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Abstract
Homotopy Analysis Transform Method (HATM) is applied to tackle time-

space fractional Gas dynamics equation. The proposed HATM is an elegant
coupling of homotopy analysis method (HAM) and Laplace transform. The
method gives an analytical solution in the form of a convergent series with eas-
ily computable components, requiring no linearization or small perturbation.
The numerical solutions obtained by the proposed method indicate that the ap-
proach is easy to implement and computationally very attractive. Numerical
results coupled with graphical representation explicitly reveal the complete reli-
ability of the proposed algorithm.

Keywords: Homotopy Analysis Transform Method (HATM), Homotopy
Analysis Method (HAM), Fractional equations, nonlinear gas dynamics equa-
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1 Introduction

Fractional calculus is a field of applied mathematics that deals with derivatives
and integrals of arbitrary orders. During the last decade, fractional calculus
has found applications in numerous seemingly diverse fields of science and
engineering. Fractional differential equations are increasingly used to model
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problems in fluid mechanics, acoustics, biology, electromagnetism, diffusion,
signal processing, and many other physical processes.

Fractional differential equation have long history. These equations have
demonstrated a considerable interest both in mathematics and in applications
in recent years. They have been used in modelling of many physical and
chemical processes in engineering. Fractional derivatives provide an excellent
instrument for the description of memory and hereditary properties of various
materials and processes.

In recent years, considerable interest in fractional differential equations has
been stimulated due to their numerous applications in the areas of physics and
engineering [1]. In past years, it has turned out that differential equations
involving derivatives of noninteger order can be adequate models for various
physical phenomena [2]. Many important phenomena are well described by
fractional differential equations in electromagnetics, acoustics, visco-elasticity,
electro-chemistry and material science. That is because of the fact that a
realistic modeling of a physical phenomenon having dependence not only at
the time instant, but also the previous time history can be successfully achieved
by using fractional calculus [3-7]. Since most of the nonlinear FDEs cannot be
solved exactly, approximate and numerical methods must be used. Some of the
recent analytical methods for solving nonlinear problems include the homotopy
analysis method HAM [8-14]. The HAM, first proposed in 1992 by Liao, has
been successfully applied to solve many problems in physics and science. The
HATM is a combination of the homotopy analysis method and the Laplace
decomposition method. In recent years, many authors have paid attention
to study the solutions of linear and nonlinear partial differential equations by
using various methods combined with the Laplace transform. Among these are
Laplace decomposition method [15-19] and homotopy perturbation transform
method [20-22].

In this paper, we consider the following nonlinear time fractional gas dy-
namics equation of the form :

Dα
t u +

1

2
(u2)x − u+ u2 = 0, 0 < α ≤ 1, (1.1)

and the fractional time-space derivatives nonlinear equation:

Dα
t u+

1

2
Dβ
x u

2 − u+ u2 = 0, 0 < α, β ≤ 1, (1.2)

by using homotopy analysis transform method HATM [23-27], which is a gen-
eralization of the given in. We used the Caputo fractional derivative on the
half axis R+ (i.e t ∈ R+) C

t Dα
0+ for time and the Caputo fractional derivative

on the half axis R+ (i.e t ∈ R+) C
t Dα

0+ for space.
Where α and β are a parameters describing the order of the fractional

derivative. The function u(x, t) is the probability density function, t is the
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time, and x is the spatial coordinate. The general response expression contains
a parameter describing the order of the fractional derivative that can be varied
to obtain various responses. In the case of α = 1 and β = 1 the fractional
gas dynamics equation reduces to the classical gas dynamics equation. The
gas dynamics equations are based on the physicallaws of conservation, namely,
the laws of conservation of mass, conservation of momentum, conservation of
energy, and so forth. The nonlinear fractional gas dynamics has been studied
previously by [28], [29] and [30].

2 Preliminaries and Notations

We give some basic definitions and properties of the fractional calculus theory
which are used further in this paper. For the finite derivative [a, b] we define
the following fractional integral and derivatives.

