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Abstract

In this study the role of vaccination of new boabies against tuberculosis
and treatment of both latently and activity infectadividuals in controlling the
spread of tuberculosis was mathematically moddiasked on the standard SEIR
model. The disease - free equilibrium state ofrtieelel was established and its
stability analyzed using the Routh-Hurwitz theordine result of the analysis of
the stability of the disease-free equilibrium stateows that tuberculosis can
totally be eradicated if effort is made to ensuhattthe sum of the rate of
recovery of the latent class, the rate at whiclerdly infected individuals become
actively infected and the rate of natural deathustrhave a lower bound.

Keywords: Latent TB infection, Active TB infection, Dise&s® equilibrium
state; Endemic equilibrium state; Stability anadysi
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1 Introduction

Tuberculosis or TB (short for tubercles bacillus)a highly infectious diseases
caused by infection with the bacteria mycobacterituberculosis (Cohen et
al.2004). The disease is airborne and so it is gmilgntransmitted through the
respiratory route. When people who are infectedh whe disease cough, sneeze,
spit or talk, they propel TB germs, (in mucus detg), known as bacilli, into the
air. A previously uninfected person needs onlynioaie a small number of these
germs to be infected. (Cohen et al., 2004).

Once infected, an individual enters a period oérlayy during which he exhibits
no symptoms of the disease and is not infectiowdhers. Such a person is said to
have a LatenTB infection. This latent period can be of extreynedriable length
of time. A great majority of those infected 90 %) may live with the disease as
long as possible without it degenerating or progiresinto Active TB. However,
a small proportion of those infected {0 %) will progress from the latent TB to
Active TB, falling ill within months or several years aftefaection (Colijn et al.,
2006). Some may be asymptotically infected for desabefore they become sick.
Once ill and infectious, individuals may recovetheut treatment, may be cured
with antibiotics or may die from the disease. Rered individuals may relapse to
disease or be re-infected. The degree of protectifforded by a previous
infection and the mechanism by which individualghwpartial immunity are
protected are controversial. The highest risk grimugcquire TB when exposed to
it are children under five years old, persons wh® immuno-compromised (i.e.
have weakened immunity), especially those who dkéRbsitive, persons who
have diabetes or kidney failure, people that takeessive alcohol and drugs,
those with poor nutrition and lack of food, thosdfering from stress and those
living in poorly ventilated rooms (Sanga, 2008).@tdulosis usually attacks the
lungs but can also attack other parts of the bddy the kidney, Spine, brain,
bones, joints etc. The classic symptoms of TB ef ltings are a chronic cough
which may result in blood-tinged sputum, fever,htigweats, loss of appetite,
weight loss and fatigue. Infection of other orgateuses a wide range of
symptoms. Pneumonia, lung collapse and enlargeghynodes may also occur.
(WHO; 2007). Two forms of tuberculosis that becotife- threatening are
Miliary TB, which means the bacteria have spreadubhout the lungs and into
the bloodstream and TB meningitis (infection of ttwaering of the spinal cord
and /or brain by TB bacteria). Diagnossies on radiology (commonly chest X-
ray), a tuberculin skin text, blood tests, as veslimicroscopic examination and
microbiological culture of bodily fluids (such gswum).

The introduction of Directly Observed Treatment 8h@OTS) Coursehas
helped in the control and management of tubercall@OTS, the internationally
recommended strategy for TB control cures patiesaves lives, prevents the
development and spread of drugs resistance, angcesdlisease transmission.
DOTS makes sure that TB diagnosis and medicineaaedlable for all TB
patients free-of-charge. Prevention relies on songe programmes and
vaccination, usually with Bacillus calmette-GuéfBLCG) vaccine (Colditz et al.;
1994).
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TB and HIV are the leading causes of death fromadtdus diseases among adults
globally and the number of TB cases has risen fsognitly since, the start of the
HIV epidemic, particularly in sub-Saharan Africaavl the HIV epidemic is most
severe (Dye: 2006).

