

Gen. Math. Notes, Vol. 32, No. 2, February 2016, pp.1-14
ISSN 2219-7184; Copyright ©ICSRS Publication, 2016
www.i-csrs.org
Available free online at http://www.qeman.in

On the Classes of β - γ -c-Open Sets and βc - γ -Open Sets in Topological Spaces

A. Mizyed

UNRWA, Department of Education, Palestine E-mail: ayman20201@gmail.com

(Received: 25-9-15 / Accepted: 9-1-16)

Abstract

In this paper, we introduce and study the notion of β - γ -c-open sets and β c- γ -open sets in topological spaces and investigate some of their properties. Also, we study the β - γ -continuous functions, β - γ -c-continuous functions and β c- γ -continuous functions and derive some of their properties.

Keywords: β -open; β c-open; β c- γ -open; β - γ -c-open sets; β - γ -continuous; β - γ -c-continuous; β c- γ -continuous functions.

1 Introduction

 β -Open sets and their properties were studied by Abd El-Monsef [6]. El-Mabhouh and Mizyed [1] introduced the class of βc -open sets which stronger than β -open sets. Also, Mizyed [2] defined a new class of continuous functions called βc -continuous functions. In [5] Ogata defined an operation γ on a topological space and introduced the notion of τ_{γ} which is the collection of all γ -open sets in a topological space (X, τ) .

In this paper, we introduce the notion of β - γ -c-open sets, β c- γ -open sets, β - γ -continuous functions, β - γ -c-continuous functions and β c- γ -continuous functions in topological spaces and investigate some of their fundamental properties.

First, we recall some of the basic definitions and results used in this paper.

2 Preliminaries

Throughout this paper, unless otherwise stated, (X, τ) and (Y, σ) represent topological spaces with no separation axioms are assumed. For a subset $A \subseteq X$, Cl(A) and Int(A) denote the closure of A and the interior of A respectively.

A subset A of a topological space (X, τ) is called β -open [6] if $A \subseteq Cl(Int(Cl(A)))$. The complement of β -open set is β -closed set. The family of all β -open sets of X is denoted by $\beta O(X)$.

Definition 2.1 [1] A β -open set A of a space X is called β c-open if for each $x \in A$, there exists a closed set F such that $x \in F \subseteq A$.

Remark 2.2 [1] A subset B of X is βc -closed if and only if $X \setminus B$ is βc -open set. We denote to the families of βc -open sets and βc -closed sets in a topological spaces (X, τ) by $\beta CO(X)$ and $\beta CC(X)$ respectively.

Definition 2.3 [6] A function $f:(X,\tau)\to (Y,\sigma)$ is called β -continuous if the inverse image of each open subset of Y is β -open in X.

Definition 2.4 [2] Let (X, τ) and (Y, σ) be two topological spaces. The function $f: X \to Y$ is called βc -continuous function at a point $x \in X$ if for each open set V of Y containing f(x), there exists a βc -open set U of X containing x such that $f(U) \subseteq V$. If f is βc -continuous at every point x of X, then it is called βc -continuous.

Proposition 2.5 [2] A function $f: X \to Y$ is βc -continuous if and only if the inverse image of every open set in Y is βc -open set in X.

Corollary 2.6 [2] Every βc -continuous function is β -continuous function.

Definition 2.7 [5] Let (X, τ) be a topological space. An operation $\gamma : \tau \to P(X)$ is a mapping from τ to the power set of X such that $V \subseteq \gamma(V)$ for every $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V.

Definition 2.8 [5] A subset A of a topological space (X, τ) is called γ -open if for each $x \in A$ there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. τ_{γ} denotes the set of all γ -open sets in X.

Remark 2.9 [5] For any topological space (X, τ) , $\tau_{\gamma} \subseteq \tau$.

Definition 2.10 [4] Let (X, τ) be a topological space and A is a subset of X, then τ_{γ} -Int $(A) = \bigcup \{U : U \text{ is a } \gamma\text{-open set and } U \subseteq A\}.$

Definition 2.11 [5] A topological space (X, τ) is said to be γ -regular, where γ is an operation on τ , if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $\gamma(U)$ contained in V.

Proposition 2.12 [5] If (X, τ) is γ -regular, then $\tau = \tau_{\gamma}$.

