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Abstract
In this paper, we investigate the Hyers-Ulam stability of the functional equa-
tion f(2x +y) — f(x + 2y) = 3f(x) — 3f(y) in 2-Banach space.
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equation.

1 Introduction

Stability of for a function from a normed space to a Banach space has been
studied by Hyers [4]. Skof [12] has proved Hyers-Ulam stability of the
functional equation

flx+y)+ flz—y)=2f(z)+2f(y) (1)

He has proved that for a function f : X — Y, a function between normed
space X to Banach space Y satisfying

1f(x+y) + flx—y)=2f(x) +2f(y)| <0

for each x,y € X and 0 > 0, there exists a unique quadratic function
@ : X — Y such that

J

IF(2) = Q@) < 3
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The quadratic function f(z) = cz? satisfies the functional equation (1) and
therefore Equation (1) is called the quadratic functional equation. Every so-
lution of Equation (1) is said to be a quadratic mapping.

In fact several authors have studied the stability of different types of func-
tional equations for functions from normed space to Banach space. (see [1, 2,
5,6,7, 8,9, 10]).

Our aim is to study the Hyers-Ulam stability of the functional equation

fQRr+y) — flz+2y) =3f(x) —3f(y) (2)

introduced by [15], for a function from 2-normed space (normed space) to
2-Banach space.

Theorem 1.1 [15] Let X and Y be real vector spaces, and let f : X — Y be
a function satisfies (2) if and only if f(x) = B(z,x)+ C, for some symmetric
bi-additive function B : X x X — Y, for some C in Y. Therefore every
solution f of functional equation (2) with f(0) = 0 is also a quadratic function.

In the 1960s, S. Géhler [3] introduced the concept of 2-normed spaces. We
first introduce 2-normed space and topology on it.

Definition 1.2 Let X be a linear space over R with dim X > 1 and let
|-, -] : X x X — R be a function satisfying the following properties:

1. ||z, y|| = 0 if and only if x and y are linearly dependent,
2. Nz, yll = lly, |,

3. |laz,yll = lalllz, yll,

4o Nz y + 2l <l yll + [l 2|

for each z,y,z € X and a € R. Then the function ||-,-|| is called a 2-norm on
X and (X, ||-,-]|) is called a 2-normed space.

We introduce a basic property of 2-normed spaces as follows. Let (X, ||-,-||) be
a linear 2-normed space, z € X and ||z, y|| = 0 for each y € X. Suppose = # 0,
since dim X > 1, choose y € X such that {x,y} is linearly independent so we
have ||z, y|| # 0, which is a contradiction. Therefore, we have the following
lemma.

Lemma 1.3 Let (X, ||-,-||) be a 2-normed space. If v € X and ||z,y|| = 0, for
each y € X, then x = 0.
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Let (X, -]|) be a 2-normed space. For z,z € X, let p.(z) = |z, 2|,
x € X. Then for each z € X, p, is a real-valued function on X such that
p=(x) = ||z, 2| = 0, p:(ax) = |alllz, 2| = |a|p.(z) and
p=(z +y) = llo+y 2l = llz;e +yll <zl + 2,9l = llz, 2l + lly, 2| =
p.(z) + p.(y), for each @« € R and all z,y € X. Thus p, is a a semi-norm for
each z € X.

For x € X, let ||z, z|]| = 0, for each z € X. By Lemma 1.3, z = 0. Thus
for 0 # x € X, there is z € X such that p.(x) = ||z, z|| # 0. Hence the family
{p.(x) : z € X} is a separating family of semi-norms.

Let xg € X, for e >0, z € X, let
Uelzg) ={x € X ip.(x—xp) <e}={x € X :||z—xo, 2| <e}. Let S(xg) :=
{U.c(x0) 1€ >0,z € X} and (o) := {NF : F is a finite subcollection of S(x¢)}.
Define a topology 7 on X by saying that a set U is open if for every x € U,
there is some N € §(z) such that N C U. That is, 7 is the topology on X that
has subbase {U, .(z9) : € > 0,29 € X,z € X}. The topology 7 on X makes
X a topological vector space. Since for z € X collection () is a local base
whose members are convex, X is locally convex.

