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Abstract
We show the efficiency of Adomian decomposition method to deal with the

General Fractional Oscillation Relaxation Equation, a generalization of oscilla-
tion and relaxation equations, under nonhomogeneous initial value conditions.
The analytical solution is obtained in compact and elegant forms in terms of
generalized Mittag-Leffler functions.

Keywords: Bagley-Torvik equation, Basset problem, Caputo fractional
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1 Introduction

Fractional calculus has been the subject of intensive research since its first
international conference in 1974. Nowadays, it founds numerous applications
in different areas of applied sciences and engineering especially by the intro-
duction of fractional differential equations which allow a better description of
nonhomogenous natural phenomena.
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Whereas solving these kinds of equations is difficult by classical methods
like Laplace transform method. In recent times, several new techniques in-
cluding analytical decomposition [15] have been proposed to obtain analytical
or approximate analytical solution of fractional differential equations.

In this paper, we adopt the Adomian’s method to solve a more general
2-order fractional differential equation, the so called General Fractional Oscil-
lation Relaxation Equation. We get its solution in terms of series of generalized
Mittag-Leffler functions.

The outline of this work is as follow. We begin in Section 2 by giving
some useful notions related to Fractional calculus and Adomian decomposition
method (ADM). In Section 3, the fractional oscillation relaxation equation is
solved by using ADM. Section 4 is devoted to numerical illustrations of the
second order case such the resolution of Basset problem and Bagley-Torvik
equation. Concluding remarks are given in Section 5.

2 Preliminaries

In this section, we recall some necessary results relative to Fractional calculus
and to Adomian’s Method.

2.1 Fractional Calculus

Let α > 0 be an arbitrary real and f(t) a sufficiently well-behaved function.
Following [10], the Riemann-Liouville fractional integral of order α is defined
by

Jαf(t) =
1

Γ(α)

∫ t

0
(t − τ)α− 1 f(τ) dτ, t > 0, (1)

its left inverse, the Riemann-Liouville fractional derivative of same order in
the form of

Dαf(t) = Dm Jm−αf(t) (2)

=



1

Γ(m− α)

dm

dtm

∫ t

0

f(τ)

(t− τ)α+1−m dτ, m− 1 < α < m

dm

dtm
f(t), α = m

(3)

and the Caputo fractional derivative of order α by

Dα
∗ f(t) = J m−αDm f(t) (4)
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=



1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m dτ, m− 1 < α < m

dm

dtm
f(t), α = m ∈ IN.

(5)

For the Caputo derivative, we have the following composition rule with the
Riemann-Liouville fractional integral for β > α > 0 and m− 1 < α ≤ m

Jβ [Dα
∗ f(t)] = Jβ−αf(t)−

m−1∑
p=0

f (p)(0)
tβ−α+p

Γ(β − α + p+ 1)
. (6)

These results are helpful to deal with fractional differential equations by
Adomian decomposition method. The solution of such equations often involves
special functions like Mittag-Leffler type functions. We would recall the defi-
nition of the Mittag-Leffler function, for α ∈ lC, <(α) > 0, β ∈ lC, <(β) > 0,
γ ∈ lC, <(γ) > 0,

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
. (7)

Wiman [16] introduced a generalization of the Mittag-Leffler function in the
general form,

Eα, β(z) =
∞∑
k=0

zk

Γ(αk + β)
. (8)

Another generalization of (7) was proposed by Prabhakar [14] in the form,

Eγ
α,β(z) =

∞∑
k=0

(γ)k z
k

k! Γ(αk + β)
, (9)

where Γ(z), z ∈ lC, is the Gamma Euler function and (γ)k the Pochhammer
symbol defined by

(γ)0 = 1, (γ)k = γ(γ + 1)...(γ + k − 1) =
Γ(γ + k)

Γ(γ)
, γ 6= 0.