Definition 2.1: If f (t) ∈ L1 (a, b) , the set of all integrable functions,
and α > 0 then the Riemann-Liouville fractional integral of order α, denoted
by Jαa+ is defined by

Jαa+f(t) =
1

Γ (α)

∫ t

a

(t− τ)α−1 f (τ) dτ (2.1)

Definition 2.2: For α > 0, the Caputo fractional derivative of order α,
denoted by CDα

a+ ,is defined by

CDα
a+f(t) =

1

Γ (n− α)

∫ t

a

(t− τ)n−α−1 Dnf (τ) dτ, (2.2)

where n is such that n− 1 < α < n and D = d
dτ

If α is an integer, then this derivative takes the ordinary derivative

CDα
a+ = Dα, α = 1, 2, 3, ... (2.3)

Finally the Caputo fractional derivative on the whole space R is defined
by:

Definition 2.3: For α > 0 the Caputo fractional derivative of order α on
the whole space , denoted by CDα

a+, is defined by

CDα
a+f(x) =

1

Γ (n− α)

∫ x

−∞
(x− ξ)n−α−1 Dnf (ξ) dξ.
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3 Basic Idea of Fractional Homotopy Analysis

Transform Method (FHATM)

To illustrate the basic idea of the FHATM for the fractional partial differential
equation as:

Dnα
t u(x, t)+R [x] u(x, t)+N [x] u(x, t) = g(x, t), t � 0, x ∈ R, n−1 < nα ≤ n,

(3.1)
where Dnα

t = ∂nα

∂tnα
, R [x] is the linear operator in x, N [x] is the general

nonlinear operator in x, and g(x, t) are continuous functions. For simplicity
we ignore all initial and boundary conditions, which can be treated in similar
way. Now the methodology consists of applying Laplace transform first on
both sides of Eq. (3.1), we get

L[Dnα
t u(x, t)] + L[R [x] u(x, t) + N [x] u(x, t)] = L[g(x, t)]. (3.2)

Now, using the differentiation property of the Laplace transform, we have

L[u(x, t)]− 1

snα

n−1∑
k=0

s(nα−k−1)uk(x,0) +
1

snα
L[ R [x] u(x, t) + N [x] u(x, t)−

g(x, t)] = 0. (3.3)

We define the nonlinear operator

N [φ (x, t; q)] = L[φ (x, t; q)]− 1

snα

n−1∑
k=0

s(nα−k−1)uk(x,0) +
1

snα
L[ R [x] u(x, t) +

N [x] u(x, t)− g(x, t)], (3.4)

where q ∈ [0, 1] be an embedding parameter φ (x, t; q) and is the real function
of x, t and q. By means of generalizing the traditional homotopy methods,
Liao constructed the zero order deformation equation

(1− q) L (φ (x, t; q)− u0 (x, t)) = q~H(x, t)N [Dα
t φ (x, t; q)] , (3.5)

where ~ 6= 0 is an auxiliary parameter, H(x, t) 6= 0 is an auxiliary function,
u0 (x, t) is an initial guess of u(x, t) and φ (x, t; q) is an unknown function. It
is important that one has great freedom to choose auxiliary thing in FHATM.
Obviously, when q = 0 and q = 1, it holds

φ(x, t; 0) = u0(x, t) and φ(x, t; 1) = u(x, t), (3.6)
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respectively. Thus, as q increases from 0 to 1, the solution varies from the
initial guess u0(x, t) to the solution u(x, t). Expanding φ(x, t; q) in Taylor’s
series with respect to q, we have

φ(x, t; q) = u0(x, t)+
∞∑

m=1

um(x, t)qm, (3.7)

where

um(x, t) =
1

m!

∂mφ(x, t; q)

∂qm
|q=0. (3.8)

Assume that the auxiliary linear operator, the initial guess, the auxiliary pa-
rameter h and the auxiliary function H(x, t) are selected such that the series
(3.7) is convergent at q = 1, then we have

u(x, t) = u0(x, t)+
∞∑

m=1

um(x, t). (3.9)

Let us define the vector

−→un(t) = {u0 (x, t) , u1 (x, t) , u2 (x, t) , ..., un (x, t)}. (3.10)

Differentiating the zeroth− order deformation Eq (3.5) m times with respect
to q, then setting q = 0 and dividing then by m!, we have the mth- order
deformation equation

L [um(x, t)− χmum−1(x,t)] =~H(x, t)Rm (−→u m−1) . (3.11)

Applying inverse Laplace transform

um(x, t) = χ
m

um−1+~L−1[H(x, t)Rm(ũm−1)] (3.12)

where

Rm

(−→um−1
)

=
1

(m − 1)!