Definition 2.13 [3] A function $f: X \to Y$ is said to be γ -continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists a γ -open set U containing x such that $f(U) \subseteq V$.

Definition 2.14 [7] An operation γ on $\beta O(X)$ is a mapping $\gamma : \beta O(X) \to P(X)$ is a mapping from $\beta O(X)$ to the power set P(X) of X such that $V \subseteq \gamma(V)$ for each $V \in \beta O(X)$.

Remark 2.15 It is clear that $\gamma(X) = X$ for any operation γ . Also, we assumed that $\gamma(\emptyset) = \emptyset$.

Definition 2.16 [7] Let (X, τ) be a topological space and γ an operation on $\beta O(X)$. Then a subset A of X is said to be β - γ -open if for each $x \in A$, there exists a β -open set U such that $x \in U \subseteq \gamma(U) \subseteq A$.

Remark 2.17 [7] A subset B of X is called β - γ -closed set if $X \setminus B$ is β - γ -open set. The family of all β - γ -open sets (resp., β - γ -closed sets) of a topological space X is denoted by $\beta O(X)_{\gamma}$ (resp., $\beta C(X)_{\gamma}$).

Definition 2.18 Let γ be an operation on $\beta O(X)$. Then

- 1. [7] $\beta O(X)_{\gamma}$ -Cl(A) is defined as the intersection of all β - γ -closed sets containing A.
- 2. $\beta O(X)_{\gamma}$ -Int(A) is defined as the union of all β - γ -open sets contained in A.

Proposition 2.19 [7] Let γ be an operation on $\beta O(X)$. Then the following statements hold:

- (i) Every γ -open set of (X, τ) is β - γ -open.
- (ii) Let $\{A_{\alpha}\}_{{\alpha}\in J}$ be a collection of β - γ -open sets in (X,τ) . Then, $\bigcup \{A_{\alpha}: \alpha \in J\}$ is also a β - γ -open set in (X,τ) .

3 β - γ -c-Open Sets

In this section, the notion of β - γ -c-open sets is defined and related properties are investigated.

Definition 3.1 A subset $A \in \beta O(X)_{\gamma}$ is called β - γ -c-open set if for each $x \in A$, there exists a closed set F such that $X \in F \subseteq A$.

Remark 3.2 A subset B of X is called β - γ - c-closed set if $X \setminus B$ is β - γ -c-open set. The family of all β - γ -c-open sets (resp., β - γ -c-closed sets) of a topological space X is denoted by $\beta \gamma CO(X)$ (resp., $\beta \gamma CC(X)$).

Proposition 3.3 Let γ be an operation on $\beta O(X)$. Then $\beta \gamma CO(X) \subseteq \beta O(X)_{\gamma}$, for any space X.

Directly, from Definition 2.16 and Definition 3.1.

Remark 3.4 The equality in Proposition 3.3 need be true in general. Consider the following examples.

Example 3.5 Consider $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Define an operation γ on $\beta O(X)$ by

$$\gamma(A) = \begin{cases} A & \text{if } b \in A \\ Cl(A) & \text{if } b \notin A \end{cases}$$

Then,

- $\beta O(X)_{\gamma} = \{\phi, X, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$
- $\bullet \ \beta \gamma CO(X) = \{\phi, X, \{a,c\}, \{b,c\}\}$

Hence, $\{a,b\} \in \beta O(X)_{\gamma}$ but $\{a,b\} \notin \beta \gamma CO(X)$.

Proposition 3.6 Let $\{A_{\alpha} : \alpha \in \Delta\}$ be any collection of β - γ -c-open sets in a topological space (X, τ) . Then, $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is a β - γ -c-open set.

Proof. Let $\{A_{\alpha} : \alpha \in \Delta\}$ be any collection of β - γ -c-open sets in a topological space (X, τ) . Then, A_{α} is β - γ -open set for each $\alpha \in \Delta$. So that, by Part (ii) of Proposition 2.19, $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is a β - γ -open set. If $x \in \bigcup_{\alpha \in \Delta} A_{\alpha}$, then there exists $\alpha_0 \in \Delta$ such that $x \in A_{\alpha_0}$. Since A_{α_0} is β - γ -c-open, there exists a closed set F such that $x \in F \subseteq A_{\alpha_0}$. Therefore, $x \in F \subseteq A_{\alpha_0} \subseteq \bigcup_{\alpha \in \Delta} A_{\alpha}$. Hence, by Definition 3.1, $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is β - γ -c-open set.

