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Abstract

In this paper, we prove analogues of some inverse theorems of Stechkin |
for the Jacobi harmonic analysis, using the function with bounded spectrum.

Keywords: Generalized continuity modulus, Function with bounded spec-
trum, Best approrimation.

1 Introduction

Yet by the year 1912, S. Bernstein obtained the estimate inverse to Jakson’s
inequality in the space of continuous functions for some special cases [2], later
S.B.Stechkin [4], M.Timan [7], etc, proved such inverse estimation , including
the case of the space L, 1 < p < o0.

In this paper, we obtain the estimate inverse to Jakson’s inequality in the space
L*(RT, J“P(z)dx) (see [1], theorem 4.2) ;where the modulus of smoothness is
constructed on the basis of the Jacobi generalized translation.
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2 The Jacobi Transform and its Basic Proper-
ties
Letaz%l,a>/32_71,p:a+ﬁ+1andlet

2

d
L:= pro ((2a + 1) cothz + (28 + 1) tanhx)%.

be the Jacobi differential operator and denote by gof\a’ﬂ ) () (A,xz € RY) the

Jacobi function of order (o, ), the function gog\a’ﬁ ) (x) satisfier the differential

equation
Lo + (N +p*)¢ =0,
with the initial conditions ¢(0) = 1 and ¢ (0) = 0
Lemma 2.1 The following inequalities are valid for Jacobi functions gpf\a’ﬂ)(x)
@) | @) | <1
b) 1= (z) < 2*(N° + p?).
c¢) There exists a positive constant ¢ such that if \x > 1 | then

1-— gpg\a’ﬁ)(x) > .

Proof: Analogue (see[l], lemmas 3.1-3.2-3.3)

Consider the Hilbert space L7, 5 (R) = L*(R*, J*P(z)dx) with the norm

£l = ( / @ J“%dw)é |

where
JP(x) = (2sinh x)?*™(2 cosh z)?7 1.

The Jacobi transform of a function f € L%aﬁ) (R*) is defined by
+oo

I = 0 F@) o\ () J* (2)dx.

The inversion formula is

+o0
f(z) = / I NS (@) du(N).

where du(X) := 5= | C(A) |72 dA and the C-function C'()) is defined by

C\) =

2°T (A (3 (1 +iN))
C(5(p+iX)(5(p+iA) = B)
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The Plancherel formula for Jacobi transform (see [8]) is written as

£ 2 e @yany= 1377 ()l 2@t auon- (1)

We note the important property of the Bessel transform
IULHA) = =N+ o) T (FHN). (2)
The generalized translation operator was defined by Flented-Jensen and Koorn-
winder [6] given by
+00
T"f(x) = F(2)K (x, b, 2) %P (2)dz.
0

where the kernel K is explicitly known (see [8]).

In[3], we have

FPT N = o (R)IVP ()N, b > 0. (3)
In [6], we have
17" fll2 < 11l (4)

A function f € L%{L g (R) is called a function with bounded spectrum of order

v > 0if 3%°(f)(A) = 0 for A > v. The set of all such functions is denoted by
Z,.

Lemma 2.2 For every function f € Z,, v > 1 and any number m € N we
have

IL™ fll2 < cot®™| f|2-

where ¢y = (1 + p*)™ is a constant.

Proof: (see corollary 1.6 in [1])
The finite differences of the first and higher orders are defined as follows:

Apf(z) =T"f(2) = f(z) = (T" — 1) f(2).

where I is the identity operator in L7, 4 (R*), and

Ajf(x) = Ap(AF (@) = (T" = I)* f(x).

The generalized continuity modulus of order £ in L%m 5 (RT) is defined as fol-
lows

wi(f,0) := sup ||AFf|l2,6 >0, f € L%a,ﬂ)(]RJr).
0<h<d
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The best approximation of a function L%a ) (R™) by functions in Z, is the
quantity
E,(f)2 = Inf |[f = gll>-

Let W .8) be the Sobolev space of order m € N* constructed from the differ-
ential operator L, that is,

Wilas =1f € L?aﬁ)(R+) Lfe L%aﬁ)(]R*),j =1,2,..,m}.

where L7 f = L(L77'f), and L°f = f.

