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Abstract
The concepts of generalized Jordan higher x—derivations and generalized
Jordan triple higher x—derivations are introduced and it is shown that they
coincide on 6-torsion free semiprime x—rings.
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1 Introduction

Let R be an associative ring not necessarily with identity element. For any
x,y € R. Recall that R is prime if xRy = 0 implies x = 0 or y = 0, and
is semiprime if xRx = 0 implies z = 0. Given an integer n > 2, R is said
to be n—torsion free if for x € R,nxz = 0 implies z = 0.An additive mapping
d : R — R is called a deriwation if d(zy) = d(x)y + yd(z) holds for all
x,y € R, and it is called a Jordan derivation if d(x?) = d(z)x + zd(z) for all
x € R. Every derivation is obviously a Jordan derivation and the converse is
in general not true [1, Example 3.2.1]. A classical Herstein theorem [12] shows
that any Jordan derivation on a 2-torsion free prime ring is a derivation. Later
on Bresar [2] has extended Herstein’s theorem to 2-torsion free semiprime
ring. A Jordan triple derivation is an additive mapping d : R — R satisfying

IThis paper is a part of the author’s Ph.D. dissertation under the supervision of Prof.
M. N. Daif



2 O.H. Ezzat

d(zyx) = d(z)yr+xd(y)r+axyd(x) for all x,y € R. Any derivation is obviously
a Jordan triple derivation. It is also easy to see that every Jordan derivation of
a 2-torsion free ring is a Jordan triple derivation [13, Lemma 3.5]. Bresar [3] has
proved that any Jordan derivation of a 2-torsion free prime ring is a derivation.
Generalized derivations have been primarily defined by Bresar [5]. An additive
mapping f : R — R is said to be a generalized derivation(resp. generalized
Jordan derivation) if there exists a derivation (resp. Jordan derivation) d :
R — R such that f(zy) = f(z)y + yd(x) (vesp. f(x?) = f(z)x + xd(x)) holds
for all x,y € R. Hvala [15] has initiated the algebraic study of generalized
derivations and extended some results concerning derivation to generalized
derivation. Jing and Lu [16] have introduced the notion of generalized Jordan
triple derivation as an additive mapping f : R — R with an associated Jordan
triple derivation d : R — R such that f(zyx) = f(z)yx + yd(x)z + zyd(z)
holds for all z,y € R. They have proved that every generalized Jordan triple
derivaation on a 2-torsion free prime ring is a generalized derivation.

An additive mapping x — z* satisfying (zy)* = y*z* and (2*)* = x for
all z,y € R is called an involution and R is called a * — ring. Let R be
a *—ring. An additive mapping d : R — R is called a x—derivation if
d(zy) = d(z)y* + xd(y) holds for all z,y € R; and it is called a Jordan
x—derivation if d(z?) = d(z)z* + xd(x) holds for all z € R. The reader
might guess that any Jordan x—derivation of a 2-torsion free prime x—ring is
a *—derivation, but this is not the case. It was proved in [4] that a noncom-
mutative prime x—ring does not admit a non-trivial *—derivation. A Jordan
triple *—derivation is an additive mapping d : R — R with the property
d(zxyx) = d(z)y*z* + zd(y)x* + xyd(x) for all z,y € R. It could easily be seen
that any Jordan x—derivation on a 2-torsion free x—ring is a Jordan triple
sx—derivation [4, Lemma 2]. Vukman [19] has proved that any Jordan triple
x—derivation on a 6-torsion free semiprime x—ring is a Jordan x—derivation.
Following Daif and El-Sayiad [7], An additive mapping F' : R — R is said to be
a generalized x— derivation (resp. generalized Jordan x—derivation) if there ex-
ists a x—derivation (resp. Jordan x—derivation) d : R — R such that F(xy) =
F(z)y* + xd(y) (vesp. F(z*) = d(x)z* + zd(z))holds for all x,y € R. They
also have introduced the notion of generalized Jordan triple x—derivation as
an additive mapping F': R — R associated with a Jordan triple x—derivation
d : R — R with the property F(xyx) = F(z)y*z* + xd(y)x* + xyd(x) for all
x,y € R. They have proved that every generalized Jordan triple x—derivation
on a 6-torsion free semiprime ring is a generalized Jordan sx—derivation. This
extended the above Vukman’s main theorem [19].