Remark 3.7 The intersection of two β - γ -c-open sets need not be β - γ -c-open set. Consider the following example.

Example 3.8 In Example 3.5, $\{a,c\} \in \beta \gamma CO(X)$ and $\{b,c\} \in \beta \gamma CO(X)$ while, $\{a,c\} \cap \{b,c\} = \{c\} \notin \beta \gamma CO(X)$.

Proposition 3.9 A subset A is β - γ -c-open in a space X if and only if for each $x \in A$, there exists a β - γ -c-open set B such that $x \in B \subseteq A$.

Proof. Let A be β - γ -c-open set and $x \in A$. Then B = A such that $x \in B \subseteq A$. Conversely, if for each $x \in A$, there exists a β - γ -c-open set B_x such that $x \in B_x \subseteq A$, then $A = \bigcup_{x \in A} B_x$. Hence, by Proposition 3.6, A is β - γ -c-open set.

Proposition 3.10 Arbitrary intersection of β - γ -c-closed sets is β - γ -c-closed set.

Proof. Directly by Proposition 3.6 and De Morgan Laws.

Definition 3.11 [7] An operation γ on $\beta O(X)$ is said to be β -regular if for each $x \in X$ and for every pair of β -open sets U and V containing x, there exists a β -open set W such that $x \in W$ and $\gamma(W) \subseteq \gamma(U) \cap \gamma(V)$.

Proposition 3.12 Let γ be β -regular operation on $\beta O(X)$. If A and B are β - γ -c-open sets, then $A \cap B$ is β - γ -c-open set.

Proof. Let $x \in A \cap B$, then $x \in A$ and $x \in B$. Since A and B are β - γ -open sets, there exist β -open sets U and V such that $x \in U \subseteq \gamma(U) \subseteq A$ and $x \in V \subseteq \gamma(V) \subseteq B$. Since γ are β -regular, there exists β -open set W such that $x \in W \subseteq \gamma(W) \subseteq \gamma(U) \cap \gamma(V) \subseteq A \cap B$. Therefore, $A \cap B$ is β - γ -open set. Since A and B are β - γ -c- sets, there exist closed sets E and E such that E is and E and E is E in the E is closed set. Hence, by Definition 3.1, E is E is E is E in E

Corollary 3.13 Let γ be β -regular operation on $\beta O(X)$. Then, $\beta \gamma CO(X)$ forms a topology on X.

Proof. Directly, from Proposition 3.6 and Proposition 3.12.

Proposition 3.14 Let X be T_1 space and γ be an operation on $\beta O(X)$. Then $\beta \gamma CO(X) = \beta O(X)_{\gamma}$.

Proof. Let X be T_1 space and γ be an operation on $\beta O(X)$. If $A \in \beta O(X)_{\gamma}$, then A is β - γ -open set. Since X is T_1 space, then for any $x \in A$, $x \in \{x\} \subseteq A$ where $\{x\}$ is closed. Hence, A is β - γ -c-open and $\beta O(X)_{\gamma} \subseteq \beta \gamma CO(X)$. Conversely, by Proposition 3.3, $\beta \gamma CO(X) \subseteq \beta O(X)_{\gamma}$. Therefore, $\beta \gamma CO(X) = \beta O(X)_{\gamma}$.

Corollary 3.15 Let X be T_1 space and γ be an operation on $\beta O(X)$. Then every γ -open set is β - γ -c-open set.

Proof. Directly, by Part (i) of Proposition 2.19 and Proposition 3.14.

Proposition 3.16 Let X be a locally indiscrete space. Then, every γ -open is β - γ -c-open set.

Proof. Let A be γ -open set, then by Part (i) of Proposition 2.19, A is β - γ -open. Since A is γ -open, then A is open. But X is locally indiscrete which implies, A is closed. Hence, by Definition 3.1, A is β - γ -c-open set.

Proposition 3.17 Let X be a regular space. Then, every γ -open is β - γ -copen set.

