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Abstract 

In this paper, a solution algorithm to fuzzy multiobjective integer nonlinear 
fractional programming problem (FMOINLFP) is suggested. The problem of 
concern involves fuzzy parameters in the objective functions. In order to defuzzify 
the problem, the concept of α-level set of the fuzzy number is given and for 
obtaining an efficient solution to the problem (FMOINLFP), a linearization 
technique is presented to develop the solution algorithm. In addition, an 
illustrative example is included to demonstrate the correctness of the proposed 
solution algorithm. 
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1 Introduction 
 
Fuzzy integer linear and nonlinear fractional programming problems with 
multiple objectives is an important field of research and has not received attention 
as much as did to fuzzy multiple objectives linear and nonlinear fractional 
programming problems. 
 Integer linear fractional programming problem with multiple objectives 
(MOILFP) is an important field of research and has not received as much 
attention as did multiple objective linear fractional programming. In [9], an exact 
method for discrete multiobjective linear fractional optimization has been 
developed using a branch and cut algorithm to generate the whole integer efficient 
solutions of the MOILFP problem.  
 Literature survey reveals wide applications of fractional programming in 
different areas ranging from engineering to economics. For comprehensive review 
of the work in this filed, we refer to [13]. 
 In our previous paper [12], we have presented an algorithm to solve 
multiobjective integer linear fractional programming problem (FMOILFP) with 
fuzzy coefficients in the right-hand side of the constraint functions. The basic idea 
of the computational phase of the suggested algorithm in [12] was based mainly 
upon a modification of Isbell-Marlow method together with the branch and bound 
technique. 
 In this paper, an attempt is made to study multiobjective integer nonlinear 
fractional programming problem (FMOINLFP) with fuzzy coefficients in the 
objective functions. The problem formulation is introduced in Section 2. Fuzzy 
notations and definitions used throughout this paper are presented in Section 3. In 
Section4, a linearization technique is described. An algorithm to solve problem 
(FMOINLFP) is developed in Section 5. An illustrative example is given in 
Section 6 to clarify the solution algorithm. Section 7 provides some concluding 
remarks. 

2 Problem Formulation 

The purpose of this paper is to develop a solution algorithm for solving the 
following multiobjective integer non-linear fractional programming problem 
involving fuzzy parameters in the objective functions (FMOINLFP):
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In problem (1), RkllRdc ll

n ∈=∈ βα , and],...,2,1[,  objectiveeach  for , . The set M  
is defined as the feasible region and might be, for example, of the form:  

               { } ( )2                                         integer  and0,| ≥≤∈= xbAxRxM n  
where A is an nm×  real matrix,  is an n- vector of integer decision variables, b  

is an m-vector of the constraints right-hand sides, nR is the n-dimensional 
Euclidean space and T denotes the transpose. It is assumed that liθ~  is an  nk ×  
real matrix of fuzzy parameters. Moreover, M is a compact set i.e. bounded and 
closed and that 0>+ l

T
li xd β  for all Mx∈  is no convex polyhedron in general. 

 The set of constraints 0, ≥≤ xbAx will be denoted throughout this paper by 

RM  and can be obtained by dropping the integer requirement on the decision 

variables ( ) above. 2in  ,...,2,1 allfor  njx j =
 

 
In what follows, an equivalent fuzzy multiobjective nonlinear fractional 

programming problem associated with problem (1) can be stated with the help of 
the cutting – plane technique [5, 7] and may be written in the form:
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where ][M  is defined as the convex hull of the set of feasible solutions M defined 
by (2) and the point to be noted here is that the efficient solution of problem (1) is 
the same efficient solution of problem (3), (see [10]). 
 Now, we consider the equivalent fuzzy multiobjective nonlinear fractional 
problem (3) in the following form: 
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are the original constraint matrix A and the right-hand side vector b, respectively, 
with 
S-additional constraints, each corresponding to an efficient non-redundant cut in 
the form ii bxa ≤ , where  )(s

RM = ][M and for more details, the reader is referred to 
[11]. 
  
