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Abstract

An application of differential geometry together with Lie group method in
theoretical physics is considered. In this paper we study the Kerr-Newman
geometry as a geometric structure of a rotating charged black hole to classify
all geodesic curves by using the set of Lie point symmetries of the associated
system of differential equations.

Keywords: Kerr-Newman geometry, symmetry groups, Riemannian ge-
ometry.

1 Introduction

It is well known fact that gravitational mass can alter the space time structure.
Charged rotation body can also alter the space-time similar to gravitational
mass. We know that, the solution of Einsteins equations describing the exterior
of an isolated, spherically symmetric objectis quite simple. Indeed, it has been
found immediately after the derivation of Einsteins equation. In the case of
a rotating body, instead, the problem is much more difficult: we do not know
any analytic, exact solution describing the exterior of a rotating star. But we
know the exact solution describing a rotating, stationary, axially symmetric
black hole. It is the Kerr solution, derived in 1963 by R. Kerr [8].

Suppose we have a spherical symmetric mass with a given charge and ro-
tation.The Kerr-Newman metric describes the geometry of spacetime in the
vicinity of a rotating mass M with charge ). The formula for this metric
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depends upon what coordinates or coordinate conditions are selected. In the
mathematical description of general relativity, the Boyer-Lindquist coordinates
are a generalization of the coordinates used for the metric of a Schwarzschild
black hole that can be used to express the metric of a Kerr black hole. The
Boyer-Lindquist coordinates written in the coordinate (t,r,6,¢) in Boyer-
Linquist form [2], the Kerr-Newman metric [3, 6, 8|, is a Riemannian metric
of the form
.2 2
g= —%[dt — asin® §dg]* + w[(ﬂ + a®)d¢ — adt] + L
p p A
where A = 12 — 2Mr + a® + Q% p* = 72 + a*cos? 0 and a = S/M is angular
momentum per unit mass [8]. In these equations M and () are mass and
charge respectively. As we see the Kerr-Newman geometry has a horizon, and
therefore describes a black hole, if and only if M? > Q? + a®.
The present paper is organized as follows: The second chapter introduces
a very impoprtant concept called symmetries of differential equations which is
described in so many literatures [9, 10]. The third chapter involves the equa-
tions of Kerr-Newman’s geodesics constructed from the Riemannian metric
(1). The last chapter is devoted to classify the geodesic curves obtained in the
third chapter by using the symmetries of the geodesic’s system

dr® + p*d9*, (1)

2 Symmetries of Differential Equations

Symmetry plays a very important role in various fields of nature. As is known
to all, Lie method is an effective method and a large number of equations [5]
are solved with the aid of this method. There are still many authors using this
method to find the exact solutions [9] of non-linear differential equations. It is
also a powerful tool for finding exact solutions of non-linear problems [9, 10].
Many eaxmples of applications to physical problems have been demonstrated
in a huge number of papers and a lot of excellent books. The general procedure
to obtain Lie symmetries of differential equations, and their applications to find
analytic solutions of the equations are described in detail in several monographs
on the subject (e.g. [1, 5,9, 10]) and in numerous papers in the literature (e.g.
4]).

Consider a system of differential equations (PDE or ODE) in the dependent
variables u®(1 < a < m) and dependent variables z*(1 <4 < n) of the form:

As(xi,ua,uf‘,u%, .)=0, 1<s<k, (2)

where the subscripts denote partial derivatives (e.g. u® = du®/9x%). To de-
termine continuous symmetries of (2), it is useful to consider infinitesimal Lie
transformations of the form:

F=at el +0(e?), @ =u*+en” + 0, (3)
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that leave the equation system invariant to O(¢?). Lie point symmetries cor-
respond to the case where the infinitesimal generators ¢ = £'(z%,u®) and
n® = n*(z',u*) depend only on the z’ and the u® and not on the derivatives or
integrals of the u®. Generalized Lie symmetries are obtained in the case when
the transformations (3) also depend on the derivatives or integrals of the u®.