The generalized Mittag-Leffler function (9) is an entire function of order

ρ = [<(α)]−1 and type σ = 1
ρ

[
{<(α)}<(α)

]−ρ
. For some particular values

of parameters, we have

Eα(z) = E1
α,1(z), Eα,β(z) = E1

α,β(z), (10)

φ(α, β; z) = 1F1(α; β; z) = Γ(β)Eα
1,β(z) (11)

where φ(α, β; z) is the Kummer’s confluent hypergeometric function.
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2.2 Adomian Decomposition Method

The technique presented by Adomian [4, 5, 6] consists of splitting the given
equation into linear and nonlinear parts. Then the solution is decomposed in a
series of functions where the nonlinear contribution is obtained in the form of
“Adomian’s polynomials” from its expansion into power series. It was proven
that the series solution converge accurately [7, 9, 1, 2, 11].

To illustrate the method, we consider the following general nonlinear system∣∣∣∣∣ Lu(t) +Ru(t) +Nu(t) = g(t)
u(0) = u0

(12)

where L is the highest order derivative which assumed to be invertible, R the
remaining linear part, N represents a nonlinear operator and g a well-behaved
function.

Applying the inverse operator L−1 to both side of (12), we have

u(t) = f(t)− L−1Ru(t)− L−1Nu(t) (13)

where f(t) = u0 + L−1g(t)
The next step is to introduce the series form of the general solution and of

the nonlinear operator into eq.(13),

u =
∞∑
n=0

un and Nu =
∞∑
n=0

An (14)

The polynomials (An) in (u1, . . . , un) are the Adomian’s polynomials gene-
rated by

An =
1

n!

dn

dλn

[
N

( ∞∑
i=0

λiui

)]
λ=0

(15)

Therefore, by identification, we obtain the successive terms of the series
solution by the following recurrent relation∣∣∣∣∣ u0 = f(t)

un+1 = −L−1(Run)− L−1(An)
(16)

3 General Solution

Fractional differential equations are main application of the Fractional calculus.
These types of equations appear frequently in many physical and technical
areas [13].

In this section, we deal with 2-order fractional differential equation by the
Adomian decomposition method. These kind of equations are called general
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fractional oscillation relaxation equation as a fractional generalization of oscil-
lation and relaxation equations. We apply some basic transformation and
integration to obtain the solution in elegant form.

Let
βi ∈ IR, β0 = 0 < β1 < β2 ≤ 2

mi−1<βi≤mi, mi ∈ IN, i = 0, 1, 2.

Consider the following form of general fractional oscillation relaxation equa-
tion ∣∣∣∣∣ λ2Dβ2

∗ u(t) + λ1D
β1
∗ u(t) + λ0u(t) = f(t)

u(p)(0+)p=0, 1, m2−1 = kp,
(17)

with Dβi
∗ u(t) denotes the Caputo fractional derivative of order βi of the field

variable u(t), λi and kp are real constants, λ2 6= 0.
For the fractional Adomian’s method, we choose for the linear operator

the Caputo fractional derivative of order β2: L = Dβ2
∗ , and the inverse the

Riemann-Liouville fractional integral of same order: L−1 = Jβ2 .
In virtue of the composition rule (6), applying L−1 to both sides of the

Eq.(17) leads

λ2

u(t)−
m2−1∑
p=0

kp
tp

Γ(p+ 1)

+ λ1

[
Jβ2−β1u(t)−

m1−1∑
p=0

kp
tβ2−β1+p

Γ(β2 − βi + p+ 1)

]
+ λ0J

β2u(t) = Jβ2f(t). (18)

Then,

u(t) =
2∑
i=1

λi
λ2

mi−1∑
p=0

kp
tβ2−βi+p

Γ(β2 − βi + p+ 1)
+

1

λ2
Jβ2f(t)−

1∑
i=0

λi
λ2
Jβ2−βiu(t) (19)

Setting u(t) =
∑∞
n=0 un and by identification, we get the iteration process∣∣∣∣∣∣∣∣∣∣

u0 =
2∑
i=1

λi
λ2

mi−1∑
p=0

kp
tβ2−βi+p

Γ(β2 − βi + p+ 1)
+

1

λ2
Jβ2f(t)

un+1 = −
(
λ1
λ2
Jβ2−β1 +

λ0
λ2
Jβ2

)
(un).