TB progression from latent infection to active dise varies greatly. For instance,
people with AIDS are more likely to develop to A&tiTB after infection. A
patient with AIDS who becomes infected with Mycotegimm tuberculosis has a
50% chance of developing Active tuberculosis witBimonths and a 5 to 10%
chance of developing Active disease each yeardftere According to the World
Health Organization (WHO), infants and young chaldr infected with
mycobacterium tuberculosis are also more likelgdgelop Active TB than older
people since their immune system are not yet vesletbped. (Okyere, 2007).
Treatment for tuberculosis uses antibiotics to Kie bacteria. Effective TB
treatment is difficult, due to the unusual struetand chemical composition of the
mycobacterium cell wall, which makes many antilwstineffective and hinders
the entry of drugs. (Migliore et al., 1966;, Achargt al. 1970 and Brennan and
Nikaido, 1995).

The two antibiotics most commonly used are Rifammpand Isoniazid. However,
instead of the short course of antibiotics typicalsed to cure other bacterial
infections, TB requires much longer periods of timeant (around 6 to 24 months)
to entirely eliminate mycobacterium from the bo@@enter for Disease Control
and Prevention (CDC), 2000).

Latent TB treatment usually uses a single antibjatihile Active TB infection is
best treated with combinations of several antibgtito reduce the risk of the
bacteria developing antibiotic resistance. (O’'Byfi®94). People with latent
infections are treated to prevent them from pragingsto Active TB disease later
in life.

2  TheGlobal Perspective of Tuberculosis

Tuberculosis (TB) remains a leading cause of indest mortality in the world
despite many decades of study, the widespreadahildy of vaccines, an arsenal
of anti-microbial drugs and more recently, a highlisible World Health
Organization (WHO) effort to promote a unified ghdlbcontrol strategy. The
world health organization declared TB a global egeacy in 1993. It has been
approximated that one third of the world’'s popuatiis infected with
mycobacterium tuberculosis. (Cohen et al. 2004)taDaleased by the health
protection Agency in 2000 shows that 8 million niewidences of TB occur per
year. 2 million persons die from the disease par yad 80% of new incidence
lives in high burden countries like Zimbabwe, Kenygianda, United Republic of
Congo and India (Blower et al.; 1995).

3  Methodology

Mathematical models have played a key role in tven@ilation of TB control
strategies and the establishment of interim goaisiritervention programme.
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Many types of mathematical models exist. They ideluhe stochastic model ,the
deterministic (compartmental) model such as:the, SIS, SIRS, SEIS, SEIR,
MSIR, MSEIR, and the MSEIRS models. (Where S = Bpsble class;

| = Infective class; M = passively immune infants; = Exposed class; and
R = Removed or Recovered class) etc.

Our model is a deterministic or compartmental, SE)Re model where the
population is partitioned into components or cladsgsed on the epidemiological
state of individuals, and it is assumed that theupation size in a compartment is
differentiable with respect to time and that thé@epmic process is deterministic.
Therefore, the TB transmission dynamics betweencirapartments shall be
described by a system of differential equation Wwheball be solved to obtain the
disease-free equilibrium state.

The stability analysis of the disease-free equiliior state shall be carried out
using the Routh-Hurwitz theorem.

4  Assumption of the M odd

The model is based on the following assumptions.

1. That the population is heterogeneous. That isintieiduals that make up the
population can be grouped into different compartsi@n groups according to
their epidemiological state.

2. That the population size in a compartment is d#ffeiable with respect to
time and that the epidemic process is determinigtiother words, that the
changes in population of a compartment can be lezéxli using only history
to develop the model.

3. That a proportion of the population of newbornsansnunized against TB
infection through vaccination.

4. That the immunity conferred on individuals by vaation expires after some
time at a given rate.

5. That the population mixes homogeneously. Thatlisusceptible individuals
are equally likely to be infected by infectiousiwiduals in case of contact.

6. That the infection does not confer immunity to ttwred and recovered

individuals and so they go back to the susceptilalss at a given rate.

That people in each compartment have equal nadeeth rate of.

That all newborns are previously uninfected by Tl aherefore join either

the immunized compartment or the susceptible commgant depending on

whether they are vaccinated or not.