The infinitesimal transformations for the first and second derivatives to
O(g?) are given by the prolongation formulae:

ug = ug +e¢, ug = ugy +eC, (4)
where
(=D + &g, GG = DiDyi® + €uy;. (5)
Here
i = — el (6)

corresponds to the canonical Lie transformation for which #* = 2 and 4% =
u® + en®. The symbol D; in (5) denotes the total derivative operator with
respect to x'. Similar formulae to (5) apply for the transformation of the
higher order derivatives.

The condition for invariance of the system of differential equations (2) to
O(e?) under the Lie transformation (3) can be expressed in the form:

L,A* =V(A®) =0 whenever A°=0, 1<s<k, (7)
where
. o 0 o 0
is the prolongation of the vector field
; 0 o 0

associated with the infinitesimal transformation (3). The symbol £,A® in
(7) denotes the Lie derivative of A® with respect to the vector field v (i.e.
LA = dd—A: c—0). The system of linear PDEs (7) is called determinig equations
for the system (2).

3 Kerr-Newman’s Geodesic

Let M be a Riemannian manifold with Riemannian metric g. Suppose v is a
smooth curve with domain I defined on the open subset U C M. + is a geodesic
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curve [7] if and only if its component functions v(s) = (z!(s),--- ,2"(s) satis-
fies the geodesic equation:

i*(s) + @' (s)i’ ()T (2(s) =0, i, 5, k=1,..,n, (10)

where T';; is the Christofel symbol of the second kind [7], and z = (2!, ..., 2")
is a coordinate chart on U. The geodesics of the metric (1) could be found
from the system (10) as the following complicated system:

Ar(2a2 +1)sin? 0(s)p(s2)
ol

Ra = ¢(s) —4[A (—a® — p? + A)accos 0(s)pri(s)0(s)]
[—8A cos?0(s)ap® —8A cos?0(s)apl® + 4 A2 cos? §(s)a?p® + o +1r2a% — Ar? + A2%a?
—cos? 0(s)a® —2Aat —4a5p® —8atp!® —402%p'? +201% — A’ cos? 0(s) — AZ cos? §(s)a?
—cos?0(s)a?r? + 8 A a*p® +8Aa2pt0 —4A262p8 — 2 A a2r? + 4 cos® 0(s)abp® + 8 cos? O(s)atptO
+4 cos? 0(s)a?p'? — 2 cos?(0(s))a*r? + 2 A cos?(0(s))a?). sin0(s)]~*
—2[r(202 + 1)(a® cos? 0(s) — o + Ar(s)d(s)]
[—8 A cos? 0(s)a*p® — 8 A cos? 0(s)a?pl® + 4 A2 cos? 0(s)ap® 4+ ab +r2a? — ArZ 4+ A2a2.
—cos?0(s)a® —2Aa* —4a5p® —8atp!? —402p'? + 2042 — A’ cos? 0(s) — AZ cos? 0(s)a?
—cos? 0(s)a®r? + 8 A atp® +8Aa?p10 —4A%a?p® —2A a?r? + 4 cos? 0(s)abp® + 8 cos? O(s)atpt?
+4 cos? 0(s)a?pt? — 2 cos? 0(s)atr? + 2 A cos? 0(s)at] 7!
+2[cos 0(s) (=8 A cos? 0(s)a pB — 8 A cos? 0(s)a?pl® + 4 A2 cos? §(s)a?p8.
+ab + 7202 — Ar?2 +2A%02 — cos? 0(s)ab® —3Aa* —4a5p8 — 8atp!?
—402p12 £ 20*2 —2Aa* cos? O(s) — 2A% cos? O(s)a? — cos? 0(s)ar? + 8 Aap® +8 A a2pt?
—4A%0%p% —2A02r% + 4 cos? 0(s)a®p® + 8 cos? O(s)a*pt?
+4 cos? 0(s)a®p'? — 2 cos? 0(s)ar? + 4 A cos? 0(s)a*0(s)(s)p(s)]
[(—8 A cos? 0(s)atp® — 8 A cos? 0(s)a?p'® + 4 A% cos? 0(s)a?p® + ab.
+r202 — Ar? + A2%02 — cos?0(s)a® —2A 0t — 40508 —8a?p10 —4a?p'? + 2042 — Aot cos? 0(s)
—A2cos? 0(s)a? — cos? 0(s)ar? + 8 Aatp® + 8 A a%pt0 — 4 A2a%p8 — 2 A a?r?
+4 cos? 0(s)abp® + 8 cos? 8(s)atpl®.
+4 cos? 0(s)a?pt? — 2 cos? (s)ar? + 2 A cos? 0(s)a?)sinf(s)] 7! =0,