(20)

Thus,

u1 = −
(
λ1
λ2
Jβ2−β1 +

λ0
λ2
Jβ2

)
(u0)

u2 =

(
λ1
λ2
Jβ2−β1 +

λ0
λ2
Jβ2

)2

(u0)

...

uq = (−1)q
(
λ1
λ2
Jβ2−β1 +

λ0
λ2
Jβ2

)q
(u0)

(21)
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Applying the multinomial theorem [3] yields

uq = (−1)q
∑

r+s=q
r≥0, s≥0

q!

r!s!

(
λ0
λ2

)r (
λ1
λ2

)s
J (β2−β1)s+β2r(u0) (22)

Reconstituting the decomposition series, the exact solution of Eq.(17) reads

u(t) =
∞∑
q=0

uq

=
∞∑
q=0

(−1)q
∑

r+s=q
r≥0, s≥0

q!

r!s!

(
λ0
λ2

)r (
λ1
λ2

)s
J (β2−β1)s+β2r(u0)

(23)

Next, we substitute the value of u0 (20) and have

u(t) =
2∑
i=1

λi
λ2

mi−1∑
p=0

kp
∞∑
q=0

(−1)q
∑

r+s=q
r≥0, s≥0

q!

r!s!

(
λ0
λ2

)r (
λ1
λ2

)s
t ζi,p

Γ(ξi,p)

+
1

λ2

∞∑
q=0

(−1)q
∑

r+s=q
r≥0, s≥0

q!

r!s!

(
λ0
λ2

)r (
λ1
λ2

)s
Jγ+β2rf(t)

(24)

where γ = (β2 − β1)s+ β2, ζi,p = γ + β2r − βi + p and ξi,p = ζi,p + 1.

According to the definition of the Riemann-Liouville fractional integral, we
can write

u(t) =
2∑
i=1

λi
λ2

{
mi−1∑
p=0

kp
∞∑
s=0

(−1)s
∞∑
r=0

(r + s)!

r!s!

(
λ1
λ2

)s
tγ−βi+p×(

−λ0
λ2

)r
tβ2r

Γ(γ + β2r − βi + p+ 1)

}
+

1

λ2

∞∑
s=0

(−1)s
∞∑
r=0

(r + s)!

r!s!(
λ1
λ2

)s (
−λ0
λ2

)r {
1

Γ(γ + β2r)

∫ t

0
(t− τ)γ+β2r−1f(τ)dτ

}
.

(25)

Therefore

u(t) =
2∑
i=1

λi
λ2

{
mi−1∑
p=0

kp
∞∑
s=0

(−1)s
(
λ1
λ2

)s
tγ−βi+p

( ∞∑
r=0

(r + s)!

r! s!
×[

−λ0
λ2

]r
tβ2r

Γ(γ + β2r − βi + p+ 1)

)}
+

1

λ2

∫ t

0

∞∑
s=0

(−1)s
(
λ1
λ2

)s

(t− τ)γ−1
{ ∞∑
r=0

(r + s)!

r! s!

[
−λ0
λ2

]r
(t− τ)β2r

Γ(γ + β2r)

}
f(τ)dτ.