 Consequently, using the nonnegative weighted sum method [2], then 
problem (4) will take the following form with a single –objective function: 
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3 Fuzzy Concepts and Notations 

The fuzzy number is defined differently by many authors. The 
most frequently used definition belongs to a trapezoidal fuzzy 
type as follows: 
Definition 1. [4] 
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It is appropriate to recall that a real fuzzy number P
~

, is a continuous fuzzy subset 
from the real line R whose membership function ( )P

P
~µ  is defined by:  

1. A continuous mapping from R to the closed interval [0,1], 

2. ( )P
P
~µ =0 for all ( ],, 1PP ∞−∈  

3. ( )P
P
~µ is strictly increasing on [ ]21, PP , 

4. ( )P
P
~µ =1 for all [ ],, 32 PPP∈  

5. ( )P
P
~µ is strictly decreasing on [ ],, 43 PP  

6. ( )P
P
~µ = 0 for all [ )+∞,4P , 

 
 Figure 1.  Illustrates the graph of a possible shape of a membership 
function of a fuzzy numberP

~
. 

 

    
                         Fig.1Membership function of a fuzzy numberP

~
 

 
Here, the matrix of fuzzy parameters θ~  involved in problem ( )FMOINLFP  is a 

matrix of fuzzy numbers whose membership function is denoted by ( )θµθ~ . 

 In the following we give the definition of the level−α set or cut−α of the 
fuzzy matrix of parameters θ~ . 
Definition 2. [4]  
The level−α set of the matrix of fuzzy parameters θ~  in the problem 

( )FMOINLFP  is defined as the ordinary set ( )θα
~

L  for which the degree of its 

membership function exceeds the level [ ]1,0∈α , where:  

                                    
( ) ( ){ } )8(|
~

~ αθµθθ θα ≥∈= nRL  

 For a certain degree [ ]1,0== ∗αα  , estimated by the decision maker. 

Therefore, problem ( )FMONLFP  (7) can be understood as the following 
nonfuzzy −α multiobjective nonlinear fractional programming 
problem( )MONLFP−α : 
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 If should be emphasized here in the ( )MONLFP−α  (9) above that the 

matrix of parameters θ  is treated as a matrix of decision variables rather than 

constants. Depending on the basic definition of the level−α  set of the fuzzy 

numbers, we introduce the concept of the efficient−α solution to the 

( )MONLFP−α  (9) in the following definition. 

Definition 3. [4]  
A point ( )∗∗ ∈ θMx  is said to be an efficient−α  solution to 
problem( )MONLFP−α , if and only if there does not exist another 

( ) ( ) such that 
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called level−α optimal parameters.  
 Throughout this paper, a membership function of the fuzzy matrix θ~  in 
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 Before we go any further, problem ( )MONLFP−α   (9) can be rewritten 

as follows:     

 

 Note that the constraint ( )  
~θθ αL∈  in problem  ( )MONLFP−α  (10) 

stated above has   been replaced by the equivalent one  ( ) ( ) ( )andwhere 000
lililili lLl ≤≤ θ  
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liL  are the lower and the upper bounds on the variables . liθ  

 
 In the following section, a linearization procedure is suggested to deal with 
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trapezoidal membership function defined by (8). On the other hand, we should 
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handled as a future research work.     
    

4 Linearization Procedure [1] 
  
 The nonlinearity in the objective’s numerators of problem (6) can be 
treated using the following transformation: 
 

 T
lii

T
l x θγ =  for each objective { } { }nikll ,...,2,1,,...,2,1, ==                                                

(11) 
 Using the parametric approach of Dinkelbaeh [3] and Jagannathan [6] for 
the single-objective fractional programming problem, consequently problem (6) 
becomes: 
   

( ) ( )