In the 1960s, S. Gahler and A. White [14] introduced the concept of
2-Banach spaces.

Definition 1.4 A sequence {x,} in a 2-normed space X is called a 2-Cauchy
sequence if

lim ||z, —zp, || =0
m,n—00

for each z € X.

Definition 1.5 A sequence {x,} in a 2-normed space X is called a 2-convergent
sequence if there is an x € X such that

lim ||z, —z,y|| =0
n—oo
for each y € X. If {x,} converges to z, we write lim,,_,, x,, = .

Definition 1.6 We say that a 2-normed space (X, ||-,||) is a 2-Banach space
if every 2-Cauchy sequence in X is 2-convergent in X.

By using (2) and (4) of Definition 1.2 one can see that ||-,-|| is continuous in
each component. More precisely for a convergent sequence {z,} in a 2-normed
space X,

lim ||z,,y| = H lim xn,yH

for each y € X.
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2 Stability of a Functional Equation for
Functions f : (X, || - [|) — (X, [|,-[)
Throughout this section, consider X a real normed linear space. We also
consider that there is a 2-norm on X which makes (X, |-, ||) a 2-Banach space.
For a function f: (X,| - ||) — (X,||-,-||), define Dy : X x X — X by
Dy(z,y) = f2r +y) — f(z+2y) = 3f(x) + 3/ (y)

for each x,y, € X.

Theorem 2.1 Let ¢ > 0,0 < p,g < 2,r > 0. If f: X — X is a function
such that

1Dg (2, y), 2l < e(lll” + [yl =1 (3)

for each x,y,z € X. Then there exists a unique quadratic function Q) : X —
X satisfying (2) and

ellzllP]l=]"

1— (4)

1f () = Q(z) — f(0), 2]l <

for each x,z € X.

Proof 2.1 Let g : X — X be a function defined by g(x) = f(x) — f(0),
for each x € X. Then g(0) = 0. Also

[ Dg(,y), 2l| = l9(27 +y) — g(x + 2y) — 3g(x) + 3g(y), 2|
<e(llz[I” + lyl)[l=[I" (5)

for each x,z € X. Putting y =0 in (5), we get
19(22) — 4g(z), 2| < ellz||”[|=]]" (6)
for each x,z € X. Therefore
1 € P
lo(2) = 39020), 2| < el (7)
4 4
for each x,z € X. Replacing x by 2z in (7), we get

1 e2p ,
lo(22) = Z9042), 2| < - llal) (®)
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for each x,z € X. By (7) and (8), we get

1 1 1
~ g60t4a). 2| < ot "2HH2——4H
Hg( T6I0) 2| = |l9(x) = 39(2), 2|| + || 79(22) = Tpg(4w)
< Siplp p
< HxH | z]]" +44H$H IE2
€H37||”H |” [ 2”]
B 0 10 15
1 T3

for each x,z € X. By using induction on n, we get

ellz]l”)lz])” = 27

lotx) ~ o), =

v -4 =W
7=0
llz|lP)|z|I" |1 — 2=
o -2 (9)

for each x,z € X. Form,n € N, forxz e X

1 1 ,
" " = m+n—n L n
H4mg S 4_”g(2 x)’ZH B H4m+n—n9(2 ) — 4n9(2 x),ZH
1 1 o )
m—n—1
5||2nx||p||z||r N
ST ir Z 2(P=2)]
r m—n—1
- w Z 9(p—2)(n+7)
j=0
el|z|| 2| 2P (1 — 2 Dm-m)
- 4 1 —2p—2

—> 0 asm,n — o0
for each z € X. Therefore, {359(2"x)} is a 2-Cauchy sequence in X, for each

x € X. Since X is a 2-Banach space, {4%9(2"30)} 2-converges, for each x € X.
Define the function Q@ : X — X as

Q(z) = lim — g(2"x)

n—oo 471
for each x € X. Now, from (9)
: L on ellz[Pllz]" 1
S Hg(x) TS x)Z” STTL 1o



6 B.M. Patel et al.

for each x,z € X. Therefore

ellzl[P]l=["