(26)
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So

u(t) =
2∑
i=1

λi
λ2

{
mi−1∑
p=0

kp
∞∑
s=0

(−1)s
(
λ1
λ2

)s
tγ−βi+pEs+1

β2, γ−βi+p+1

(
−λ0
λ2
tβ2
)}

+
1

λ2

∫ t

0

∞∑
s=0

(−1)s
(
λ1
λ2

)s
(t− τ)γ−1Es+1

β2, γ

(
−λ0
λ2
{t− τ}β2

)
f(τ)dτ

=
m2−1∑
p=0

kp
∞∑
s=0

(
−λ1
λ2

)s
t(β2−β1)s+pEs+1

β2, (β2−β1)s+p+1

(
−λ0
λ2
tβ2
)

+
λ1
λ2

m1−1∑
p=0

kp
∞∑
s=0

(
−λ1
λ2

)s
t(β2−β1)(s+1)+pEs+1

β2, (β2−β1)(s+1)+p+1

(
−λ0
λ2
tβ2
)

+
1

λ2

∫ t

0

∞∑
s=0

(
−λ1
λ2

)s
τ (β2−β1)s+β2−1Es+1

β2, (β2−β1)s+β2

(
−λ0
λ2
τβ2

)
f(t− τ)dτ

(27)
where Eρ

α, β(z) is the generalized Mittag-Leffler function (9).

Finally, introducing the fractional Green’s function G2(t)

G2(t) =
1

λ2

∞∑
s=0

(
−λ1
λ2

)s
t(β2−β1)s+β2−1Es+1

β2, (β2−β1)s+β2

(
−λ0
λ2
tβ2
)
. (28)

we obtain an elegant form of the analytical solution of eq.(17)

u(t) =
2∑
i=1

λi

mi−1∑
p=0

kpJ
1+pDβi {G2(t)}+ G2 ∗ f(t) (29)

with Jα, Dα and h∗g(t) denote respectively the Riemann-Liouvile fractional
integral of order α, the Riemann-Liouvile fractional derivative of order α and
the Laplace convolution defined by

h ∗ g(t) =
∫ t

0
f(t− τ)g(τ)dτ (30)

We summarize above results by the following theorem,

Theorem 3.1 Let 0 < β1 < β2 ≤ 2, mi − 1 < βi ≤ mi, mi ∈ IN, λi and kp
be real constants, λ2 6= 0, i = 0, 1, 2.
The solution of the initial value problem for the general fractional oscillation
relaxation equation∣∣∣∣∣ λ2Dβ2

∗ + λ1D
β1
∗ u(t) + λ0u(t) = f(t)

u(p)(0+)p=0, 1, m2−1 = kp
(31)
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writes

u(t) =
m2−1∑
p=0

kp
∞∑
s=0

(
−λ1
λ2

)s
t(β2−β1)s+pEs+1

β2, (β2−β1)s+p+1

(
−λ0
λ2
tβ2
)

+
λ1
λ2

m1−1∑
p=0

kp
∞∑
s=0

(
−λ1
λ2

)s
t(β2−β1)(s+1)+pEs+1

β2, (β2−β1)(s+1)+p+1

(
−λ0
λ2
tβ2
)

+
1

λ2

∫ t

0

∞∑
s=0

(
−λ1
λ2

)s
τ (β2−β1)s+β2−1Es+1

β2, (β2−β1)s+β2

(
−λ0
λ2
τβ2

)
f(t− τ)dτ

=
2∑
i=1

λi

mi−1∑
p=0

kpJ
1+pDβi {G2(t)}+ G2 ∗ f(t)

(32)
where

G2(t) =
1

λ2

∞∑
s=0

(
−λ1
λ2

)s
t(β2−β1)s+β2−1Es+1

β2, (β2−β1)s+β2

(
−λ0
λ2
tβ2
)
. (33)

4 Illustrations

For the applications, we study below the Basset problem [12] and the Bagley-
Torvik equation [8], two special cases of the general fractional relaxation os-
cillation equation.