≥⊆∈

=≤≤≤∈=∈





























+

++
++















+

++
+















+

++

0),,...,2,1((

,...2,1,,/

(12)        ...max 

)0()0()()(

22

222
2

11

111
1

xnJi

klLxlxbxARx
Mx

toSubject

xd

xc
w

xd

xc
w

xd

xc
w

T
lii

T
l

T
lii

ssn

k
T
k

k
T
k

T
k

kT

TT

T

TT

γθ

β

αγ

β
αγ

β
αγ

( )

( ) ( ){ }.0),...,2,1(,,...,2,1,,/

(10)        ...max 

:MONLFP-

)0()0()()(

22

222
2

11

111
1

≥==≤≤≤∈=∈





























+

++
++















+

++
+














+

++

xniklLlbxARxMx

toSubject

xd

xxc
w

xd

xxc
w

xd

xxc
w

lilili
ssn

k
T
k

k
T
k

T
k

kT

TT

T

TT

θθ

β

αθ

β
αθ

β
αθ

α



 9                                                     An Algorithm for Multiobjective Integer                                                                                

 
 
 
Theorem. [1] 
The solution of the problem (12) can be obtained by solving problems, r  
where r is the number of decision variables from the set   for which one of their 
coefficient whether in the objective functions or in the constraints is fuzzy, where 

 is the cardinality of . 

 

5 Solution algorithm 

 In this section, a solution algorithm to solve fuzzy multiobjective non-

linear fractional programming problem (FMOINLFP) is described in a  series of  

steps.  The suggested algorithm can be summarized in the following manner: 

Step 0. Characterize the set )(s
RM = [M], (See [10,11]) 

Step 1.  Use the weighted sum method [2] to convert the fuzzy non-linear multi-

objective fractional programming problem (4) to a single-objective problem as (7). 

Step 2. Start with an initial α- level set degree α =  = 0 

Step 3. Choose the matrix of the fuzzy parameters θ~  in problem (FMOINLFP) 

(7) to elicit a membership function satisfying assumptions  (1)–(6) in Definition1. 

Step 4. Convert problem (FMONLFP) (7) into its nonfuzzy version (α-

MONLFP) (10). 

 

Step 5. Linearization Procedure: 

Let  T
lii

T
l x θγ =  for each objective { } { }nikll ,...,2,1,,...,2,1, ==  in the objective’s 

numerators of problem (10) 

a) Rewrite the problem (α-MOINLFP) in the form of problem (12) 

b) Convert problem (α-MOINLFP) (12) by using the parametric 

approach of  Dinkelbaeh [ 3] and Jagannathan [6 ] for the scalar 

fractional programming in the form of problem (13)  
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c) Solve the different problems by using LINGO [8] software to 

obtain  of α-efficient solution to choose the required one.  

Step 6. Set α = ( + Step)  [0, 1] and go to step2. 

 

Step 7. Repeat the above procedure until the interval [0, 1] is fully exhausted. 

Then, stop. 

 

6 An Illustrative Example 
 In this section, an illustrative example is given to clarify the proposed 
solution algorithm. This example is adapted from one appearing in Chergui and 
Moulaü [9] and the LINGO [8] software package is used in the computational 
process. 
 The problem to be solved here is the following multiobjective integer 

nonlinear fractional problem involving fuzzy vector of parameters θ~  in the 
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be formulated as: 



 11                                                     An Algorithm for Multiobjective Integer                                                                                

( )

][

~
max

1

4
~

2
max

32

4
~

2
max

21313
~

3

2

121
2

~
2

111
1

~
1

Mx

toSubject

xxθxθx,z

,
x

xθx
θx,z

,
x

xθx
θx,z

:FMONLFP

∈

















+−−=














+
+−−=















+−
−+=















 

 Using the weighting method [2], the multiobjective nonlinear fractional 
programming problem can be converted to a single-objective nonlinear fractional 
programming problem as:                                                                                                                        
 3322111 max:)( zwzwzwwp ++=  

                                Subject to      
][Mx∈  

where    1
3

1

=∑
=i

iw  

 Therefore, the above problem will take the following form: 