Rz = i(s)—2[a®sinf(s)cosf(s)(4a*p® +8a2p0 +4p'2 —8Aa?p® —8Ap!°
+4A208 — A cos?0(s)a? — ot —2r%a% + Aa® — r?)i(s)0(s)(s)][-8 A cos? O(s)a?p®
—8A cos20(s)apl® + 4 A% cos? 0(s)a?p® + ol 4+ r2a? — Ar? + A%a2 — cos?0(s)ab — 2 At
—40a%p% —8a%p0 —4a?p1? +2a*r? — Aot cos? 0(s) — A? cos? O(s)a? — cos? 0(s)ar?
+8Aatp +8Aa2pl% —4A202p8 —2A02%r? 4 4 cos? 0(s)alp® + 8 cos? 0(s)atpt®
+4 cos?0(s)a?pt? — 2 cos? 0(s)atr? + 2 A cos? 0(s)at] 7!
—4[(—a? — p? + AN)ap*r(2a® + 1) sin? 0(s)7(s)(s)]
[c(—8 A cos? 8(s)atp® — 8 A cos? A(s)a?pt® + 4 A% cos®(0(s))a?p® + o + 120 — Ar? + A2a2]
—cos?0(s)a® —2Aat —4a5p8 —8atp!? —402%p'? +20%? — A’ cos? 0(s) — A% cos? O(s)a? —
cos? 0(s)a?r? + 8 A a*p® +8Aa2pt0 —4A2%02p8 —2Aa2r? + 4 cos? §(s)alpB
+8 cos? (s)a*pt0 4 4 cos? 0(s)apl? — 2 cos? B(s)atr? + 2 A cos? 0(s)a*)] " +4[sin 0(s)
cos 0(s)A a2 (—a? — p? 4+ A)p*0(s)¢(s)][c(—8 A cos? O(s)atp® — 8 A cos? 0(s)a?pt0
+4AZ%cos?0(s)a?p® +ab +1r2a? — Ar? + A%a? —cos?0(s)a® —2Aa* —4a8p® —8atp!°
—402p2 +20%2% — Ao’ cos? 0(s) — A2 cos? 0(s)a? — cos? 0(s)a?r? + 8 Aatp® +8Aa?pt0
—4A2%02%p% —2Aa%r? + 4 cos? 0(s)a®p® + 8 cos? 0(s)atpl® + 4 cos? O(s)ap'? — 2 cos? O(s)atr?
+2A cos?0(s)at) "t =0,

Ri = i#(s)— =0,
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c2a? sin 0(s) cos 0(s)t(s)?
o
—[sinf(s) cos B(2 A cos? a? + ot +27%a% —2A a2 +1r2¢(s)?][pY] 7 =0

Ry = 6(s)— —4c(—a? — p? + A)a sin0(s) cos 0(s)i(s)d(s)

The infinitesimal Lie transformations for the system above are of the form:
§=s+¢eg’, t=t4en, F=r+ey, O=0+er’, (1)
¢=¢+en’.

