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Abstract

Given a non-square positive integer n, we want to find two integers x and
y such that x2 − ny2 = ±1. We present an elementary method to do this
and we make the well-known link with the continued fraction of

√
n with a

new pedagogical point of view. Finally we give a generalization to deal with
equations mx2 − ny2 = ±1 when m and n are positive integers whose product
is not a perfect square.
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1 Introduction

The equations x2 − ny2 = ±1 (where n is a non-square positive integer) have
been studied by several Indian mathematicians. From a solution (x; y) of
an equation x2 − ny2 = ε with ε ∈ {±1,±2,±4}, Brahmagupta (598−668)
could find a solution (x′; y′) with x′ > x for the case ε = 1 and could deduce
infinitely many solutions for this case. Later, Bhāskara II (1114−1185) de-
veloped a cyclic algorithm (called chakravala method) to produce a solution
of an equation x2 − ny2 = 1. The topic interessed the European mathemati-
cians (ignorant of the Indians’ work) after a challenge given in 1657 by Pierre
de Fermat (1601−1665). William Brouncker (1620−1684) found an empirical
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method related to the continued fractions

[a0; a1, . . . , an] = a0 +
1

a1 +
1

. . . 1

an−1 +
1

an

John Wallis (1616−1703) published and completed the work of Brouncker.
Leonhard Euler (1707−1783) named the equation after John Pell by mis-
take, studied the infinite continued fractions and proved that a finally periodic
continued fraction describes an irrational quadratic. Joseph-Louis Lagrange
(1736−1813) proved the reciprocal : every irrational zero of a quadratic poly-
nomial has a finally periodic continued fraction [a0; a1, . . . , am, am+1, . . . , an].
He published a rigorous version of the continued fractions approach to solve
an equation x2 − ny2 = 1 and proved the infinity of solutions (x; y) for every
n. Evariste Galois (1811−1832) described the irrational quadratics whose con-
tinued fractions are purely periodic (m = 0 in the above continued fraction)
and Adrien-Marie Legendre (1752−1833) found the continued fraction of

√
n

for a non-square integer n > 1. The solutions of a Pell equation depend on
this expansion. In fact, the relation x2−ny2 = ±1 (where x and y are positive
integers) implies that

∣∣√n− x
y

∣∣ < 1
2y2

and this inequality allows to say that x/y

has a (finite) continued fraction which coincides with the beginning of that of√
n.

2 Algorithm

Given a non-square integer n, we consider the following algorithm :

Initialization :
ai−1 bi−1 ci−1
ai bi ci

=
0 1 n
1 0 1

for i = 0.

Iteration :
w�

qiai + ai−1 qibi + bi−1 ci+1 with qi =

⌊√
n− ci−1ci +

√
n

ci

⌋
and ci+1 = 2qi

√
n− ci−1ci + ci−1 − q2i ci.

In this paper, we first prove the theorem of Legendre :

Theorem 1. There exists an index m such that qm = 2q0. Then we have the
periodic continued fraction

√
n = [q0; q1, q2, . . .] = [q0; q1, . . . , qm] = [q0; q1, . . . , q1︸ ︷︷ ︸

palindrome

, 2q0].
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Then we make the link with Pell’s equations x2 − ny2 = ±1 :

Theorem 2. For each i > 0, we have the relation a2i − nb2i = (−1)ici and
the continued fraction ai+1

bi+1
= [q0; q1, . . . , qi].

Example : Let us consider n = 23

i ai bi ci qi

−1 0 1 23

0 1 0 1 q0 = b(0 +
√

23)/1c = 4

1 4 1 7 q1 = b(4 +
√

23)/7c = 1

2 5 1 2 q2 = b(3 +
√

23)/2c = 3

3 19 4 7 q3 = b(3 +
√

23)/7c = 1

4 24 5 1 q4 = b(4 +
√

23)/1c = 8
...

...
...

...
...