( ) [ ]



















 +−−+


























+
+−−

+


























+−
−+

= 2131
2

121

2

111
1

~

4

1

1

4
~

2

2

1

3

4
~

2

4

1
max: xxx

x

xx

x

xx
wp θθθ

 

Subject to                                                                
04- 21 ≤+ xx  
82 21 ≤− xx  

41 ≤x  
0, 21 ≥xx  

where                                         
2

1
,

4

1
231 === www  

 The fuzzy problem ( )wp1  can be converted into its non-fuzzy version by 
setting 36.0=α . Then, membership functions corresponding to the fuzzy 
numbers 1

~θ 2
~θ 3

~θ  can be elicited and are given by: 



 
 

 
 

Omar M. Saad et al                                                                                                   
12 

( )1
1

~ θµ
θ

= 



















≤≤








−
−

−

≤≤

≤≤








−
−

−

≤

otherwise.,0

,,1

,,1

,,1

,,0

413

2

34

31

312

211

2

21

21

11

PP
PP

P

PP

PP
PP

P

P

θθ

θ

θθ

θ

 

( )2
2

~ θµ
θ

= 



















≤≤








−
−

−

≤≤

≤≤








−
−

−

≤

otherwise.,0

,,1

,,1

,,1

,,0

423

2

34

32

322

221

2

21

22

12

PP
PP

P

PP

PP
PP

P

P

θθ

θ

θθ

θ

 

( )3
3

~ θµ
θ

= 



















≤≤








−
−

−

≤≤

≤≤








−
−

−

≤

otherwise.,0

,,1

,,1

,,1

,,0

433

2

34

33

332

231

2

21

23

13

PP
PP

P

PP

PP
PP

P

P

θθ

θ

θθ

θ

 
Let also the fuzzy parameters1

~θ 2
~θ 3

~θ  is given by the following fuzzy numbers 
listed in the table below: 

 
1p  2p  3p  4p  

1θ  0  25.0  75.0  1 

2θ  0  5.0  75.0  1.25 

3θ  
0  0.3 0.6 0.9 

 
It is easy to get:                         

95.005.0 1 ≤≤ θ  
15.11.0 2 ≤≤ θ  
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84.006.0 3 ≤≤ θ  

The problem will take the following form:    

( ) [ ]



















 +−−+





















+
+−−

+





















+−
−+

= 2131
2

121

2

111
2 4

1

1

42

2

1

3

42

4

1
max: xxx

x

xx

x

xx
wp θθθ

 

Subject to                                                                
04- 21 ≤+ xx  
82 21 ≤− xx  

41 ≤x  
0, 21 ≥xx  

95.005.0 1 ≤≤θ  
15.11.0 2 ≤≤θ  
84.006.0 3 ≤≤θ  

Linearization technique: 
Let  313212111 ,, θγθγθγ xxx ===  
The problem  ( )wp2   can be written as:  

 

[ ]



















 +−−+





















+
+−−

+





















+−
−+

= 231
2

21

2

11

4

1

1

42

2

1

3

42

4

1
max xx

x

x

x

x γγγ
 

                      Subject to   
04- 21 ≤+ xx  
82 21 ≤− xx  

41 ≤x  
0, 21 ≥xx  

111 95.005.0 xx ≤≤ γ  
121 15.11.0 xx ≤≤γ  

131 84.006.0 xx ≤≤ γ  
 By using the parametric approach of Dinkelbaeh [3] and Jagannathan [6], 
the above problem will take the following form: 
 

( )
( ) ( )[ ] ( ) ( )[ ]

[ ]































 +−−+








 +−+−−+






 +−−−+
=

∗∗

231

22212111

3

4

1

142
2

1
342

4

1

max:

xx

xxxx

wp

γ

λγλγ
 

Subject to 
04- 21 ≤+ xx  
82 21 ≤− xx  

41 ≤x  
0, 21 ≥xx  
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111 95.005.0 xx ≤≤ γ  
121 15.11.0 xx ≤≤γ  