The corresponding canonical symmetry generators 7, 7", 7’ and 7% are given
by the formulae analogous to (4). Thus

N =n"—=&ns, (12)
relates the canonical symmetry generator N to n®, where o can be any of the

dependent variables ¢, 7,6 and ¢.
If

v = E(s,tr0.0) 5 +nt(st7’9¢) st 0,6 2 (19

+n9(str0¢) +n(str0¢)¢

be the general form of a symmetry for geodesics, using a software such as
Maple we derive the six-dimensional Lie algebra of the symmetries spanned by
the following vector fields:

0 0 0 0
Vi %7 Vo = a» V3 = 8_¢a V4 = S%,
0 0 0
V5—Sln¢89+cot9008g08—¢, V6:—cosgz589—|—cot081ngba¢

The commutator table of the Lie algebra G spanned by the vector fields v;’s
are given in table (1).

4 Classification of Geodesics

A straight forward calculation shows that if v(s) = (t(s),r(s),0(s), ¢(s)) be a
geodesic curve of metric (1), then so are:

F(s) = y(t(s+e),r(s+¢),0(s+¢),o(s+¢)), (

= (t(s) +,7(5),6(s), 6(5)), (

= (t(s),7(s),0(s), o(s) + ), (

= 7(t(e7),r(e7),0(e%), p(e%)), (1

(4( {

(

)
—_
(=)

-
S N e N N N

= y(t(s),r(s),esinP(s), arcsin(eb(s)) + /1 — 20%(s) cot H(s))
= ”y(t(S),?“(S), _COS¢( )7
arccos(—ef(s)) + ey/1 — e2¢?(s) cot (s)),

|
)

N
TN TN N N N
\_/\_/\Cf/\_/\_/
)
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Table 1: Commutators Table of G

[vi, Vj] Vi Va2 V3 V4 Vj Ve
Vi 0 0 0 0 0 0
Vo 0 0 0 0 0 0
V3 —v; 0 0 0 —vg v;5
V4 0 0 0 0 0 0
A% 0 0 Vg 0 0 —V3
Vg 0 0 —Vs5 0 V3 0

The equations (14)—(19) are the flows of the basis vector fileds {v1, ..., vg}. The
equation (14) and (17) demonstrate the time, radius, colatitude and longitude
angle invariance of the system, (18) and (19) show genuinely local group of
transformations.

We know that evaluation of the flow of vector fields in G serves to define
the exponential map exp : G — G. Since exp(0) = e, dexp(0) = I, the
exponential map defines a local diffeomorphism in a neighborhood of 0 € G.
Consequently, all Lie groups having the same Lie algebra looks locally the
same in a neighborhood of the identity; only the global topological properties
are different. Globally, the exponential map is not necessarily one-to-one nor
onto. However, if a Lie group is connected, it can be completely recovered by
successive exponentiations.

The most general one parameter group of symmetries is obtained by con-
sidering a general linear combination ¢;vy+- - - +c¢gVvg of the given vector fields;
the explicit formulae for the group transformations are very complicated. In
particular if g is near the identity, it can be represented uniquely in the form

g = exp(geVe) © -+ - 0 exp(ervy). (20)

For instance if 1 = ¢4 = 0, then the most general Lie group action with respect
to (1) is

g= <t + €9,7,85 — COS ( arcsin(esf) + e54/1 — €262 cot 0)7 \/1—e2elsin? ¢ +
2
86\/1 — &g [arcsin(egﬁ) +e5v/ 1 — 562 cot 9} cot(es sin @) + €3> )

5 Conclusion

In this paper we presented an application of differential geometry in theo-
retical physics. First we introduce the Kerr-Newman geometry as a kind of
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Riemannian geometry. Then, we calculated the geodesics of the black hole as
the geodesics of a geometric structure defind on the Kerr-Newman black hole.
Finally, we classified the geodesics of the Kerr-Newman black hole by using the
flow of the symmetries of the geodesics. It is noteworthy that some packages
such as DifferentialGeometry and PDEtools of Maple is used to find the
symmetries and geodesic equations.
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