefore the disease -free equilibrium state of the model is  

( ) ( )
( ) 









+
−+

+
= 0,0,0,,R ,I ,L ,S ,M E

βϕβ
ββϕ

βϕ
PccP

������  

 
 
8.4 Stability Analysis of the Disease-Free Equilibrium State 
 
To determine the stability or otherwise of the disease-free equilibrium state Eo , 
we examine the behaviour of the model population near this equilibrium solution. 
Here we determine the condition(s) that must be met for the disease -free 
equilibrium state to be stable. In other words, we determine the condition(s) that 
must be met if the disease is to be totally eradicated from the population.  
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Recall that the system of equations in this model at equilibrium state is:  

 
cP – (φ + β) M = 0 
(1 – c)P + φM + πR – (κI + β) S = 0 
κSI – (q + µ + β) L = 0 
µL – ( ψ + β + η) I = 0 
qL + ψI – (π + β) R = 0 

 
 
We now linearize the system of equations to get the Jacobian Matrix J.  
 
 

( )

( )
( )

( )

( )





























+−

++−

++−

−+−

+−

=

βπψ

ηβψµ

κβµκ

πκβκϕ

βϕ

q

SqI

SI

00

000

00

0

0000

��

��

JJJJ     (18) 

 
 
At the disease-free equilibrium, Eo (Mo, So, Lo, Io, Ro), the Jacobian Matrix 
becomes 
 
 

( )
( )

( )
( ) ( )

( )
( )

( )





























+−

++−

+
−+++−

+
−+−−

+−

=

βπψ

ηβψµ
βϕβ
ββϕκβµκ

π
βϕβ
ββϕκβϕ

βϕ

q

Pc
qI

Pc

00

000

00

0

0000

�

0J          (19) 

 

 

The characteristic equation | Jo – Iλ| = 0 is obtained from the Jacobian determinant 
with the Eigen values λί (ί=1, 2, 3, 4, 5) 
 
That is;  
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( ) ( )
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( ) ( )
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( )

0

0
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0
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+
−+−++−

+
−+−−−
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λβπψ

ληβψµ
βϕβ
ββϕκλβµ

π
βϕβ
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ϕ

q

Pc
q
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( )( )( )

( ) ( )
( )

( )

( )

00

0
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−+−

−++−

+
−+−++−

−−−+−=

λβπψ

ληβψµ
βϕβ
ββϕκλβµ

ϕ

q

Pc
q
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( )( )( ) ( )( )
( ) ( )

( )
( )

0=
−++−

+
−+−++−

−+−−−−+−=
ληβψµ

βϕβ
ββϕκλβµ

ϕ
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( )
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βϕβ
ββϕκλβµ

ϕ
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q
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( ) ( )( )( )
( ) ( )

( )
( )

0=
−++−

+
−+−++−

−−−++++=
ληβψµ

βϕβ
ββϕκλβµ

ϕϕ
Pc

q
˨˟˭˟˟˨2˟˨ 22

 

 
 
From Equation (20) 
Either   ( ) ( )( )( ) 0=−−−++++ ˨˟˭˟˟˨2˟˨ 22 ϕϕ    (21) 
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Or  
( ) ( )

( )
( )

0=
−++−

+
−+−++−

ληβψµ
βϕβ
ββϕκλβµ Pc

q
   (22) 

 
From Equation (21) 

( )βπλ +−=1        (23) 

βλ −=2         (24) 

and ( )βϕλ +−=3        (25) 
         

From Equation (22) 

( )( ) ( )
( ) 0=

+
−+−−−−−−−−−

βϕβ
ββϕκληβψλβµ Pc

q  

( )( ) ( )
( ) 0=

+
−+−++++++

βϕβ
ββϕκληβψλβµ Pc

q  

 
 

( ) ( )
( )

( ) ληβψµ
βϕβ
ββϕκλβµ

−++−

+
−+−++−

=
Pc

q
ALet  

     
For the disease-free equilibrium to be asymptotically stable, trace (A) < 0  and   
det A > 0.  

( )( ) ( )
( )βϕβ

ββϕκληβψλβµ
+
−+−++++++= Pc

qAdet  

And the trace of A is : 
  

( ) ( ) ( )ληβψλβµ +++−+++−= qA Trace   
It is clear that trace (A) < 0 since all the parameters q, t, β, ψ, β and η are positive.  
 