131 84.006.0 xx ≤≤ γ  

Starting with ( ) ( ) 41.0,0,0,
3

4
05.0,0,0 2211 ==−== ∗∗ zz λλ  

Case 1: Let 01 =x  the problem ( )wp3  can be written as: 

( ) ( ) ( ) ( )( )[ ] [ ]



















+






 +−+
















+−







−−−= 222 4

1
144

2

1
3

3

4
4

4

1
max xxx  

                    Subject to 
04 2 ≤x  
82 ≤x  
02 ≥x  

( ) ( ) [ ]















+−






−= 2224 4

1
2

3

1
max: xxxwp  

                          Subject to                                                    
04 2 ≤x  
82 ≤x  
02 ≥x  

 By solving problem ( )wp4 the maximum value of the objective function 

equals 0 at ( )∗∗
21 , xx = ( )0,0   and with the substitution  in ( )wp2  , hence the optimal 

solution will be 1.666667 
Case 2: Let 01 >x  the problem ( )wp3  can be written as: 

( ) ( ) ( ) ( )( )[ ] [ ]



















 +−−+






 +−+−−+
















+−







−−−+= 231221211 4

1
1442

2

1
3

3

4
42

4

1
max xxxxxx γγγ                         

Subject to 
04- 21 ≤+ xx  
82 21 ≤− xx  

41 ≤x  
11 ≥x  

0, 21 ≥xx  

111 95.005.0 xx ≤≤ γ  
121 15.11.0 xx ≤≤γ     

131 84.006.0 xx ≤≤ γ  

( ) ( )[ ] [ ]



















 +−−+






 −−−+























 −+= 2312212115 4

1
42

2

1

3

4
2

4

1
max: xxxxxxwp γγγ
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                  Subject to  
04- 21 ≤+ xx  
82 21 ≤− xx  

41 ≤x  
11 ≥x  

0, 21 ≥xx  

111 95.005.0 xx ≤≤ γ  
121 15.11.0 xx ≤≤γ  

131 84.006.0 xx ≤≤ γ  
Again, solving  problem   ( )wp5  , we  obtain  the optimum maximum value = -

0.59 at ( )∗∗
21 , xx = ( )0,1    and  then substituting in  ( )wp2 , the -α optimal solution 

will be 0.593333334 from the previous two cases, we  notice that the  -α optimal 
solution  of  problem ( )wp2  is   (0, 0, 0.95, 0.1, 0.06)  which gives the maximum 
value 1.666666667,which is an efficient−α  solution to problem( )MOINLFP−α . 

 
7 Conclusions 
This paper has dealt with a fuzzified version of a multiobjective integer nonlinear 
fractional programming problem (FMOINLFP) in which fuzzy parameters are 
involved in the objective functions. In order to defuzzify this problem, the concept 
of −α level set of the fuzzy number has been given. For obtaining an 

−α efficient solution to the formulated problem (FMOINLPP), a linearization 
technique has been proposed to develop the solution process. 
 Though the computational experience is limited, our algorithm appears to 
be fairly efficient. Despite its simplicity, the proposed solution algorithm may be 
considered as evidence that a host of other fractional optimization problems can 
be effectively tackled by solving a sequence of  feasibility problems. 
 In our opinion, the results of the illustrative example show that the nine 
digits is achievable in the solution steps since, these result using our proposed 
algorithm compared with direct LINGO software methodology will give the same 
solution in less than 30 iterations while more than 300 iterations are carried out 
using LINGO.      
 However, further points must be discussed in the area of (FMOINLPP) for 
different values of −α level sets and the stability of the corresponding 

−α efficient solutions should be investigated. Some of these points are: 
(i) It is recommended to suggest a solution algorithm to large -scale fuzzy 

multiobjective integer nonlinear fractional programming problems.  

(ii)  It should therefore prove worthwhile to examine the convergence of the 
developed algorithm in this paper. 
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