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Abstract

Given a non-square positive integer n, we want to find two integers r and
y such that x> — ny?> = £1. We present an elementary method to do this
and we make the well-known link with the continued fraction of \/n with a
new pedagogical point of view. Finally we give a generalization to deal with
equations mx? — ny?> = +£1 when m and n are positive integers whose product
18 not a perfect square.
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1 Introduction

The equations x? — ny? = +1 (where n is a non-square positive integer) have
been studied by several Indian mathematicians. From a solution (z;y) of
an equation z? — ny? = ¢ with ¢ € {£1,£2, +4}, Brahmagupta (598—668)
could find a solution (z’;y') with 2’ > x for the case ¢ = 1 and could deduce
infinitely many solutions for this case. Later, Bhaskara II (1114—1185) de-
veloped a cyclic algorithm (called chakravala method) to produce a solution
of an equation 22 — ny? = 1. The topic interessed the European mathemati-
cians (ignorant of the Indians’ work) after a challenge given in 1657 by Pierre
de Fermat (1601—1665). William Brouncker (1620—1684) found an empirical
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method related to the continued fractions

lag;ay,...,a,] = ag+ T
a; +

1

Ap—1 + —

a/TL
John Wallis (1616—1703) published and completed the work of Brouncker.
Leonhard Euler (1707—1783) named the equation after John Pell by mis-
take, studied the infinite continued fractions and proved that a finally periodic
continued fraction describes an irrational quadratic. Joseph-Louis Lagrange
(1736—1813) proved the reciprocal : every irrational zero of a quadratic poly-
nomial has a finally periodic continued fraction [ag; a1, ..., Gm, Gmit, -+ Gn)-
He published a rigorous version of the continued fractions approach to solve
an equation z? — ny? = 1 and proved the infinity of solutions (z;y) for every
n. Evariste Galois (1811—1832) described the irrational quadratics whose con-
tinued fractions are purely periodic (m = 0 in the above continued fraction)
and Adrien-Marie Legendre (1752—1833) found the continued fraction of v/n
for a non-square integer n > 1. The solutions of a Pell equation depend on
this expansion. In fact, the relation 22 —ny? = 41 (where x and y are positive
integers) implies that ‘\/ﬁ — §| < ﬁ and this inequality allows to say that x/y
has a (finite) continued fraction which coincides with the beginning of that of

ND

2 Algorithm

Given a non-square integer n, we consider the following algorithm :

e 1. . . ;1 bifl Ci—1 - 0 1 n .
Initialization : a, b, . =11 0 1 for i =0.

Iteration : ﬂ

: N — Ci—1C; + /T
’ ¢iai + ai— qibi + b4 Cit1 ‘ with ¢; = \/701 \/_J
and ;i1 = 2;y/n = GG + i1 — gic

In this paper, we first prove the theorem of Legendre :

Theorem 1. There exists an index m such that q,, = 2qo. Then we have the
periodic continued fraction

Vn=1[q;¢, 0, -] = 00T, - Gm) = [q0: @15 - - - » 01, 20
——

palindrome
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Then we make the link with Pell’s equations 22 — ny? = £1 :

Theorem 2. For each i > 0, we have the relation a? — nb? = (—1)'¢; and

2 _
the continued fraction ¥ = [qo; q1,- - -, .

bit1

Example : Let us consider n = 23

) a; b ¢ i
Initialization{ el

0 0 1 | q=L[0+v23)/1]=4

L4 1 7 q=[A+v23)/1]=1

2 12 g=[B+v23)/2]=3

3019 4 7 ¢=[B+v23)/7]=1

4124 5 1 g1 = (4 +V23)/1] =8

The continued fraction of v/23 is [4;1,3, 1, 8] and the equation 2% — 23y? = 1
has the solution x = 24, y = 5.

Shortcuts. To solve an equation 22 —ny? = 1, we can stop the algorithm as

soon as ¢; divides 2a; : the relation a? — nb? = (—1)c; implies that

(a? —nb?)? = (a? + nb?)* — n(2a;b;)* = (2a3 + (—1)"¢)? — n(2ab;)?

5 J—

2a? 2a;b;

is eqal to ¢7, hence we get the solution x = — 4 (—1)"! and y = . The
C.

condition is automatic for ¢; € {1, 2} and for cilz 4if a; is even. The caée where
a; is odd (and ¢; = 4) can also be solved : the numbers @ = 1a;(a? — 3(—1)")
and 3 = 1b;(a? — (—1)") are integers and we can check that o —nf? = (—1),
getting a previous case.