I1£() - Q) - £(0), 2] < EEE

for each x,z € X. Next we show that Q) satisfies (2). For x € X

. 1 n n
1Da(x,y), 2l = lim =[[Dy(2",2"y), 2|
= lim —(||2%2]|? + |2y 9)||2]]"
= lim (12" + 12"y )l
= lim £[2¢72"||z||? + 272"y || ||=||"
n—oo

=0

for each z € X. Therefore |Dg(x,y),z|| = 0, for each z € X. So we get
Dg(z,y) = 0. Next we prove the uniqueness of ). Let Q) be another quadratic
function satisfying (2) and (4). Since @ and Q' are quadratic, Q(2"x) =
4"Q(x), Q'(2"z) =4"Q'(x), for each x € X. Now for z € X

Q@) - Q'(x), 2] = Q") — @(2"0), 2]

1 n n n n
< wllR2") — g(2"x), 2| + |lg(2"2) - Q'(2"2), 2|]
1 2e]]2mz|P|=|]"
— 4n 4 —2p
2e
—_op-2)n_ = P T
= 2B =l 2|
— 0 asn —

for each z € X. Therefore ||Q(x) — Q'(x), z|| = 0, for each z € X. Therefore
Q(z) = Q'(x), for each x € X.

Theorem 2.2 Let e > 0,p,q > 2,7 > 0. If f: X — X is a function such
that

1Dg(, ), 2l < e(llz|” + [yl =1" (10)

for each x,y,z € X. Then there exists a unique quadratic function Q) : X —
X satisfying (2) and

ellzllPll=["

9 — 4 (11)

1f () = Q(x) = f(0), 2]l <

for each x,z € X.
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Proof 2.2 By (6) of Theorem 2.1, we have
l9(2x) — 4g(x), z|| < ell=[|”]|=]]"

for each x,z € X. Replacing x by 5 in (12), we get

- 0(3).

for each x,z € X. Replacing x by 5 in (13), we get

Jo(3) ~10(5) 2

for each x,z € X. Combining (13) and (14), we get

X
low) = 169(7). 21l < o) = 29(5 ). 2| + |9 (5) = 169(F) 2|
< 2|l + 422 al|P 2|
= ellz|P 2712 + 277 - 4]

121"

i e

for each x,z € X. By using induction on n, we have

lo@) a9 (55 ) 2| < clletPlzl Zmp .
— elalplelr 2
j=0

. 2—p(1_2(2—P)n)
= clle |zl (— )

for each x,z € X. For m,n € N and for x € X

m n z . m+n—m x AN ﬁ
[479(57) = 9(5) A = o+ a(Gmms) - 49() |

Xz X
g 2mfn . 2n g 211 Z

m—n—1

T .

= r (=p+2)j—p

5‘ 5 z E 2
Jj=0
m—n—1

= el|z||P||z||" Z 9(2=p)(n+j)—p
=0

2(—p+2)n—p(1 — 2(—p+2)N)
— p r

= ellzPllzl | ——— 55—
— 0 asn —+

(15)
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for each z € X. Therefore {4" f(5%)} is a 2-Cauchy sequence in X, for each
v € X. Since X is a 2-Banach space, the sequence {4" f(57)} 2-converges, for
each v € X. Define Q) : X — X as

Q(z) ;== lim 4"f( x)

n—o00 on

for each x € X. Now from (15),

im [Jot@) - 4°0(55). < < Pl =
lim g (@ I\gn ) 2| S elzlPlal =5
for each z,z € X. Therefore
ellz|”ll=]l"

1f(2) = Q(z) = £(0), 2]l < —=,;—

for each x,z € X. The further part of the proof is similar to that of the proof
of Theorem 2.1.

3 Stability of a Functional Equation for
Function f: (X, [-,-[|) — (X, ], -[])

In this section we study similar problems which we have studied in section 2
for functions f: X — X, where (X, |-, -]|) is a 2-Banach space.

Theorem 3.1 Lete > 0,0<p,q<2. If f: X — X is a function such that
1Ds(x,y), z|| < e(llz, z[” + |y, 2[|) (16)

for each x,y,z € X. Then there exists a unique quadratic function Q) : X —
X satisfying (2) and

ellz, z|”

|£(x) = Qla) = £(0) 2] < S50 (7)

for each x,z € X.