∂m−1N[φ(x, t; q)]

∂qm−1
|q=0, (3.13)

and

χm =

{
0 m ≤ 1,
1 m > 1.

(3.14)

In this way, it is easily to obtain um(x, t) for m ≥ 1, at mth− order, we
have

u(x, t) =
M∑

m=0

um(x, t). (3.15)

when M → ∞ we get an accurate approximation of the original equation
(3.1).
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4 Illustrative Examples

In this section, we use the HATM to solve the fractional time-space fractional
gas dynamics equation.

Example 1. In this example, we consider the following fractional time
nonlinear fractional Gas dynamics equation as [28-30]:

Dα
t u +

1

2
(u2)x − u+ u2 = 0, t > 0; 0 < α ≤ 1, (4.1.1)

with initial condition
u(x,0) = e−x. (4.1.2)

Applying the Laplace transform on both sides in Eq. (4.1.1) and after using
the differentiation property of Laplace transform for fractional derivative, we
get

sαL[u(x, t)]− sα−1u(x, 0) + L[
1

2
(u2)x − u+ u2] = 0. (4.1.3)

On simplifying

L[u(x, t)]− 1

s
u(x, 0) + s−αL[

1

2
(u2)x − u+ u2] = 0. (4.1.4)

We choose the linear operator as

£[φ(x, t; q)] = L[φ(x, t; q)], (4.1.5)

with the property that

£[c] = 0, where c is constant.

We now define a nonlinear operator as

N [φ(x, t; q)] = L[φ(x, t; q)]− 1

s
e−x + s−αL[

1

2
(φ2)x − φ+ φ2]. (4.1.6)

Using the above definition, with assumption H(x, t) = 1, we construct the
zeroth- order deformation equation

(1− q) (φ(x, t; q)− u0(x, t)) = q~N [φ(x, t; q)] . (4.1.7)

For q = 0 and q = 1 , we can write

φ(x, t; 0) = u0(x, t) = u(x,0), φ(x, t; 1) = u(x, t). (4.1.8)

Thus, we obtain the mth- order deformation equation is given by

L[um(x, t)− χ
m

um−1(x, t)]=~Rm(−→u m−1, x, t). (4.1.9)
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Taking inverse Laplace transform of Eq. (4.1.6), we get

um(x, t) = χ
m

um−1(x, t)=~L−1[Rm(−→u m−1, x, t)], (4.1.10)

where

Rm(−→u m−1, x, t) = L[um−1(x, t)]−
(1− χm)

s
e−x +

1

2sα
L(

∂

∂x

m−1∑
i=0

ui um−1−i)−

1

sα
L(um−1) +

1

sα
L(

m−1∑
i=0

ui um−1−i). (4.1.11)

Let us take the initial approximation as

u0(x, t) = e−x, (4.1.12)

the other components are given by

u1(x, t) = − e−xh tα

Γ (α + 1)
, (4.1.13)

u2(x, t)=e−xh tα[− 1 + h

Γ(α + 1)
+

h tα

Γ(2α + 1)
], (4.1.14)

u3(x, t)=e−xh tα[− (1 + h)2

Γ(α + 1)
+ h tα(

2(1 + h)

Γ(2α + 1)
− h tα

Γ(3α + 1)
)], (4.1.15)

u4(x, t) = e−xh tα[− (1 + h)3

Γ(α + 1)
+ h tα(

3(1 + h)2

Γ(2α + 1)
+ h tα(− 3(1 + h)

Γ(3α + 1)
+

h tα

Γ(4α + 1)
))], ... (4.1.16)

Then, the approximate solution for the nonlinear fractional equation (4.1.1)
according to the HATM, we can conclude that

u (x, t) = u0 (x, t) + u1 (x, t) + u2 (x, t) + u3 (x, t) + ...