Proof. Let A be γ -open set, then by Part (i) of Proposition 2.19, A is β - γ -open. Since X is regular, then for any $x \in A$, there exists an open set G such that $x \in G \subseteq Cl(G) \subseteq A$. Hence, by Definition 3.1, A is β - γ -c-open set.

Corollary 3.18 Let X be both regular and γ -regular space. Then, every open is β - γ -c-open set.

Proof. Let X be regular space. Then, by Proposition 3.17, every γ -open is β - γ -c-open. Since X is γ -regular, then by Proposition 2.12, γ -open and open sets are the same. Hence, every open is β - γ -c-open set.

Definition 3.19 Let (X,τ) be a topological space with an operation γ on $\beta O(X)$ and $A \subseteq X$.

- 1. The union of all β - γ -c-open sets contained in A is called the β - γ -c-interior of A and denoted by $\beta \gamma c$ -Int(A).
- 2. The intersection of all β - γ -c-closed sets containing A is called the β - γ -c-closure of A and denoted by $\beta\gamma$ c-Cl(A).

Now, we state the following propositions without proofs.

Proposition 3.20 For subsets A and B of X with an operation γ on $\beta O(X)$. The following statements hold.

- 1. $A \subseteq \beta \gamma c Cl(A)$.
- 2. $\beta \gamma c \cdot Cl(\phi) = \phi$ and $\beta \gamma c \cdot Cl(X) = X$.
- 3. A is β - γ -c-closed if and only if $\beta \gamma c$ -Cl(A) = A.
- 4. If $A \subseteq B$, then $\beta \gamma c\text{-}Cl(A) \subseteq \beta \gamma c\text{-}Cl(B)$.
- 5. $\beta \gamma c \cdot Cl(A) \cup \beta \gamma c \cdot Cl(B) \subseteq \beta \gamma c \cdot Cl(A \cup B)$.
- 6. $\beta \gamma c \cdot Cl(A \cap B) \subseteq \beta \gamma c \cdot Cl(A) \cap \beta \gamma c \cdot Cl(B)$.
- 7. $x \in \beta \gamma c\text{-}Cl(A)$ if and only if $V \cap A \neq \phi$ for every β - γ -c-open set V containing x.

Proposition 3.21 For subsets A and B of X with an operation γ on $\beta O(X)$. The following statements hold.

- 1. $\beta \gamma c\text{-}Int(A) \subseteq A$.
- 2. $\beta \gamma c \text{-} Int(\phi) = \phi \text{ and } \beta \gamma c \text{-} Int(X) = X.$
- 3. A is β - γ -c-open if and only if $\beta \gamma c$ -Int(A) = A.
- 4. If $A \subseteq B$, then $\beta \gamma c\text{-Int}(A) \subseteq \beta \gamma c\text{-Int}(B)$.
- 5. $\beta \gamma c \operatorname{-Int}(A) \cup \beta \gamma c \operatorname{-Int}(B) \subseteq \beta \gamma c \operatorname{-Int}(A \cup B)$.
- 6. $\beta \gamma c \text{-} Int(A \cap B) \subseteq \beta \gamma c \text{-} Int(A) \cap \beta \gamma c \text{-} Int(B)$.
- 7. $x \in \beta \gamma c\text{-}Int(A)$ if and only if there exists $\beta \cdot \gamma \cdot c$ -open set V such that $x \in V \subseteq A$.

4 βc - γ -Open Sets

Now, we study the class of βc - γ -open sets and we investigate some of the related properties.

Definition 4.1 Let (X, τ) be a topological space and γ an operation on $\beta O(X)$. Then a subset A of X is said to be βc - γ -open if for each $x \in A$, there exists a βc -open set U such that $x \in U \subseteq \gamma(U) \subseteq A$.

Remark 4.2 A subset B of X is called $\beta c - \gamma$ -closed set if $X \setminus B$ is $\beta c - \gamma$ -open set. The family of all $\beta c - \gamma$ -open sets (resp., $\beta c - \gamma$ -closed sets) of a topological space X is denoted by $\beta CO(X)_{\gamma}$ (resp., $\beta CC(X)_{\gamma}$).

Proposition 4.3 Let γ be an operation on $\beta O(X)$. Then $\beta CO(X)_{\gamma} \subseteq \beta O(X)_{\gamma}$, for any space X.