3 Main Results

In this section we give the main results of this paper

Lemma 3.1 The modulus of smoothness wg(f,t)2 has the following prop-
erties.

Z) wk(f+gat)2 S Wk(f, t)2 +Wk(g,t)2-

ii) wi(ft)2 < 28 flo-
iii) If f € W5, 5, then

wr(f,t)a < F||LEf|..

Proof:

Prperty 1 follow from the definition of wy(f,t)s.

Prperty 2 follow from the fact that [|[T%f|ls < || f||2-

Assume that h € (0,t]. From formulas (1), (2) and (3), we have

| ARF 2@t ger@an = 11 —=@37 () IPH N 2@ gury ()
I L f 2@t ges@any = [+ 02 3P () M) 2@ aun))- (6)

Formula (5) implies the equality

thH ( 303’601))]6

Kk ()2 1 p2)k (N + PQ)k:Ja”B(f)HLQ(R+,du(A))-

H Ahf HL2 R+, JB (z)dx) —

From lemma (2.1), we obtain

| AFF lr2@s ges@an < RO+ 2 3P ()| n2@s aun)

h’Qk H ka ”L2(R+,J0"5(x)dx) .

Calculating the supremum with respect to all h € (0,t], we obtain

wi(f,t)2 < EHILEf o
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Lemma 3.2 For j > 1 we have

27

2D Eoi(f)e < Z P E(f)a.

1=27-1+41

Proof: Note that

27
Z l2k 1 > (2] 1)2k 12] 1 2214(] 1)

[=21-141
Since Ej(f)s2 is monotonically decreasing, we conclude that

27

22V Eyi (f)e < Z P*E(f)e.

1=27—141

Lemma 3.3 For n € N* we have

PEAf)e < g DG+ VP B

7=0
Proof: Note that
. 2k—1 ~ . 2k—1 nNEIn o ok
i=0 iz3-1

Since E;(f)2 is monotonically decreasing, we conclude that

n

2B, (f)2 < % (j + D* LB (f)a.

J=0

Lemma 3.4 If ¢, € Z, such that ||f — ®,||2 = E,(f)2 For every v € N,
then ‘
ILF®oiir — LEDys[ly < 2K 0TV E, (f),.

In particular

|[LF® ||y = || L¥®; — LF®y |2 < 22 Ey(f)o.

Proof: By lemma (2.2) and the fact that F,(f), is monotonically decreasing
with respect to v, we obtain

|LE Do — LEDys s < 220 || Bosin — Do
= 22 UD||(f — Dy) — (f — Poy)]|2
< 2 k(ﬂ+1)(Ega‘(f)2 + Eyiv(f)2)
S c 22k(]+1)+1E2j (f)27
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and

< ef|®1 = Poll = ef[(f — 1) — (f — Po)l2
< (B (f)2 + Eo(f)2)
< 200Ey(f)a < 2% Eg(f)s.

|LE®, — LFdy| o

The following theorems are analogues of the classical inverse theorems of ap-
proximation theory due to Stechkin in the case p = oo and A.F.Timan in the
case 1 < p < oo (see [4] and [5]).

Theorem 3.5 For every function [ € L?aﬁ) (R™) and n € N* we have

i, D < o 3G+ VP E (),
=0

n

where ¢ = c(k, a, B) is a positive constant.

Proof: Let 2™ < n < 2™+ for any integer m > 0.
For every v € N, let ®, € 7, such that ||f — ®,|s = E,(f)2 . By formulas (4)
and (ii) of lemma (3.1), we obtain

1 1 1 1
wk(f, E)Q S wk(f - ®2m+1, E)Q + wk(®2m+1, E)Q S Qk”f — @2m+1 H2 + wk(@2m+1, E)Q

Therefore

1 1 1
wi(f, 5)2 < 2% Eymir (f)g + wi(Pom+1, 5)2 < 2B (f)g 4 wi(Pome, 5)2 (7)

Now with the aid of lemmas (3.2), (3.4) and formula (4ii) of lemma (3.1), we
conclude that

1

Wk((I)QWH'la E)z |L ¢2m+1H2

= %\

< <||Lk<1>1 — LF®olly + ) || LF Ry — qu>2j||2>
j=0
S — (24k+1E )2 + Z 22k(j+1)+1E2j(f>2>
n s
c " -
< G2 Eo(f)a+ Y 2 1>E2]-<f>2)
7=0
< 2o (Bt (LY Y BB
" J=11=27-141
C 2
2 . _
< Wz‘“ﬁl Eo(f)2+ Er(fa+ Y (G +1)* 1Ej(f)2> .