3 Relevance
At first, we have to show that the algorithm is well-defined.

Proposition 1. The numbers c;_1, ¢;, q; are strictly positive integers and
V= ¢i_1¢; is also an integer (i.e. n — ¢;_1¢; is a perfect square).
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Proof. The assertion is true for ¢ = 0. Proceeding by induction, let us
suppose that it is true for an index ¢ and let us prove its validity for the index
v+ 1.

e /1 — ¢;Ci1 18 an integer: The equation ¢;x? —2/n — ¢;_1¢G;x+cip1—ciog =0
has integral coefficients and admits a solution (z = ¢;). Then its discriminant
A = 4(n — ¢;¢;11) is non-negative and the number \/n — ¢;¢; 41 is well-defined.
We can check that

’CiQi - \/” - Ci—lci| = \/n — CiCiy1

because both members of the equality have the same square (independently of
the definition of the numbers ¢;). We deduce that \/n — ¢;c; 41 is an integer.

/N — Ci_1¢; + \/ﬁ
G

® c;1 is a positive integer: The obvious relation 0 < —q; <1

can be written in the form

—\/ﬁ < \\/ﬂ — Ci—1C; — Ciq; < C; — \/ﬁ (*)

+/n—cicit1

because ¢; > 0. As ¢; = 1 and ¢;c;_1 > 0, we have ¢; < /n— ¢;_1¢; + /n <
2y/n. Hence ¢; — y/n < /n and the relation (x) implies \/n — ¢;ciy1 < /1.

We deduce that c;c;1 1 > 0 and thus the number ¢;,; is a positive integer.
® gii1 is a positive integer : The map x — 22 — ¢;x — n is decreasing on

the interval |—oo; %CZ] We can apply it to (%) by inversing the inequalities

because ¢; — /n < ¢; — 2e; = L¢;). We get
2 2
2
civ/n > —cicip1 + € Qi — cin/n — ¢i_1¢; > —cin/n,

that is |11 + /1 — ¢i_16; — ¢iqi| < +/n. Using the triangular inequality, we
deduce

lcita] < |Cip1 + /N — cimaci — Cin'/H‘ lciqi — v/ — Ciflcil-
<\/n =y/n—ciCit1
We have ¢;,1 < \/n++/n — ¢;¢i,1, hence the obviously integer ¢;1is > 1. O

We have seen that the integers c;q; —/n — ¢;_1¢; and /n — ¢;c;11 are equal or
opposite. We can now show that they are really the same :

- If ¢; > \/n, then ¢;q; — /n — ¢icit1 > /n — /n — ¢;icip1 > 0.

- If ¢; < \/n, then (x) shows that ¢;q; — /n — ¢;_1¢; > /n —¢; > 0.
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4 Continued Fraction of /n

Theorem 1. There exists an index m such that q,, = 2qo. Then the sequence
(gi)i=1 is m-periodic and we have the periodic continued fraction

V= q0;q1,92, -] = [90; Q15 - > Gm) = [q0;G1, - - - » q1, 20
—_——

palindrome

. /N — Ci_1¢; + \/ﬁ

Proof. Let us consider the positive real numbers 6; =
Ci
present in the definition of ¢;. As /n —¢;_1¢; = ¢;q; — /1 — ¢i¢i11, we have
g, — Ci%i = VN = CiCin +vn G+ Vo — /= ¢ici
7T - 7

CZ CZ
and amplifying the last fraction by \/n + y/n — ¢;cis1, we get
CiCit1 Ci+1

0 =q+ = i+ —
C;

g + =q
(Vn+yn—=cici1) N+ yn—ccin 0i 1
As all ¢;’s are strictly positive integers, we then have 0; = [¢;; ¢i11, Giv2, - - --

VA= GG+ /n
1

Ci—

In the same way, the numbers 6 = satisfy

\/n—cici+1+\/ﬁ_q.+\/ﬁ—\/n—ci_lci_q‘_i_l
& o G - ‘%

/
0i+1 -

hence 0, = [gi,¢i—1,- .-, q, 00 with 6) = /n. We can also deduce that
¢ = |0i1]-

e Periodicity : As the sequence (¢;);>o of integers is bounded, we can find
two indices m > ¢ > 0 with ¢ minimal, such that ¢,, = ¢; and ¢;,11 = ¢11.
Then we have 0, = 0,1, ¢n = [0, 1] = |0/,1] = ¢; and ¢y = ¢m —
24/ — CmCmt1 + Cmy1 coincides with ¢;—1. To respect the minimality of i,
we deduce that ¢t =0, ¢, =co=1and ¢,y =1 =n — q%. We also have the

continued fraction

9m+1 = 91 = [Q1>Q2 cee 7qm79m+1] = [q17Q27' .- 7Qm]-

1 1
e Palindromy : Let us remark that 6, = vn+t 62]0 = = — .
n—{qp V= qo 01 — 2qo

With the above continued fraction, we have

0/1 - 2([0 = [07q17q27 s 7qm]7 61 = [QQO7QI7QQ7 cee 7Qm]

Comparing with 6; = 0. .| = [¢m, Gm-1,-- - @1, 01 = (@G> Gm—1,-- -, @1, We get
Gm = 240, Gm-1 = q1, Gm-2 = ¢2, and so on. [
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5 The Pell Equation

i

Theorem 3. For each index i > 0, we have the relation a? — nb? = (—1)'c;
and the continued fraction Z?—E =lq0;q1,---,q)-