Proof. Let γ be an operation on $\beta O(X)$ and A be a βc - γ -open set. Then, for any $x \in A$, there exists a βc -open set U such that $x \in U \subseteq \gamma(U) \subseteq A$. Since every βc -open is β -open, U is β -open. Therefore, by Definition 2.16, A is β - γ -open set.

Proposition 4.4 Let γ be an operation on $\beta O(X)$. Then $\beta CO(X)_{\gamma} \subseteq \beta \gamma CO(X)$, for any space X.

Proof. Let A be βc - γ -open set. Then for any $x \in A$, there exists βc -open set U such that $x \in U \subseteq \gamma(U) \subseteq A$. Since U is βc -open, then U is β -open which implies, $A \in \beta O(X)_{\gamma}$. Since U is βc -open and $x \in U$, there exists a closed set F such that $x \in F \subseteq U \subseteq A$. Hence, A is β - γ -c-open set

Proposition 4.5 Let X be T_1 space and γ be an operation on $\beta O(X)$. Then $\beta CO(X)_{\gamma} = \beta \gamma CO(X)$.

Proof. Let X be T_1 space with an operation γ on $\beta O(X)$ and A be a β - γ -c-open set. Then, for any $x \in A$, there is β -open set U such that $x \in U \subseteq \gamma(U) \subseteq A$. Since for each $x \in U$, $x \in \{x\} \subseteq U$ where $\{x\}$ is a closed set in T_1 space. Hence, by Definition 2.1, U is βc -open set. Therefore, by Definition 4.1, A is βc - γ -open set and so, $\beta \gamma CO(X) \subseteq \beta CO(X)_{\gamma}$. On the other hand, by Proposition 4.4, $\beta CO(X)_{\gamma} \subseteq \beta \gamma CO(X)$. Hence, $\beta CO(X)_{\gamma} = \beta \gamma CO(X)$.

Proposition 4.6 Let X be a regular space and γ be an operation on $\beta O(X)$. Then, $\beta CO(X)_{\gamma} = \beta \gamma CO(X)$.

Proof. Let X be a regular space with an operation γ on $\beta O(X)$ and A be a β - γ -c-open set. Then, for any $x \in A$, there is β -open set U such that $x \in U \subseteq \gamma(U) \subseteq A$. Since for each $x \in U$, there exists an open set G such that $x \in G \subseteq Cl(G) \subseteq U$. Hence, by Definition 2.1, U is βc -open set. Therefore, by Definition 4.1, A is βc - γ -open set and so, $\beta \gamma CO(X) \subseteq \beta CO(X)_{\gamma}$. On the other hand, by Proposition 4.4, $\beta CO(X)_{\gamma} \subseteq \beta \gamma CO(X)$. Hence, $\beta CO(X)_{\gamma} = \beta \gamma CO(X)$.

Definition 4.7 Let (X, τ) be a topological space with an operation γ on $\beta O(X)$ and $A \subseteq X$.

1. The union of all $\beta c - \gamma$ -open sets contained in A is called the $\beta c - \gamma$ -interior of A and denoted by $\beta c \gamma$ -Int(A).

2. The intersection of all βc - γ -closed sets containing A is called the βc - γ -closure of A and denoted by $\beta c \gamma$ -Cl(A).

Now, we state the following propositions without proofs.

Proposition 4.8 For subsets A and B of X with an operation γ on $\beta O(X)$. The following statements hold.

- 1. $A \subseteq \beta c \gamma Cl(A)$.
- 2. $\beta c \gamma Cl(\phi) = \phi$ and $\beta c \gamma Cl(X) = X$.
- 3. A is $\beta c \gamma$ -closed if and only if $\beta c \gamma$ -Cl(A) = A.
- 4. If $A \subseteq B$, then $\beta c \gamma Cl(A) \subseteq \beta c \gamma Cl(B)$.
- 5. $\beta c \gamma Cl(A) \cup \beta c \gamma Cl(B) \subseteq \beta c \gamma Cl(A \cup B)$.
- 6. $\beta c \gamma Cl(A \cap B) \subseteq \beta c \gamma Cl(A) \cap \beta c \gamma Cl(B)$.
- 7. $x \in \beta c \gamma$ -Cl(A) if and only if $V \cap A \neq \phi$ for every βc - γ -open set V containing x.