Initialization

{

The continued fraction of
√

23 is [4; 1, 3, 1, 8] and the equation x2 − 23y2 = 1
has the solution x = 24, y = 5.

Shortcuts. To solve an equation x2−ny2 = 1, we can stop the algorithm as
soon as ci divides 2ai : the relation a2i − nb2i = (−1)ici implies that

(a2i − nb2i )2 = (a2i + nb2i )
2 − n(2aibi)

2 = (2a2i + (−1)i+1ci)
2 − n(2aibi)

2

is eqal to c2i , hence we get the solution x =
2a2i
ci

+ (−1)i+1 and y =
2aibi
ci

. The

condition is automatic for ci ∈ {1, 2} and for ci = 4 if ai is even. The case where
ai is odd (and ci = 4) can also be solved : the numbers α = 1

2
ai(a

2
i − 3(−1)i)

and β = 1
2
bi(a

2
i − (−1)i) are integers and we can check that α2− nβ2 = (−1)i,

getting a previous case.

3 Relevance

At first, we have to show that the algorithm is well-defined.

Proposition 1. The numbers ci−1, ci, qi are strictly positive integers and√
n− ci−1ci is also an integer (i.e. n− ci−1ci is a perfect square).
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Proof. The assertion is true for i = 0. Proceeding by induction, let us
suppose that it is true for an index i and let us prove its validity for the index
i+ 1.

•
√
n− cici+1 is an integer : The equation cix

2−2
√
n− ci−1cix+ci+1−ci−1 = 0

has integral coefficients and admits a solution (x = qi). Then its discriminant
∆ = 4(n− cici+1) is non-negative and the number

√
n− cici+1 is well-defined.

We can check that

|ciqi −
√
n− ci−1ci| =

√
n− cici+1

because both members of the equality have the same square (independently of
the definition of the numbers qi). We deduce that

√
n− cici+1 is an integer.

• ci+1 is a positive integer : The obvious relation 0 <

√
n− ci−1ci +

√
n

ci
−qi < 1

can be written in the form

−
√
n <
√
n− ci−1ci − ciqi︸ ︷︷ ︸
±√n−cici+1

< ci −
√
n (∗)

because ci > 0. As qi > 1 and cici−1 > 0, we have ci <
√
n− ci−1ci +

√
n <

2
√
n. Hence ci −

√
n <

√
n and the relation (∗) implies

√
n− cici+1 <

√
n.

We deduce that cici+1 > 0 and thus the number ci+1 is a positive integer.

• qi+1 is a positive integer : The map x 7−→ x2 − cix − n is decreasing on
the interval ]−∞; 1

2
ci]. We can apply it to (∗) by inversing the inequalities

(because ci −
√
n < ci − 1

2
ci = 1

2
ci). We get

ci
√
n > −cici+1 + c2i qi − ci

√
n− ci−1ci > −ci

√
n,

that is |ci+1 +
√
n− ci−1ci − ciqi| <

√
n. Using the triangular inequality, we

deduce

|ci+1| 6 |ci+1 +
√
n− ci−1ci − ciqi|︸ ︷︷ ︸

<
√
n

+ |ciqi −
√
n− ci−1ci|︸ ︷︷ ︸

=
√
n−cici+1

.

We have ci+1 <
√
n+
√
n− cici+1, hence the obviously integer qi+1 is > 1. �

We have seen that the integers ciqi−
√
n− ci−1ci and

√
n− cici+1 are equal or

opposite. We can now show that they are really the same :

- If ci >
√
n, then ciqi −

√
n− cici+1 >

√
n−
√
n− cici+1 > 0.