4.1 Basset Problem

This classical problem of Fluid dynamics concerns the unsteady motion of a
spherical particle accelerating in a viscous fluid under the action of the gravity.
The motion is governed by the composite fractional relaxation equation [12, 10]

du

dt
+ aDα

∗ u(t) + u(t) = 1 (34)

with 0 < α < 1, a = βα > 0, β = 9
1+2χ

and χ = ρp
ρf

. β and χ are related to the

densities ρf , ρp of the fluid and particle.

For the application of Adomian’s method, we consider the generalized Bas-
set problem where α = 3

4
, χ = 3

4
, u(0) = 1 namely

du

dt
+
[
9

2

] 3
4

D
3
4∗ u(t) + u(t) = 1 (35)
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By the theorem 3.1, we have

u(t) =
[
9

2

] 3
4
∞∑
s=0

[
−9

2

] 3
4
s

t
1
4
(s+1)Es+1

1, 1
4
(s+1)+1

(−t)+
∞∑
s=0

[
−9

2

] 3
4
s

t
1
4
sEs+1

1, 1
4
s+1

(−t) +
∫ t

0

∞∑
s=0

[
−9

2

] 3
4
s

τ
1
4
sEs+1

1, 1
4
s+1

(−τ)dτ.

After simple calculations, we get

u(t) =
∞∑
s=0

[
−9

2

] 3
4
s

t
1
4
sEs+1

1, 1
4
s+1

(−t) +
[
9

2

] 3
4

t
1
4

∞∑
s=0

[
−9

2

] 3
4
s

t
1
4
sEs+1

1, 1
4
s+ 5

4

(−t)

+t
∞∑
s=0

[
−9

2

] 3
4
s

t
1
4
sEs+1

1, 1
4
s+2

(−t).

(36)

4.2 Bagley-Torvik Equation

The Bagley-Torvik equation arises in the modelling of the motion of a rigid
plate immersed in a Newtonian fluid [8]. It is a composite fractional oscillation
equation [10]

λ2
d2u

dt2
+ λ1D

3
2∗ u(t) + λ0u(t) = f(t). (37)

For numerical application, we set λ2 = λ1 = λ0 = 1, u(0) = u′(0) = 1 and
f(t) = 1 + t namely

d2u

dt2
+D

3
2∗ u(t) + u(t) = 1 + t. (38)

Applying the theorem 3.1 holds

u(t) =
∞∑
s=0

(−1)st
1
2
(s+1)Es+1

2, 1
2
(s+1)+1

(−t2) + t
3
2

∞∑
s=0

(−1)st
1
2
sEs+1

2, 1
2
(s+1)+2

(−t2)

+
∞∑
s=0

(−1)st
1
2
sEs+1

2, 1
2
s+1

(−t2) + t
∞∑
s=0

(−1)st
1
2
sEs+1

2, 1
2
s+2

(−t2)

+
∫ t

0

∞∑
s=0

(−1)sτ
1
2
s+1Es+1

2, 1
2
s+2

(−τ 2)(1 + t− τ)dτ,

hence,

u(t) =
∞∑
s=0

(−1)st
1
2
sEs+1

2, 1
2
s+1

(−t2) + t
1
2

∞∑
s=0

(−1)st
1
2
sEs+1

2, 1
2
s+ 3

2

(−t2)

+ t
∞∑
s=0

(−1)st
1
2
sEs+1

2, 1
2
s+2

(−t2) + t
3
2

∞∑
s=0

(−1)st
1
2
sEs+1

2, 1
2
s+ 5

2

(−t2)

+ t2
∞∑
s=0

(−1)st
1
2
sEs+1

2, 1
2
s+3

(−t2) + t3
∞∑
s=0

(−1)st
1
2
sEs+1

2, 1
2
s+4

(−t2).

(39)
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5 Conclusion

In this paper, we have applied the so-called Adomian’s method for solving
the general fractional oscillation relaxation equations. We get the same ge-
neral exact solution as the Laplace transform technique in terms of generalized
Mittag-Leffler functions. All results prove the effectiveness of the Adomian
decomposition method to deal with fractional differential equations.
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