Let Ny be the set of all nonnegative integers and D = {d; };cn, be a family
of additive mappings of a ring R such that dy = idg. Then D is said to
be a higher derivation, (resp. a Jordan higher derivation) of R if for each

)

n € No, dn(zy) = 3, -, di()d;(y) (vesp. dn(2?) =3, ,_, di(x)d;(x) ) holds



Generalized Jordan Triple Higher x— Derivations... 3

for all z,y € R. The concept of higher derivations was introduced by Hasse and
Schmidt [11]. This interesting notion of higher derivations has been studied
in both commutative and noncommutative rings, see e,g., [18], [14], [20] and
[9]. Clearly, every higher derivation is a Jordan higher derivation. Ferrero
and Haetinger [9] extended Herstein’s theorem [12] for higher derivations on
2-torsion free semiprime rings. For an account of higher derivations the reader
is referred to [10]. A family D = (d;);en, of additive mappings of a ring
R,where dy = idg, is called a Jordan triple higher derivation if d,(ryzr) =
D itishen di(2)d;(y")di(z"+7) holds for all x,y € R. Ferrero and Haetinger
[9] have proved that every Jordan higher derivation of a 2-torsion free ring is
a Jordan triple higher derivation. They also have proved that every Jordan
triple higher derivation of a 2-torsion free semiprime ring is a higher derivation.
Later on, Cortes and Haetinger [6] have defined the concept of generalized
higher derivations. A family F' = {f;}ien, of additive mappings of a ring
R such that fy = idg is said to be a generalized higher derivation, (resp. a
generalized Jordan higher derivation) of R if there exists a higher derivation
(resp. Jordan higher derivation) D = (d;);en, and for each n € Ny, f,,(zy) =
D irien fi(x)di(y) (vesp. fu(x?®) =37, ,_, fi(xr)d;(x)) holds for all z,y € R.
They have proved that if R is a 2-torsion free ring which has a commutator
right nonzero divisor and U is a square closed Lie ideal of R, then every
generalized higher derivation of U into R is a generalized higher derivation
of U into R. A family F' = (d;);en, of additive mappings of a ring R, where
fo = idg, is called a generalized Jordan triple higher derivation if f,(zyz) =
D itiihen Ji(2)d;(y")di(2"*7) holds for all z,y € R. Jung [17] has proved that
every generalized Jordan triple higher derivation on a 2-torsion free semiprime
ring is a generalized Jordan higher derivation.

Motivated by the notions of generalized *—derivations and generalized
higher derivations, we introduce the notions of generalized higher x—deriva-
tions, generalized Jordan higher x—derivations and generalized Jordan triple
higher x—derivations. Our main objective is to show that every generalized
Jordan triple higher x—derivations of a 6-torsion free semiprime x—ring is a
generalized Jordan higher x—derivations. This result extends the main re-
sults of [7] and [19]. It is also shown that every generalized Jordan higher
x—derivations of a 2-torsion free x—ring is a generalized Jordan triple higher
x—derivations. So we can conclude that the notions of generalized Jordan
triple higher x—derivations and generalized Jordan higher x—derivations are
coincident on 6-torsion free semiprime x—rings.

2 Preliminaries and Main Results

We begin by the following definition
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Definition 2.1. Let Ny be the set of all nonnegative integers and let F' =
{fi}tien, be a family of additive mappings of a x—ring R such that fo = idg.
F' s called:

(a) a generalized higher x—derivation of R if for each n € Ny there exists a
higher x— derivation D = {d; }ien, such that

Zf’ ) for all x,y € R;

i+j=n

(b) a generalized Jordan higher x—derivation of R if for each n € Ny there
exists a Jordan higher x—derivation D = {d; }ien, such that

Z filz ) for all x € R;

i+j=n

(¢) a generalized Jordan triple higher x—derivation of R if for each n € Ny
there exists a Jordan tipple higher x—derivation D = {d;};en, such that

w(zyx) Z filz di(x *H]) for all x,y € R.

i+j+k=n

Throughout this section, we will use the following notation:

Notation. Let F' = {f;}ien, be a generalized Jordan triple higher *—deriva-
tion of a x—ring R with an associated Jordan triple higher x—derivation D =
{d; }ien,- For every fixed n € Ny and each x,y € R, we denote by A, (x) and
By, (x,y) the elements of R defined by:

An(z) = fula®) = D fila)d;(@™),

i+j=n

Bu(z,y) = falzy +y2) — > fil@)d;(y™") = > fily)d;(=

1+j=n i+j=n

It can easily be seen that A,(—z) = A,(z), By(—x,y) = —B,(x,y) and
Ay (z+y) = Au(z) + Au(y) + Bu(z,y) for each pair z,y € R. The following
lemmas are crucial in developing the proof of the main results.