For the determinant of A to be positive (i.e. > 0), we must have  

( )( ) ( )
( ) 0>









+
−+−+++++

βϕβ
ββϕκµηβψλβµ Pc

q  

or ( )( ) ( )
( ) 









+
−+>+++++

βϕβ
ββϕκµηβψλβµ Pc

q    (26) 

 
From equation ( 23) – equation (25) we see that the first 3 Eigen values of 
equation 20 all have negative real parts. We now establish the necessary and 
sufficient conditions for the remaining two Eigen values of equation (20) to have 
negative real part. The remaining two Eigen values of equation (20) will have 
negative real part if and only if det A > 0. That is, if and only if  
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( )( ) ( )
( ) 









+
−+>+++++

βϕβ
ββϕκµηβψλβµ Pc

q  

The Routh-Hurwitz theorem states that the equilibrium state will be 
asymptotically stable if and only if all the Eigen values of the characteristics 
equation | J – Iλ| = 0 have negative real part.  
 
Using this theorem we see that the disease-free equilibrium of this model will be 
asymptotically stable if and only if  

( )( ) ( )
( ) 









+
−+>+++++

βϕβ
ββϕκµηβψλβµ Pc

q  

or  
( )

( ) ( )( )ηβψλβµ
βϕβ
ββϕκµ +++++<









+
−+

q
Pc

    (27) 

The inequality (27) gives the necessary and sufficient condition for the disease-
free equilibrium state of the model to be stable. 
 
This means that the necessary and sufficient condition for the disease-free 
equilibrium state of this model to be asymptotically stable is that the product of 

total contraction and total breakdown of latent class given by ( )
( ) 









+
−+

βϕβ
ββϕκµ Pc           

must be less than the total removal rate from both latent and infectious classes 
given by (q+µ+β)(ψ +β + η). 
 
Alternatively, the inequality (26) and (27) can also be expressed as  

( ) ( )
( )( )







+++
−+>+++

ηβψβϕβ
ββϕκµλβµ Pc

q     (28)                      

The inequality (28) also gives the necessary and sufficient condition for the 
stability of the disease-free equilibrium state. It means that the necessary and 
sufficient condition for stability of the disease-free equilibrium state of this model 
is that the sum of the rate of recovery of latently infected people, the rate at which 
latently infected individuals progress to active infection and the rate of natural 
death of individuals in the population (ie total removal rate from the latent class) 
must have a lower bound given by  

( )
( )( )







+++
−+

ηβψβϕβ
ββϕκµ Pc

 

 

9 Discussion 
 
Presented in this project is a mathematical model of the role of vaccination and 
treatment on tuberculosis transmission dynamics.  
The population was partitioned into five compartments namely: the Immunized, 
the Susceptible, the latently infected, the Infectious and the Recovered 
compartments or classes. It was assumed that the only entrants into the population 
are new born babies, proportion, cP of whom are immunized against TB infection 
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and the other proportion,   (1 – c)p, are not immunized and so join the susceptible 
class. The population dynamics of the compartments was described using five 
differential equations.  
The trivial equilibrium state Eo (Mo, So, Lo, Io, Ro), that is, the state where there is 
no individual in the population, was found to be unstable since the recruitment 
terms cP and (1 – c)P cannot be zero. This is so because there must always be new 
born babies entering the population. That is, Eo(Mo, So, Lo, Io, Ro), ≠ (0,0,0,0,0) 
The disease-free equilibrium state, Eo (Mo, So, Lo, Io, Ro), was determined and its 
stability analysis conducted using the Routh-Hurwitz theorem. The analysis shows 
that the necessary and sufficient condition for the disease-free equilibrium state to 
be locally asymptotically stable is that the product of total contraction and total 
breakdown of the latent class should be less than the total removal rate from both 
the latent and the infectious classes. That is, 
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+
−+

q
Pc

 

Put differently, the result of the stability analysis of the disease-free equilibrium 
state is that for the disease-free equilibrium state to be locally asymptotically 
stable, the sum of the rate of recovery of the latently infected individuals, the rate 
at which latently infected become actively infected by the TB disease and the rate 
of natural death of individuals in the population must have a lower bound. That is,  

( ) ( )
( )( )



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q  

This establishes the condition under which tuberculosis can completely be 
eradicated in any population. 
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