= e−x − e−xh tα

Γ (α + 1)
+ e−xh tα[− 1 + h

Γ(α + 1)
+

h tα

Γ(2α + 1)
] +

e−xh tα[− (1 + h)2

Γ(α + 1)
+ h tα(

2(1 + h)

Γ(2α + 1)
− h tα

Γ(3α + 1)
)] + ...(4.1.17)

and so on then the approximate solution at h = −1 is given by

u (x, t) = e−x(1 +
tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
+

t3α

Γ(3α + 1)
+ ...). (4.1.18)
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For the special case α = 1, we obtain from (4.1.18)

u (x, t) = e−x(1 +
t

1!
+
t2

2!
+
t3

4!
+ ...)

= et−x, (4.1.19)

which is an exact solution to the nonlinear equation. The results for the
exact solution Eq. (4.1.19) and the approximate solution Eq. (4.1.18) are
obtained using the homotopy analysis transform method. Now, we calculate
numerical results of the probability density function u(x, t) for different time-
fractional Brownian motions α = 1/3, 2/3, 1 and for various values of t and
x. The numerical results for the approximate solution (4.1.17) obtained by
using HATM and the exact solution (4.1.19) for various values of of t and x
are shown in Figures 1(a)–1(d) and those for different values t and α at x = 1
are depicted in Figure 2.

Figure 1: The surface shows solution u(x, t) w.r.t. x and t when, (a)
α = 1

3
, (b) α = 2

3
, (c) α = 1 and (d) exact solution.
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(a) the 5th order approximate solution (4.1.17) (b) the 8th order approximate
solution (4.1.17).
Figure 2: plots of u(x, t) at x = 1, h = −0.55 for different values of α.

However, mostly; the results given by the Adomian decomposition method
and homotopy perturbation transform method converge to the corresponding
numerical solutions in a rather small region. But, different from those two
methods, the homotopy analysis transform method provides us with a simple
way to adjust and control the convergence region of solution series by choosing
a proper value for the auxiliary parameter h. So the valid region for h where
the series converges is the horizontal segment of each h curve. When we choose
α = 1 then clearly, we can conclude that the obtained solution converges to
the exact solution u(x, t) = et−x ; which is an exact solution of the standard
Gas dynamics equation.

Example 2. Let us consider the following fractional time-space nonlinear
equation

Dα
t u+

1

2
Dβ
x u

2 − u+ u2 = 0, t > 0; 0 < α, β ≤ 1, (4.2.1)
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with initial condition

u(x,0) = e−x. (4.2.2)

Applying the Laplace transform on both sides in Eq. (4.1.1) and after using
the differentiation property of Laplace transform for fractional derivative, we
get

sαL[u(x, t)]− sα−1u(x, 0) + L[
1

2
(u2)x − u+ u2] = 0. (4.2.3)

On simplifying

L[u(x, t)]− 1

s
u(x, 0) + s−αL[

1

2
(u2)x − u+ u2] = 0. (4.2.4)

We choose the linear operator as

£[φ(x, t; q)] = L[φ(x, t; q)], (4.2.5)

with the property that

£[c] = 0, where c is constant.

We now define a nonlinear operator as

N [φ(x, t; q)] = L[φ(x, t; q)]− 1

s
e−x + s−αL[

1

2
Dβ
x(φ2)− φ+ φ2]. (4.2.6)

Using the above definition, with assumption H(x, t) = 1, we construct the
zeroth- order deformation equation

(1− q) (φ(x, t; q)− u0(x, t)) = q~N [φ(x, t; q)] . (4.2.7)

For q = 0 and q = 1 , we can write

φ(x, t; 0) = u0(x, t) = u(x,0), φ(x, t; 1) = u(x, t). (4.2.8)

Thus, we obtain the mth- order deformation equation is given by

L[um(x, t)− χ
m

um−1(x, t)]=~Rm(−→u m−1, x, t). (4.2.9)