Proposition 4.9 For subsets A and B of X with an operation γ on $\beta O(X)$. The following statements hold.

- 1. $\beta c \gamma \text{-} Int(A) \subseteq A$.
- 2. $\beta c \gamma \operatorname{-Int}(\phi) = \phi$ and $\beta c \gamma \operatorname{-Int}(X) = X$.
- 3. A is $\beta c \gamma$ -open if and only if $\beta c \gamma$ -Int(A) = A.
- 4. If $A \subseteq B$, then $\beta c \gamma Int(A) \subseteq \beta c \gamma Int(B)$.
- 5. $\beta c \gamma Int(A) \cup \beta c \gamma Int(B) \subseteq \beta c \gamma Int(A \cup B)$.
- 6. $\beta c \gamma Int(A \cap B) \subseteq \beta c \gamma Int(A) \cap \beta c \gamma Int(B)$.
- 7. $x \in \beta c \gamma$ -Int(A) if and only if there exists βc - γ -open set V such that $x \in V \subseteq A$.

5 β - γ -Continuous Functions, β - γ -c-Continuous Functions and βc - γ -Continuous Functions

Definition 5.1 Let (X, τ) and (Y, σ) be two topological spaces with an operation γ on $\beta O(X)$. Then $f: (X, \tau) \longrightarrow (Y, \sigma)$ is called,

- 1. β - γ -continuous if for each $x \in X$ and for each open set V of Y containing f(x), there exists a β - γ -open set U of X containing x such that $f(U) \subseteq V$.
- 2. β - γ -c-continuous if for each $x \in X$ and for each open set V of Y containing f(x), there exists a β - γ -c-open set U of X containing x such that $f(U) \subseteq V$.
- 3. βc - γ -continuous if for each $x \in X$ and for each open set V of Y containing f(x), there exists a βc - γ -open set U of X containing x such that $f(U) \subseteq V$.

Corollary 5.2 Let $f:(X,\tau) \longrightarrow (Y,\sigma)$ be a function with an operation γ on $\beta O(X)$. Then,

- 1. f is β - γ -continuous if and only if the inverse image of every open set in Y is a β - γ -open set in X.
- 2. f is β - γ -c-continuous if and only if the inverse image of every open set in Y is a β - γ -c-open set in X.
- 3. f is βc - γ -continuous if and only if the inverse image of every open set in Y is a βc - γ -open set in X.

Corollary 5.3 Let $f:(X,\tau) \longrightarrow (Y,\sigma)$ be a function with an operation γ on $\beta O(X)$. Then,

- 1. Every βc - γ -continuous is β - γ -c-continuous function.
- 2. Every β - γ -c-continuous is β c-continuous function.
- 3. Every β - γ -c-continuous is β - γ -continuous function.
- 4. Every β - γ -continuous is β -continuous function.

Remark 5.4 From Corollary 2.6 and Corollary 5.3, we obtain the following diagram of implications:

$$\beta c$$
- γ -con. $\longrightarrow \beta c$ -con. $\downarrow \qquad \qquad \downarrow$
 γ -con. $\longrightarrow \beta$ - γ -con. $\longrightarrow \beta$ -con.

Where con. = continuous.

In the sequel, we shall show that none of the implications that concerning β - γ -continuity and β - γ -c-continuity is reversible.

Example 5.5 Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Define an operation γ on $\beta O(X)$ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a\} \\ A \cup \{b\} & \text{if } A \neq \{a\} \end{cases}$$

Define a function $f:(X,\tau)\to (Y,\sigma)$ as follows:

$$f(x) = \begin{cases} a & \text{if } x = a \\ a & \text{if } x = b \\ c & \text{if } x = c \end{cases}$$

Then f is β - γ -continuous but not γ -continuous at b because $\{a,b\}$ is open set in (X,σ) containing f(b)=a but there is no γ -open set U in (X,σ) containing b such that $f(U)\subseteq \{a,b\}$.