j=2
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Whence

2m
1 & . _
wk(®2m+1aﬁ)2 < n_;k GG+ D E(f)2
=0

Thus from (7) and (8) we derive the estimate

n

1 c : -
wilf, )2 < 2" En(f)2 + n—;lk (7 + D*E;(f)2
=0
By lemma (3.3) and formula (9), we have

w(f,2)e < S5 G+ )ELE ().

n n=k £
j=0

Theorem 3.6 Suppose that f € L%a’ﬁ) (RT) and

Zij_lEj(fb < o0.

Then f € Wl and for n € N*, we have

1
wk(meaﬁ)Q < ka +1 2(k+m) 1E 2+ Z ij 1E )

§=0 j=n+1
where C' = c(k,m,a, B) is a positive constant.

Proof: Let 2™ < n < 2™*! for any integer m > 0.
By lemmas 3.4 and 3.2, we have for r < m

Z L7 ®gi1 — L' ®gsf2 < Z 22U By, (),
j=0 3=0
= 27T B (f)g 4 2t Z 220" By, (£)2
j=1
S 02247"+1 (El(f)Q + ZQQT(j—l)E2]. (f)Z)
j=1
o0 27
< 02247‘4—1 E1<f)2 + Z Z l2r—1El(f)2
j=11=27-141
< 2T B ()2 < oo
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Note that
f=o + Z(CI)QJ‘H — D).

J=0

Since the series Z L™ ®gjr1 — L™ ®y; converges in L%{L g (RT) and L is a closed

Jj=0
operator, we have

L'f=L"d + Z(L’"q>2j+1 — L"®y).
j=0

Whence L" f € L%a’m (RF) for r <m and f € Wi, 5.
By formula () of lemma (3.1), we obtain

1 1 1
(.Uk(me, E)Q S u}k(me — Lmq)25+l, 5)2 —f- Wk(Lm¢)25+1, 5)2

Using lemmas (3.1) , (3.2) and (3.4), we get

1
wk(me — Lm@25+1’ 5)2 < 2k||me . Lm(I)23+1 H2

28N LRy — LDy 2
j=s+1

2kc2 Z 22m(j+1)+1E2j (f)Q
Jj=s+1

IN

IN

[e.e]

622k+4m+1 Z 22m(j71)E2j<f)2
Jj=s+1

[e’s) 27
022k+4m+1 Z Z l2m71El(f)2

j=s+11=2i-141

IA

IA

1 0o
L™f — [, - < 2k+4m+1 -2m—1E' )
wi(L™f 2r+1, )2 C2 > i(f)2

j=25+1
Whence

1 N o
Wk<me—Lm(I>gs+l,E)2 S Cy Z ij 1E]<f)2 (10)

j=254+1
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Now with the aid of lemmas (3.2) , (3.4) and by formula (7i) of lemma (3.1),

we conclude that

1 1
<

(L @ge1, ~)y < [ Dy

1 mtk mtk ek metk
< 2k (”L Oy — L™ D2 + ; |L™ T ®gi01 — L™ Dys |2
Co m 5 m) (i
< W (24(k+ )+1E0(f)2 + Z 22(k+ )(J+1)+1E2j (f)Z)
=0
C2 m - m)(j—
< WQZL(IH- )+1 (Eo(f)2+z22(k’+ )(J 1)E2j(f)2>
=0
c
< 22k24(k+m)+1 E, (f ) +E1 2 +Z Z 2(k+m)— f)z
" J=11=21-141
c z
2 m . m)—
< ﬁ24(k+ )+ (Eo(f)z + Er(f)2 + Z(] + 1)20ktm) 1Ej(f)2> .
j=2
Whence
25
m 1 Ce . m)—
wi(B" g1, 5)2 < n2k (J+ 1)2(k+ ) lEj(f)Q- (11)

=0
Thus from (10) and (11) we derive the estimate

(B, (Z PB4 e S0+ 1)2(’“+m)‘1Ej(f)2>.

j=n+1 7=0
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