Linearizing the last definition the following lemma can be obtained directly.

Lemma 2.1. Let F' = {f,;}ien, be a generalized Jordan triple higher x— deri-

vation with an associated Jordan triple higher x—derivation D = {d;}ien,-
Then we have for all x,y,z € R and each n € Ny,
faleyz+ zye) = 30 @)di(y V(=) + [y il

i+j+k=n
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Lemma 2.2. Let F' = {f;}ien, be a generalized Jordan triple higher x—deri-
vation of a 6-torsion free semiprime x—ring R with an associated Jordan triple
higher x—derivation D = {d;}ien,- If Am(x) = 0 for all x € R and for each
m < n, then A,(x)y*"z*" =0 for each n € Ny and for every x,y € R.

Proof. The substitution (xy 4 yx) for y in the definition of generalized Jordan
triple higher x—derivation gives

fala(ay +yo)z) = > fil@)d;((ay + ya))dp()

i+j+k=n

= > 5@ Al ) + dyly V(@) ) di(a )
i+j+h=n pra=j

= Y @)y )
i+p+g+k=n

+ %A@y )y (T
i+p+g+k=n

= 3 f@dy )y

i+p=n

+ Y Ay )y ()

i+p+q+k=n
i+p#n

+ Y @)y )y Y (),

i+p+gq+k=n

On the other hand the substitution 22 for z in Lemma 2.1 shows, using the
assumption on A,,(x),m < n and the fact that D = {d;} turns to be a Jordan
higher *—derivation by [8, Theorem 2.1], that

2*i+j

falwya® +a'yz) = 3 Fi@)d; () (2 ) + fi(a®)d; (y* (2

i+j+k=n

= Y @4 (X d@de)

i+j+k=n s+t=k

=Y (X A ) )
z+3;;ﬁ:n l+r=1

+ fu(a?)y™ 2"
= Y M@ @)

i+j+s+t=n

+ Y A@d @)y )

l+r+j+k=n
l+r#n

n
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*T %™

+ fal2?)y™x
Now, subtracting the two relations so obtained we find that
(fla®) = D2 Sila)dy(a) )y a™" =0,
i+p=n
Using our notation, the last relation reduces to the required result O
Now, we are ready to prove our main results.

Theorem 2.1. Let R be a 6-torsion free semiprime x—ring. Then every
generalized Jordan triple higher x—derivation F' = { f;}ien, of R is a general-
1zed Jordan higher x—derivation of R.

Proof. By [8, Theorem 2.1] we can conclude that the associated D of F' turns
to be a Jordan higher x—derivation. We intend to show that A, (z) = 0 for all
r € R. In case n = 0, we get trivially Ag(x) =0 for all z € R. If n = 1, then
it follows from [7, Theorem 2.1] that A;(z) = 0 for all z € R. Thus we assume
that A,,(z) =0 for all z € R and m < n. From Lemma 2.2, we see that

Ap(2)y" 2" =0 forall x € R. (2.1)

In case n is even (2.1) reduces to A, (z)yx = 0. Now, replacing y by xyA, (x) =
0, we have A, (z)zyA,(x)r =0 for all y € R. By the semiprimeness of R, we
get

A,(x)r =0 forall z € R. (2.2)

On the other hand, multiplying A, (z)yz = 0 by A(z) from right and by x from
left we get A, (z)yzA,(z) =0 for all z,y € R. Again, by the semiprimeness
of R we get

zA,(x) =0 forall x € R. (2.3)

Linearizing (2.2) we get
An(2)y + Bu(x,y)z + An(y)x + By(z,y)y =0 for all z,y € R. (2.4)
Putting —x for z in (2.4) we get
An(x)y + Bp(x,y)z — An(y)r — Bu(z,y)y = 0 for all z,y € R. (2.5)
Adding (2.4) and (2.5) we get since R is 2-torsion free
A, (2)y + Bp(x,y)z =0 for all z,y € R. (2.6)