Example 5.6 Consider $X = \{a, b, c\}$ with the topology $\tau = \sigma = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}\}$. Define an operation γ on $\beta O(X)$ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a, c\} \\ X & \text{if } A \neq \{a, c\} \end{cases}$$

Define a function $f:(X,\tau)\to (Y,\sigma)$ as follows:

$$f(x) = \begin{cases} a & if \ x = a \\ c & if \ x = b \\ b & if \ x = c \end{cases}$$

Then f is β -continuous but not β - γ -continuous at b because $\{a\}$ is open in (X, σ) and $f^{-1}(\{a\}) = \{a\}$ is not β - γ -open in (X, τ) because there is no β -open set U such that $a \in U \subseteq \gamma(U) \subseteq \{a, c\}$.

Example 5.7 Let $X = \{a, b, c\}$ and define the topology $\tau = \sigma = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}\}$. Define an operation γ on $\beta O(X)$ by $\gamma(A) = A$ and define the function $f: (X, \tau) \to (X, \sigma)$ as follows

$$f(x) = \begin{cases} a & \text{if } x = a \\ b & \text{if } x = b \\ c & \text{if } x = c \end{cases}$$

Then, f is β - γ -continuous function but not β - γ -c-continuous function because $\{a\}$ is an open set in (X, σ) and $f^{-1}(\{a\}) = \{a\}$ is not β - γ -c-open in (X, τ) because there is no closed set F such that $a \in F \subseteq \{a\}$.

Example 5.8 Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}\}$ and $Y = \{1, 2, 3, 4\}$ with the topology $\sigma = \{\phi, Y, \{1\}, \{1, 2\}, \{1, 2, 3\}\}$. Define an operation γ on $\beta O(X)$ by

$$\gamma(A) = \begin{cases} A & \text{if } A \neq \{a, c\} \\ X & \text{if } A = \{a, c\} \end{cases}$$

Define a function $f:(X,\tau)\to (Y,\sigma)$ as follows:

$$f(x) = \begin{cases} 1 & \text{if } x = a \\ 3 & \text{if } x = b \\ 1 & \text{if } x = c \end{cases}$$

Then, f is βc -continuous but not β - γ -c-continuous because $\{1\}$ is open in (Y,σ) and $f^{-1}(\{1\}) = \{a,c\}$ is not β - γ -open because there is no β -open set U such that $c \in U \subseteq \gamma(U) \subseteq \{a,c\}$. Hence, $\{a,c\}$ is not β - γ -c-open set in (X,τ) .

Proposition 5.9 A function $f:(X,\tau)\to (Y,\sigma)$ with an operation γ on $\beta O(X)$ is β - γ -continuous if and only if f is β -continuous and for each $x\in X$ and each open set V of Y containing f(x), there exists a β -open set G of X containing x such that $f(\gamma(G))\subseteq V$.

Proof. Let f be β - γ -continuous such that $x \in X$ and V be any open set containing f(x). By hypothesis, there exists a β - γ -open set U of X containing x such that $f(U) \subseteq V$. Since U is a β - γ -open set, then for each $x \in U$, there exists a β -open set G of X such that $x \in G \subseteq \gamma(G) \subseteq U$. Therefore, we have $f(\gamma(G)) \subseteq V$. Also, β - γ -continuous always implies β -continuous. Conversely, let V be any open set of Y. Since f is β -continuous, then $f^{-1}(V)$ is a β -open set in X. Let $x \in f^{-1}(V)$. Then $f(x) \in V$. By hypothesis, there exists a β -open set G of X containing x such that $f(\gamma(G)) \in V$. Which implies that, $x \in \gamma(G) \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is a β - γ -open set in X. Hence, by Corollary 5.2, f is β - γ -continuous.

Proposition 5.10 For a function $f:(X,\tau)\to (Y,\sigma)$ with γ -operation on $\beta O(X)$. The following are equivalent:

- 1. f is γ -continuous.
- 2. f is β - γ -continuous and for each open set V of Y, τ_{γ} -Int $(f^{-1}(V)) = \beta O(X)_{\gamma}$ -Int $(f^{-1}(V))$.

Proof. $(1 \Rightarrow 2)$ Let f be γ -continuous and let V be any open set in Y, then $f^{-1}(V)$ is γ -open in X which implies by Proposition 2.19, $f^{-1}(V)$ is β - γ -open set and so, f is β - γ -continuous. Also, τ_{γ} - $Int(f^{-1}(V)) = f^{-1}(V) = \beta O(X)_{\gamma}$ - $Int(f^{-1}(V))$.