9. That there are no immigrants and emigrants. Thg waly of entry into the
population is through new — born babies and thg wmly of exit is through
death from natural causes or death from TB-relateses.

© N

5 Model Variables and Parameters

The following variables and parameters shall b& uséhis model.
M(t): the number of individuals who are immunizedjainst TB through
Vaccination at time t
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S(t): the number of susceptible individuals atetim

L(t): the number of latently infected / exposediudials at time t.

I(t): the number of infectious individuals at tirhe

R(t): the number of individuals who have beentedand have recovered from
the infection at time t.

o: the rate of expiration of vaccine efficacy.

K. the rate at which susceptible individuals becdtetently infected by TB.

T the rate at which latently infected individubEcome actively infected.

T3 the rate at which actively infected individuedsover from TB infection.

qg: the rate at which individuals who are latentifected recover from TB
through treatment.

T the rate at which recovered individuals becsungceptible to TB Infection
again.m: the tuberculosis-induced mortality / death rate.

B: the natural mortality / death rate

P: population of new births joining the populatién

cP: the proportion of new births that have beemmuimized through
Vaccination.

N: the total population size

6  Model Description

Based on the standard SEIR model, the populatiorpagitioned into 5
compartments or classes namely: Immunized M(t)c&uttble S(t), Latent L(t),
Infectious I(t) and Recovered R(t) compartments .

The Immunized component increases due to the commingf the immunized
newborns into the population, where we assumed ahatoportion, cP, of the
incoming individuals are immunized through vacdmat The component reduces
due to the expiration of the duration of vaccinfcaty at the rate o and also as
a result of natural death at the rated of

The susceptible component of the population growestd the coming in of new-
born babies not immunized against TB infection ithte population at the rate of
(1-c)P, the coming in of some recovered individudige to the fact that the
infection does not confer immunity to recoveredivigthals, at the rate oft and
as a result of the expiration of the efficacy of traccine, at the rate @f This
component decreases due to the latent infectiondofiduals at the rate of and
due to death from natural causes at the rafe of

The population of the latent component grows asesult of infection of
individuals in the susceptible class at the rate.dfhis class reduces due to the
progression of latently infected individuals toieetTB infection at the rate of p,
the successful treatment and cure of latent TBeptiat the rate of g and as a
result of death from natural causes at the rafe of

The infectious compartment increases due to thgression of latently infected
individuals to active TB infection at the rate of.The component reduces as a
result of successful cure of infectious TB patieatshe rate off , death as a
result of active TB infection at the rate wfand also due to death from natural
causes at the rate pf
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Lastly, the recovered component grows as a resuiuocessful treatment and
cure of latent TB patients at the rate of q and dfdhe infectious TB patient at
rate ofy and decrease due to the fact that recovered thdils are not immune
against the infection and so they return to theejptsble class at the rate mfand
also as a result of death from natural cause atatieeofp (Enagi et. al.; 2011).

The model can schematically be presented as shelewb

cP.
\ M
N
B q
o /_\
K 1 v
A4S L | R
(LoF 7 l l
P p P P

T

Fig 1. Schematic Presentation of the model

7  TheModel Equations

Applying the assumptions and the inter-relationsvben the variables and the
parameters as described above the role of vaammatind treatment on
tuberculosis transmission dynamics can be destwybime following differential
equations:

daM _ o
=cP-(¢- fM

dS_, e

a_(1 C)P+¢M +7R- kS| - S @
=(1-c)P+oM +7R-(« + B)S

e _ oo

E—KSJ qL-M - AL (3)

i1 (AL
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a_ .

A - - @
== +n+p)

SR=qLeyt - R- R

dt ()

=qL+¢l ~(m+ B)R
N(t) = M (t) + S{t) + L{t) + 1 (t) + R(t) (6)
8 Results and Discussion

8.1 Equilibrium Solutions

Let E (M, S, L, I, R) be the equilibrium point dig system described by the
equations (1) — (6). At the equilibrium state, vexd

dM _dS_dL_d _dR_

e 0
dt dt dt dt dt

That is,

cP-(p+ LM =0 (7)
(1-c)P+gM +7R-(k + B)S=0 (8)
KSI-(q+p+B)L 9)
A~ +n+p) =0 (10)
gL+¢l -+ BJR=0 (11)

In order to obtain the disease-free equilibriumestae solve equations (7) — (11)
simultaneously.