Multiplying (2.6) by A, (z) from right and using (2.3) we get A, (z)yA,(z) =0
for all z,y € R. By the semiprimeness of R, we get A,(z) =0 for all z € R.
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In case n is odd (2.1) reduces to A, (z)y*z* = 0. By the surjectiveness of
the involution we obtain A, (z)yz* = 0. Now, replacing y by z*yA,(x) = 0,
we have A, (z)x*yA,(z)x* = 0 for all y € R, By the semiprimeness of R, we
get

Ay(z)z* =0 forall z € R. (2.7)

On the other hand multiplying A, (z)yz* = 0 by A(z) from right and by
x* from left we get x*A,(x)yz*A,(z) = 0 for all z,y € R. Again by the
semiprimeness of R gives

*A,(x) =0 forall x € R. (2.8)
Linearizing (2.7) we get
Ap(2)y* + Bp(x,y)z* + Ap(y)z* + Bu(x,y)y* =0 for all z,y € R.  (2.9)
Putting —x for z in (2.9) we get
Ap(2)y* + Bz, y)z* — Ap(y)z™ — Bu(z,y)y* =0 for all z,y € R.  (2.10)
Adding (2.9) and (2.10) we get since R is 2-torsion free that
Ap(2)y* + Bu(x,y)z* =0 for all z,y € R. (2.11)

Multiplying by A,,(x) from right and using (2.8) we get A, (x)y*A,(z) =0, by
the surjectiveness of the involution we get A, (z)yA,(z) = 0 for all z,y € R.
By the semiprimeness of R, we get A, (x) = 0 for all z € R. So in either cases
we reach to our intended result. This completes the proof of the theorem. [J

Corollary 2.1 ([8, Theorem 2.1]). Every Jordan triple higher x— derivation
of a 6-torsion free semiprime x—ring is a Jordan higher x—derivation.

Corollary 2.2 ([7, Theorem 2.1]). Every generalized Jordan triple x— deri-
vation of a 6-torsion free semiprime x—ring is a generalized Jordan *— deriva-
tion.

Theorem 2.2. Let R be a 6-torsion free semiprime x—ring. Then every
generalized Jordan higher x—derivation ' = {f;}ien, of R is a generalized
Jordan triple higher x—derivation of R.

Proof. In view of [8, Theorem 2.2|, the associated derivation D of F' turns to
be a Jordan triple higher *—derivation. By definition we have

fu@®) = > fila)d; (™). (2.12)

i+j=n
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Putting v = x + y and using (2.12) we obtain

= 2 et y)ds(+yy )
= Z filz + W) (y™) + fi@)diy™) + fily)d; ().

and
fn(0?) = fo(z? + 2y +yz +y7)

l+m=n r+s=n

Comparing the last two forms of f,(v?) gives

wy+yz) = > fix)d;(y") + fiy)d;(@™). (2.13)

i+j=n

Now put w = z(zy + yx) + (zy + yx)z. Using (2.13) we get

= > filo)di((xy+y)) + D filey +ya)d (@)

i+j=n ioen
= D > f@d @)y + Y0 D filo)d (v )ds(a™T)
e i+j=nr+s=j
+ Z Z fk(x)dl<y*k j k-H Z Z fk dl j k+z)
b i+j=n k+l=i
S H@aE AT 2 Y H@dy )
i+r+s=n i+ en
+ > f)di@)d; @),
k+l+j=n

Also,

fa(w) = ful(2?y + y2?) + 22y)
= fu(2y + y2?) + 2f, (zyz)

=2f(zyz)+ Y fr(z)do(@)d; (")

r+s+j=n

+ > F)de(a) i),

i+k+l=n
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Comparing the last two forms of f,(w) and using the fact that R is 2-torsion
free we obtain the required result O

By Theorem 2.1 and Theorem 2.2, we can state the following.

Theorem 2.3. The notions of a generalized Jordan higher x— derivation and
a generalized Jordan triple higher x—derivation on a 6-torsion free semiprime
x—1ing are equivalent.

Corollary 2.3 ([8, Theorem 2.3]). The notions of a Jordan higher *— de-
rivation and a Jordan triple higher x—derivation on a 6-torsion free semiprime
x—ring are equivalent.
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