- If ci <
√
n, then (∗) shows that ciqi −

√
n− ci−1ci >

√
n− ci > 0.
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4 Continued Fraction of
√
n

Theorem 1. There exists an index m such that qm = 2q0. Then the sequence
(qi)i>1 is m-periodic and we have the periodic continued fraction

√
n = [q0; q1, q2, . . .] = [q0; q1, . . . , qm] = [q0; q1, . . . , q1︸ ︷︷ ︸

palindrome

, 2q0]

Proof. Let us consider the positive real numbers θi =

√
n− ci−1ci +

√
n

ci
present in the definition of qi. As

√
n− ci−1ci = ciqi −

√
n− cici+1, we have

θi =
ciqi −

√
n− cici+1 +

√
n

ci
= qi +

√
n−
√
n− cici+1

ci

and amplifying the last fraction by
√
n+
√
n− cici+1, we get

θi = qi +
cici+1

ci(
√
n+
√
n− cici+1)

= qi +
ci+1√

n+
√
n− cici+1

= qi +
1

θi+1

As all qi’s are strictly positive integers, we then have θi = [qi; qi+1, qi+2, . . .].

In the same way, the numbers θ′i =

√
n− ci−1ci +

√
n

ci−1
satisfy

θ′i+1 =

√
n− cici+1 +

√
n

ci
= qi +

√
n−
√
n− ci−1ci
ci

= qi +
1

θ′i

hence θ′i+1 = [qi, qi−1, . . . , q0, θ
′
0] with θ′0 =

√
n. We can also deduce that

qi = bθ′i+1c.

• Periodicity : As the sequence (ci)i>0 of integers is bounded, we can find
two indices m > i > 0 with i minimal, such that cm = ci and cm+1 = ci+1.
Then we have θ′m+1 = θ′i+1, qm = bθ′m+1c = bθ′i+1c = qi and cm−1 = q2mcm −
2qm
√
n− cmcm+1 + cm+1 coincides with ci−1. To respect the minimality of i,

we deduce that i = 0, cm = c0 = 1 and cm+1 = c1 = n− q20. We also have the
continued fraction

θm+1 = θ1 = [q1, q2 . . . , qm, θm+1] = [q1, q2, . . . , qm].

• Palindromy : Let us remark that θ1 =

√
n+ q0
n− q20

=
1√

n− q0
=

1

θ′1 − 2q0
.

With the above continued fraction, we have

θ′1 − 2q0 = [0, q1, q2, . . . , qm], θ′1 = [2q0, q1, q2, . . . , qm].

Comparing with θ′1 = θ′m+1 = [qm, qm−1, . . . , q1, θ
′
1] = [qm, qm−1, . . . , q1], we get

qm = 2q0, qm−1 = q1, qm−2 = q2, and so on. �
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5 The Pell Equation

Theorem 3. For each index i > 0, we have the relation a2i − nb2i = (−1)ici
and the continued fraction ai+1

bi+1
= [q0; q1, . . . , qi].

Proof. With the relations ai+1 = qiai + ai−1 and θi+1 = 1/(θi − qi), we get

ai+1θi+1 + ai = θi+1(qiai + ai−1 + ai(θi − qi)) = θi+1(aiθi + ai−1)

and a similar relation is valid for the bi’s. By iteration and using the initial
values a0θ0 + a−1 = θ0 =

√
n, resp. b0θ0 + b−1 = 1, we can write

ai+1θi+1 + ai = θi+1θi · · · θ2θ1
√
n and bi+1θi+1 + bi = θi+1θi · · · θ2θ1

We deduce that aiθi + ai−1 = (biθi + bi−1)
√
n. Let us explicit θi and multiply

this last relation by ci :

ai
√
n− ci−1ci + ai

√
n+ ciai−1 = (bi

√
n− ci−1ci + cibi−1)

√
n+ bin.

Let us now compare the integer parts and the irrational parts :{
ai = bi

√
n− ci−1ci + cibi−1

nbi = ai
√
n− ci−1ci + ciai−1

Multiplying the first equation by ai, the second one by bi and substracting the
obtained relations, we get a2i − nb2i = ci(aibi−1 − ai−1bi). The first part of the
theorem is then proved if we remark that

ai+1bi − aibi+1 = (qiai + ai−1)bi − ai(qibi + bi−1) = ai−1bi − aibi−1
= −(aibi−1 − ai−1bi) = . . . = (−1)i+1(a0b−1 − a−1b0) = (−1)i+1.