8.2 TheExistenceof aTrivial Equilibrium State

Let E (Mo, S, Lo, lo, Roy be the trivial equilibrium state of the model. Téés no
trivial equilibrium state for the model since thepplation cannot be extinct so
long as new babies are born into the populatiorother words, so long as the
recruitment termscand (1 — @ are not zero, the population will never be
extinct.

Thatis, B (Mo, &, Lo, lo, Ro) #(0,0,0,0,0)

8.3 TheDisease-Free Equilibrium State

The disease-free equilibrium state is the stat®tafl eradication of the disease.
Let E°(M°, S, L°, I° R be the disease-free equilibrium state. For deséae



Mathematical Model of the Role of... 17

equilibrium state, both the infectious class arall#tiently infectious class must be
zero. That is, for disease-free equilibrium state

I°=L°=0 (12)

Substituting | = L = 0 into Equations (7) — (11)dasolving simultaneously we
have:

From Equation (7)

cP-(¢+BM =0
._ CP
Y 42)
From Equation (8)
(1—c)P+%+nR—,6’S:O (14)

From Equation (11)

aL+@l —(n+BJR=0

— (n+,B)R:O, (sinceL=1=0)

— Either@@+p) =0 (15)
Or R=0 (16)

Sincemandp are positive constantsy ¢ ) #0

Therefore, R=0

If R =0, Equation (14) becomes

B gcP _
@ c)P+¢+ﬂ BS=0
_ go= @+ B)L-c)P +gcP
Ble+B)
-cp)P
or 5= ;(/;; +‘;f)) (17)

Therefore the disease -free equilibrium state efrittodel is

e (M5, 1,1 R)=[ -2 Y*+B-cBlP o 4 o
T et Bl T

8.4 Stability Analysis of the Disease-Free Equilibrium State

To determine the stability or otherwise of the dis®=free equilibrium state’E
we examine the behaviour of the model populaticar tigis equilibrium solution.
Here we determine the condition(s) that must be foetthe disease -free
equilibrium state to be stable. In other words,de¢éermine the condition(s) that
must be met if the disease is to be totally eradecc&rom the population.
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Recall that the system of equations in this motlebailibrium state is:

cCP—@p+B)M=0
1-cP+pM+mMR -kl +B)S=0
KSI—(q+n+p)L=0
HL—(y+p+n) =0

gl +yl— (m+P)R=0

We now linearize the system of equations to gef#mmbian Matrix J.

-(p+B) 0 0 0 0
p -(-+p) 0 kS n
J= 0 K° ~(q+u+p) KS° 0 (18)
0 0 % ~w+B+n) 0
0 0 q y -(m+ B)

At the disease-free equilibrium,°BEM°, S, L, I°, R°), the Jacobian Matrix
becomes

-(6+B) o 0 0 0
(¢+B-cp)P
— 0 [y L A Y A
¢ i K(¢ /3/(3¢+ng
- o +B-¢
Jo = 0 K (q+u+p) K—ﬂ(¢+,3) (19)
0 0 U ~(w+B+n) 0
0 0 q w ~(mr+ )

The characteristic equationo|JIA| = 0 is obtained from the Jacobian determinant
with the Eigen valuek; (i=1, 2, 3, 4, 5)

That is;
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-(¢+B8)-4 o0 0 0 0
o _ (p+B-cBlp
Y, 7 |
- _ +p-¢, _
o =IN| = 0 0 —(q+tu+p)-1 « A6+ 5) 0 =0
0 0 7 —(1//+,B+/7)—/1 0
0 0 q 7 ~(+B)-2
(¢+B-coP
— _/] 0 —
] Lz
+ —_—
0 - -1 A 0
ey O A o
0 H ~(w+pB+n)-2 0
0 q 7} —(7T+/3)—/1
s is A o @FB-CBP
e 7Y, °
=(~(p+B)-A)(-B-A U ~(p+pB+n)-A 0 |=0
g y —(+B)-2
_ . (p+p-cpP
- (BB -NB-N=lrep)-n| T TG =0
U ~(p+B+n)-2