Taking inverse Laplace transform of Eq. (4.2.6), we get

um(x, t) = χ
m

um−1(x, t)=~L−1[Rm(−→u m−1, x, t)], (4.2.10)

where

Rm(−→u m−1, x, t) = L [um−1(x, t)]− (1− χm)

s
e−x +

1

2sα
L(Dβ

x

m−1∑
i=0

ui um−1−i)−

1

sα
L(um−1) +

1

sα
L(

m−1∑
i=0

ui um−1−i). (4.2.11)
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In order to obey both the rul of solution expression and the rule of the cofficient
ergodicity, the auxiliary function can be determined uniquely H(x, t) = 1. Now
the solution of the mth-order deformation equations (4.2.11) for m ≥ 1 become

um(x, t) = χ
m

um−1(x, t) + ~L−1[Rm(−→u m−1, x, t)] (4.2.12)

and so on , we substitute the initial condition (4.2.2) into the system (4.2.12)
with the aid of Maple; the approximate solutions of eq. (4.2.1) take the fol-
lowing form

Let us take the initial approximation as

u1 (x, t) = − e−x (−1 + ex − eiπβ) h tα

Γ(α + 1)

u2 (x, t) =

e−3xh tα((2 + 3βe2iπβ + ex(−3 + ex) + eiπβ(2 + 3β − (1 + 2β)ex))
h tαΓ(α + 1)− ex(−1 + ex − eiπβ)(1 + h)Γ(2α + 1))

Γ(α + 1)Γ(2α + 1)

... (4.2.13)

In this case the approximate solution for the nonlinear fractional equation
(4.2.1) according to the HATM, we can conclude that

u (x, t) = u0 (x, t) + u1 (x, t) + u2 (x, t) + u3 (x, t) + ...

= e− x − e− x (−1 + ex − eiπβ) h tα

Γ(α + 1)
+

e−3xh tα((2 + 3βe2iπβ + ex(−3 + ex) + eiπβ

(2 + 3β − (1 + 2β)ex))h tαΓ(α + 1)− ex(−1 + ex − eiπβ)
(1 + h)Γ(2α + 1))

Γ(α + 1)Γ(2α + 1)
...

(4.2.14)

And so on setting h = −1,we have

u (x, t) = e− x +
e−x (−1 + ex − eiπβ) tα

Γ(α + 1)
+

e−3x (2 + 3βe2iπβ+
ex(−3 + ex) + eiπβ(2 + 3β − (1 + 2β)ex)) t2α

Γ(2α + 1)
(4.2.15)

Now, let α→ 1 and β → 1 , we get the approximate solution (4.2.14) takes
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the following form

u (x, t) = u0 + u1 + u2 + ...

= e−x +
t e−x

Γ(2)
+
t2e−x

Γ(3)
+ ...

= e−x(1 +
it

1!
+

(it)2

2!
+ ...)

= et−x (4.2.16)

which is an exact solution to the nonlinear equation. The results for the exact
solution Eq. (4.2.16) and the approximate solution Eq. (4.2.15) are obtained
using the homotopy analysis transform method.

Figure 3: The 5th order approximate solution (4.2.14) of u(x, t) versus t at
x = 1, h = −0.55 and α = 1 for different values of β
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Figure 4: The 5th order approximate solution (4.2.14) of u(x, t) versus t at
x = 1, h = −0.55 and β = 1 for different values of β

5 Concluding Remarks

In this paper, the homotopy analysis transform method HATM has been suc-
cessfully to obtain the numerical solutions of the time-space fractional Gas
Dynamics equation was initial conditions. The reliability of this method and
reducation in computations give this method a wider applicability. HATM is
clearly a very efficient and powerful technique for finding the numerical so-
lutions of the proposed equation. The analytical results have been given in
terms of a power series with easily computed terms. The method overcomes
the difficulty in other methods because it is efficient. Three examples were
investigated to demonstrate the ease and versatility of our new approach. The
illustrative examples show that the method is easy to use and is an effective
tool to solve fractional partial differential equations numerically. However,
mostly; the results given by the Adomian decomposition method ADM homo-
topy perturbation transform method HPM and homotopy analyasis method
HAM converge to the corresponding numerical solutions in a rather small re-
gion. But, different from those two methods, the homotopy analysis transform
method provides us with a simple way to adjust and control the convergence
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region of solution series by choosing a proper value for the auxiliary parameter
h. So the valid region for h where the series converges is the horizontal seg-
ment of each h curve. When we choose α = β = 1 then clearly, we can conclude

that the obtained solution
∞∑
m=0

um(x, t) converges to the exact solution. It,

therefore provides more realistic series solutions that generally converge very
rapidly in real physical problems.
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