We can also find this relation by considering the determinant in the matrix
relation(

ai+1 ai
bi+1 bi

)
=
(
ai ai−1
bi bi−1

)(
qi 1
1 0

)
= · · · =

(
a0 a−1
b0 b−1

)
︸ ︷︷ ︸
Identity matrix

(
q0 1
1 0

)
· · ·
(
qi 1
1 0

)
.

Given a matrix M =
(
a b
c d

)
and a number x, we define M ∗ x =

ax+ b

cx+ d
. We

have for example
(
q 1
1 0

)
∗ x = q +

1

x
and we can check that M1 ∗ (M2 ∗ x) =

M1M2 ∗ x. Let us apply the map M 7−→M ∗ x to the above matrix relation :

ai+1x+ ai
bi+1x+ bi

= [q0; q1, . . . , qi, x].

If we take the limit as x tends to infinity, we get ai+1

bi+1
= [q0; q1, . . . , qi] and the

proof is complete. �
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Corollary. Let m be the period of the continued fraction of
√
n as defined in

theorem 1. We then have ckm = c0 = 1 and a2km − nb2km = (−1)km for every
integer k > 0. Hence, the Pell equation x2− ny2 = −1 can be solved only if m
is odd (by considering odd values of k) whereas the equation x2 − ny2 = 1 can
always be solved (by choosing even values of k if m is odd).

Remark. The number θi = [qi; qi+1, qi+2, . . .] is called the i-th complete quo-
tient of

√
n = [q0; q1, q2, . . .]. The expression θi = (Pi +

√
n)/Qi for some

integers Pi and Qi is well-known and this paper gives a more precise connec-
tion between Pi and Qi.

6 The Generalized Pell Equation

1. We consider a quadratic irrational θ0 =
γ +
√
β

α
with positive integers α, β

and γ. With the previous notations, the number θ0 is obtained with n = βα2,
c−1 = β − γ2 and c0 = α2. If c−1 > 0 and θ0 > 1, then the previous results
about the continued fractions are all valid because the inductive proof of the
proposition is well-initialized. We get the continued fraction of θ0 (instead of√
n) and we can check that the Pell relation becomes

(αai − γbi)2 − βb2i = (−1)ici.

Replacing β with γ2+βα > 0 leads to the relation αa2i−2γaibi−βb2i = (−1)i
ci
α

.

2. In the same way, the continued fraction of a number θ0 =
√
α/β with

α > β > 1 can be found with n = αβ, c−1 = α and c0 = β. If n is a non-
square integer, the previous results about the continued fractions (of θ0 instead
of
√
n) are all valid and the Pell relation becomes

βa2i − αb2i = (−1)ici.

Example. Can we find two integers x and y such that 11x2 − 7y2 = 1 ?

If we consider the equation 11X − 7Y = 1, the usual extended euclidean
algorithm (connected with the continued fraction of 11/7) gives the general
solution X = 2 + 7k and Y = 3 + 11k with k ∈ Z but it is not easy to find
some values of k for which X and Y are both perfect squares. So we use the
continued fraction of θ0 =

√
11/7 =

√
77/7. We consider n = 77, c−1 = 11

and c0 = 7 in the algorithm :
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i ai bi ci qi

−1 0 1 11

0 1 0 7 1

1 1 1 4 3

2 4 3 13 1

3 5 4 1 16

4 84 67 13 1

i ai bi ci qi

5 89 71 4 3

6 351 280 7 2

7 791 631 4 3

8 2724 2173 13 1

9 3515 2804 1 16
...

...
...

...
...

We get the continued fraction
√

11/7 = [1; 3, 1, 16, 1, 3, 2] and the considered
equation has the solutions (4; 5) and (2804; 3515) corresponding to the values
k = 2 and k = 1′123′202. There is no other solution for k < 1′123′202 and the
next one is (1968404; 2467525), corresponding to k = 553′516′329′602.
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