_ _, (g+p-cpP
(Q+u+p)-2 KW
u ~(w+pB+n)-A

=(@+B+A)B+A) -T-B-A =0

Ly kBrB-cpP
Lo+ B)
U ~(w+pB+n)-2

~(a+u+p)

=()\2+(¢+25))\+(¢5+52)—n—B—A =0

From Equation (20)
Either (A2 + (4 + 28\ + (g8 +B2 -1 -B - A)

0 1)
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B} L erB-cpP
or (Q+u+p)-1 « 5 |-o 2)
7 ~(w+B+n)-1
From Equation (21)
A =—(n+p) (23)
Ay ==p (24)
and A3 = (¢ + B) (25)

From Equation (22)

Ca-u=p=Ap=p=n-A)- 8200 -

(q+ﬂ+18+)l)(¢/+,8+/7+,1)—/(%:

_ _ (¢+B-cB)P
Lotpz| @FHTBIA Kl
U ~(w+pB+n)-2

For the disease-free equilibrium to be asymptdticstiable, trace (A) < 0 and
det A > 0.

detA=(q+u+ﬁ+ﬁ)(w+ﬂ+n+A)—K%
And the trace of Ais :

Trace(A) = —(q+,u+,6’+/1)—(¢/+ﬁ+/7+/1)
It is clear that trace (A) < 0 since all the partar®q, tj, v, B andn are positive.

For the determinant of A to be positive (i.e. >\W0& must have

(q+pu+B+A\w+B+n)- WFC?TJ 0

or (q+l1+,3+/1)(1//+/3+’7)>/(#{%} (26)

From equation ( 23) — equation (25) we see thatfitls¢ 3 Eigen values of

equation 20 all have negative real parts. We notabésh the necessary and
sufficient conditions for the remaining two Eigealwes of equation (20) to have
negative real part. The remaining two Eigen valaegquation (20) will have

negative real part if and only if det A > 0. Thsitif and only if
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(¢+ﬁ—0ﬂ)PJ

+u+B+A\g+L+n)>k

(q u+p )(‘// B ’7) /—{ ,6’(¢+,8)

The Routh-Hurwitz theorem states that the equiiori state will be
asymptotically stable if and only if all the Eigemalues of the characteristics
equation | J -\l = 0 have negative real part.

Using this theorem we see that the disease-fredgiegqum of this model will be
asymptotically stable if and only if

(q+/~1+,8+/l)(t//+ﬁ+f7)>w{%]

or
(¢+p-colP <(q+u+p+ + B+
K%{ A6+ ) J (a+u+B+Aw+pB+n) (27)

The inequality (27) gives the necessary and sefiiccondition for the disease-
free equilibrium state of the model to be stable.

This means that the necessary and sufficient dondifor the disease-free
equilibrium state of this model to be asymptotigatable is that the product of

total contraction and total breakdown of latentsslgiven byx;{%]

must be less than the total removal rate from baibnt and infectious classes
given by (gq+uB)(Y +B +n).

Alternatively, the inequality (26) and (27) cancalse expressed as
(¢+B-cB)P j
Ble+Bw+B+n)
The inequality (28) also gives the necessary arfticemt condition for the
stability of the disease-free equilibrium state.means that the necessary and
sufficient condition for stability of the diseased equilibrium state of this model
Is that the sum of the rate of recovery of latemtfgcted people, the rate at which
latently infected individuals progress to activéestion and the rate of natural
death of individuals in the population (ie totah@val rate from the latent class)
must have a lower bound given by

Kﬂ( B (¢(5¢++ﬂ[)?(4; iﬁlzi U)J

(+u+B+2)>x (28)

9 Discussion

Presented in this project is a mathematical mofl¢h® role of vaccination and
treatment on tuberculosis transmission dynamics.