Proof. With the relations a;11 = ¢;a; + a;—1 and 0,41 = 1/(6; — q;), we get
ai10iv1 + a; = 01 (qia; + ai—1 + ai(0; — ¢;)) = 0i41(aib; + a;—1)

and a similar relation is valid for the b;’s. By iteration and using the initial
values agfy + a_1 = 0y = \/n, resp. byfy + b_; = 1, we can write

ais1bit1 +a; = 010; -+ 0:01/n and  bi1bip1 + by = 0i10; - - 620,
We deduce that a;0; + a;_1 = (b;0; + b;_1)+/n. Let us explicit §; and multiply

this last relation by ¢; :

aiv/m = 16+ ai/n + ciai_1 = (biy/n— G216 + ¢ibi_i)v/n + bin.

Let us now compare the integer parts and the irrational parts :

a; = bin/m — ¢i_1¢; + cibiy

nb; = aj\/n — ¢i_1¢; + cia;—
Multiplying the first equation by a;, the second one by b; and substracting the
obtained relations, we get a? — nb? = ¢;(a;b;_1 — a;_1b;). The first part of the
theorem is then proved if we remark that

aiv1bi — aibiy1 = (qia; + a;i1)bi — a;(qib; + bi—l) = a;1b; — a;bi4 ‘
= —(aibi,1 — Cliflbi) = ... = (-1)14_1(@0[),1 — a,,lbo) = (—1)Z+1.

We can also find this relation by considering the determinant in the matrix
relation

<Qi+1 ai)_(% ai71>(%’ 1)_.___<a0 aA)((IO 1).__(%’ 1)
bi+1 b; B b; b;_1 1 0/ o bo b_q 1 0 1 0/°
—_——

Identity matrix

ar +b
cr +d

Given a matrix M = ( Z Z > and a number x, we define M xx = We

q 1
10
MMy x z. Let us apply the map M —— M * x to the above matrix relation :

1
have for example ( ) * x = ¢+ — and we can check that M x (My % x) =
x

Ai1T + Q; [ ]
—— = q0; G1, - - -, Gi> T|.
b + by do; 41 q
If we take the limit as = tends to infinity, we get Zl—i = [q0; q1, - - -, q] and the

proof is complete. [
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Corollary. Let m be the period of the continued fraction of \/n as defined in
theorem 1. We then have Cpy = co = 1 and a3, — nb2, = (—=1)k™ for every
integer k > 0. Hence, the Pell equation x® —ny* = —1 can be solved only if m
is odd (by considering odd values of k) whereas the equation x> —ny? =1 can
always be solved (by choosing even values of k if m is odd).

Remark. The number 0; = [¢;; Git1, Giv2, - - -] s called the i-th complete quo-
tient of \/n = [qo; q1, 2, --.]. The expression 0; = (P, + \/n)/Q; for some
integers P; and Q; is well-known and this paper gives a more precise connec-
tion between P; and @);.

6 The Generalized Pell Equation
T+ VB

o
and . With the previous notations, the number 6, is obtained with n = a2,

c.i=83—~*and ¢y = a®. If c.; > 0 and 6 > 1, then the previous results
about the continued fractions are all valid because the inductive proof of the
proposition is well-initialized. We get the continued fraction of €, (instead of
v/n) and we can check that the Pell relation becomes

1. We consider a quadratic irrational 6y = with positive integers «,

(a; — yb;)* — Bb? = (—=1)'c;.

Replacing 3 with 72+ fa > 0 leads to the relation aa? —2va;b; — b7 = (—1)ig.
oY

2. In the same way, the continued fraction of a number 6y = /«a/f with
a > [ > 1 can be found with n = af8, c.; = a and ¢y = . If n is a non-
square integer, the previous results about the continued fractions (of 6y instead
of /n) are all valid and the Pell relation becomes

pa? — ab? = (—1)c;.

3 —

Example. Can we find two integers x and y such that 11z* — 7y> =1 7

If we consider the equation 11X — 7Y = 1, the usual extended euclidean
algorithm (connected with the continued fraction of 11/7) gives the general
solution X = 24 7k and Y = 3 + 11k with £ € Z but it is not easy to find
some values of k£ for which X and Y are both perfect squares. So we use the
continued fraction of 0y = /11/7 = ﬁ/? We consider n = 77, c_; = 11
and ¢y = 7 in the algorithm :
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i a b g qi i oa; bi ¢ qi
-1/ 0 1 11 508 71 4 3
01 0 1 6 | 351 280

11 1 4 3 71791 631 4 3
2 4 3 13 1 8 [2724 2173 13
315 4 16 9 | 3515 2804 16
418 67 13 1 : S :

We get the continued fraction y/11/7 = [1;3,1,16, 1, 3,2] and the considered
equation has the solutions (4;5) and (2804;3515) corresponding to the values
k =2 and k = 1'123'202. There is no other solution for & < 1'123'202 and the
next one is (1968404; 2467525), corresponding to k = 553'516'329'602.
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