 $(2 \Rightarrow 1)$ let V be any open set of Y. Since f is β - γ -continuous, then $f^{-1}(V)$ is β - γ -open set in X. So $f^{-1}(V) = \beta O(X)_{\gamma}$ - $Int(f^{-1}(V)) = \tau_{\gamma}$ - $Int(f^{-1}(V))$. Thus, $f^{-1}(V)$ is γ -open and hence, f is γ -continuous.

Proposition 5.11 For a function $f:(X,\tau)\to (Y,\sigma)$ with γ -operation on $\beta O(X)$ and for each open set V of Y, $Int(f^{-1}(V))=\beta O(X)_{\gamma}$ - $Int(f^{-1}(V))$. The following are equivalent:

- 1. f is continuous.
- 2. f is β - γ -continuous.

Proof. $(1 \Rightarrow 2)$ Let V be any open set in Y. Since f is continuous, $f^{-1}(V)$ is open in X. Hence, $f^{-1}(V) = Int(f^{-1}(V)) = \beta O(X)_{\gamma} - Int(f^{-1}(V)) \in \beta O(X)_{\gamma}$. Therefore, f is β - γ -continuous.

 $(2 \Rightarrow 1)$ Let V be any open set in Y. $f^{-1}(V)$ is a β - γ -open set in X. So $f^{-1}(V) = \beta O(X)_{\gamma}$ - $Int(f^{-1}(V)) = Int(f^{-1}(V))$. Hence, $f^{-1}(V)$ is open in X. Therefore, f is continuous.

Now, we state the following two propositions without proofs.

Proposition 5.12 Let γ be an operation on $\beta O(X)$. The following are equivalent for a function $f:(X,\tau)\to (Y,\sigma)$.

- 1. f is β - γ -c-continuous.
- 2. The inverse image of every closed set in Y is β - γ -c-closed set in X.
- 3. $f(\beta \gamma c\text{-}Cl(A)) \subseteq Cl(f(A))$, for every subset A of X.
- 4. $\beta \gamma c \text{-}Cl(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$, for every subset B of Y.

Proposition 5.13 Let γ be an operation on $\beta O(X)$. The following are equivalent for a function $f:(X,\tau)\to (Y,\sigma)$.

- 1. f is βc - γ -continuous.
- 2. The inverse image of every closed set in Y is $\beta c \gamma$ -closed set in X.
- 3. $f(\beta c \gamma Cl(A)) \subseteq Cl(f(A))$, for every subset A of X.
- 4. $\beta c \gamma Cl(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$, for every subset B of Y.

Proposition 5.14 Let γ be an operation on $\beta O(X)$ and (X, τ) is a T_1 space. The following functions $f: (X, \tau) \to (Y, \sigma)$ are equivalent.

- 1. f is β - γ -c-continuous.
- 2. f is βc - γ -continuous.
- 3. f is β - γ -continuous.

Proof. Directly, by Proposition 3.14, Proposition 4.5.

Acknowledgement: The author would like to thank the referees for their critical comments, suggestions and corrections towards the development of the paper.

References

- [1] A. El-Mabhouh and A. Mizyed, On the topology generated by βc -open sets, International J. of Math. Sci and Engg. Appls, 9(1) (2015), 223-232.
- [2] A. Mizyed, Continuity and separation axioms based on βc -open sets, M. Sc. Thesis, Collage of Science, Islamic University of Gaza, (2015).
- [3] C.K. Basu, B.M.U. Afsan and M.K. Ghosh, A class of functions and separation axioms with respect to an operation, *Hacettepe Journal of Mathimatecs and Statistics*, 38(2) (2009), 103-118.
- [4] G.S.S. Krishnan, A new class of semi open sets in a topological space, *Proc. NCMCM*, Allied Publishers, New Delhi, (2003), 305-311.
- [5] H. Ogata, Operation on topological spaces and assocaited topology, *Math. Japonico*, 36(1) (1991), 175-184.
- [6] M.E.A. El-Monsef, S.N El-Deeb and R.A. Mahmoud, On β -open sets and β -continuous mapping, Bull. Fac. Sci. Assiut Univ, 12(1) (1983), 77-90.
- [7] S. Tahiliani, Operation approach to β -open sets and applications, *Mathimatical Communications*, 16(2011), 577-591.