The population was partitioned into five comparttsemamely: the Immunized,
the Susceptible, the Ilatently infected, the Infaesi and the Recovered
compartments or classes. It was assumed that thenimants into the population
are new born babies, proportion, cP of whom areumged against TB infection
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and the other proportion, (1 — c)p, are not imineth and so join the susceptible
class. The population dynamics of the compartmeras described using five
differential equations.

The trivial equilibrium state HM,, S, Lo, lo, Ro), that is, the state where there is
no individual in the population, was found to bestafle since the recruitment
terms cP and (1 — c)P cannot be zero. This is cause there must always be new
born babies entering the population. That igVE, S, Lo, lo, Ro), # (0,0,0,0,0)

The disease-free equilibrium staté,(®°, S, L° 1°, R°), was determined and its
stability analysis conducted using the Routh-Hurwliteorem. The analysis shows
that the necessary and sufficient condition fordisease-free equilibrium state to
be locally asymptotically stable is that the pradetctotal contraction and total
breakdown of the latent class should be less thandtal removal rate from both
the latent and the infectious classes. That is,

Kp{%}(quﬂ)(wWW)

Put differently, the result of the stability anatysf the disease-free equilibrium
state is that for the disease-free equilibriumestat be locally asymptotically
stable, the sum of the rate of recovery of thenkanfected individuals, the rate
at which latently infected become actively infecbgdthe TB disease and the rate
of natural death of individuals in the populationshhave a lower bound. That is,

(¢+B-cB)P j
Blp+ By +B+n)

This establishes the condition under which tubesisl can completely be
eradicated in any population.

(@+u+B+1)>4

Refer ences

[1] P.V. Acharya and D.S. Goldman, On chemical position of the cell
wall of the H37Ra strain of mycobacterium TubersidgpGene Ther
12(7) (1970), (http: //www.ncbi.nlm. nih.gov|pum&a8039).

[2] S.M. Blower, A.R. McLean, T.C. Porco, P.M. Sm&.C. Hopewel, M.A.
Sanchez and A.R. Moss, The intrinsic transmissiomarhics of
tuberculosis epidemicslature Medicing(8)(1995), 815-821.

[3] P.J. Brennan and H. Nikaido, On the envelopmycobateriaAnnu. Rev.
Biochem, 64(1995), 29-63, (http:// www.ncbi.nim.nih.govifPued|
7574484).

[4] Centers for Disease Control and Prevention Q@DOn emergence of
mycobacterium tuberculosis with extensive resigamz second line
drugs-worldwide (2000), (http://www.ncbi.nlm.nih.gov|pubmed|163%7
3)

[5] G.A. Colditz, T.F. Brewer, C.S. Berkey and Wilson, On efficacy of
BCG vaccine in the prevention of tuberculosieta-Analysis of the
Published Literature, JAMA271(1994), 698-702.



Mathematical Model of the Role of... 23

[6]

[7]
[8]

[9]

[10]

[11]

T. Cohen and M. Murray, On modeling epidemaésmultidrug-resistant
m. tuberculosis of heterogeneous fithé¢ature Medicing10(10) (2004),
1117-1121.

C. Dye, On global epidemiology of tuberculgdiancet 367(2006), 938-
940.

A.l. Enagi and M.O. Ibrahim, On a mathematicabdel of effect of
Bacillus Calmette-Guérin vaccine and isoniazid pr#iwve therapy in
controlling the spread of tuberculosis in Nigerimurnal of Modern
Mathematics and StatisticS(1) (2011), 25-29.

D. Migliore, N.P.V. Acharya and P. Jolles, @haracterization of large
quantities of glutamic acid in the walls of humamulent strains of
mycobacteria, (1996), (http://www.ncbi.nlm.nih.gopmed|4958543).
G.G. Sanga, On modeling the role of diagnoarsd treatment on
tuberculosis (TB) dynamic#, Thesis Submitted in Partial Fulfilment of a
Post Graduate Diploma at African Institute for Mathatical Sciences
(AIMS), (2008).

World Health Organization, Tuberculosis, @), http://who.int/
mediacentre/factsheets/fs104/en/index.html.Retdeh@November 2009.