Proof 3.1 Let g : X — X be a function defined by g(x) = f(x) — f(0),
for each © € X. Then g(0) = 0. Also

[ Dg(w, ), 2|l = ll9(22 +y) — g(x + 2y) — 3g(z) + 3g(y), 2|
<e(l|z, 2[|” + [ly, 2[|9) (18)

for each x,z € X. Putting y = 0 in (18), we get

lg(2x) = 4g(x), z[| < e[z, 2" (19)
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for each x,z € X. Therefore
1 € »
o) = 79(22), 2| < Zlle, 2l (20)

for each x,z € X. Replacing x by 2z in (20), we get

1
l9@2) = J9t40), 2 (21)
for each x,z € X. By (20) and (21), we get
1 1 1
)= a2 < o) = Jat2e). o] + a2 - Fata.o]
Hg( 1e9(40), 2| < [lo(@) = g9(2e), 2| 4 |[79(22) = Fao(de),
g 2P
< SNl el + S5 e 2l
6H%ZH’”[ 2
— 1 _]
4 + 4
for each x,z € X. By using induction on n, we get
1 ellz, z||P <= 279
oo AL
|t TS e S
7=0
el 2| ”Z*2<p2)j
4
=0
pl1—2@=2n
4 1—2r—2
for each x,z € X. Form,n € N forx e X
| 92m) = 0(2'0), 2| = | s a2 ) = (@)
4 4
1 1
= = maen e 2e) - g270). 2|
m—n—1
€||2"1’ z||” 2
< 210 )3
m—n—1

_ 5||$ z|[P Z o (p=2)(+)

_ 8\|96=Z|\p2p n n(1 — 2-2mn))
- 4 1 — 2p—2
— 0 asm,n — o0
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for each z € X. Therefore, {1-9(2"x)} is a 2-Cauchy sequence in X, for each
x € X. Since X is a 2-Banach space, {7 9(2"x)} 2-converges, for each x € X.
Define the function @ : X — X as

Q(x) := lim i9(2”917)

n—oo 4m
for each x € X. Now, by (22)

ellz, 2|l 1
4 1—2w?

tim |Jg(e) — (2'0), 2| <

n—00 4n
for each x,z € X. Therefore

ellz, z||”

1£(2) = Q) = £(0), 2] = - — -

for each x,z € X. Next we show that Q) satisfies (2). Forx € X

. 1 n n
| Do(z,y), 2| = nh_g)lo 4_nHDg(2 z,2"y), z||
g
= lim —(||2", z||” + [|2"y, ]|%)
n—oo 4m
= lim e[2072"||z, 2|7 + 260727 |y, 2||]
n—o0

=0

for each z € X. Therefore |Dg(x,y),z|| = 0, for each z € X. So we get
Dg(z,y) = 0. Next we prove the uniqueness of Q). Let Q) be another quadratic
function satisfying (2) and (17). Since Q and Q" are quadratic,

Q(2"x) = 4"Q(x), Q'(2"x) = 4"Q'(x), for each x € X. Now for x € X

Q) ~ Q). 2] = Q") — @/(2"0). 2|
< 2110@) — 9(2"0), 2] + lg(2"s) — Q'(2), =]
1 2¢||2™z, z||?
= 4n 4w
2e ||z, z||?
4 —2p
— 0 asn— o0

— 9(=2)n

for each z € X. Therefore ||Q(z) — Q' (x), z|| = 0, for each z € X. Therefore
Q(x) = Q' (x), for each v € X.
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Theorem 3.2 Lete > 0,p,q > 2,7 > 0. If f: X — X is a function such
that

1Ds (2, y), 2] < e(ll, 2P + lly, [|7) (23)

for each x,y,z € X. Then there exists a unique quadratic function @ : X —
X satisfying (2) and

ellz, 2|7
[f(z) = Q(z) — f(0), 2] < op 4 (24)
for each x,z € X.
Proof 3.2 By (19) of Theorem 3.1, we have
lg(22) — 4g(z), || < ellz, |]” (25)
for each x,z € X. Replacing x by § in (25), we get
lote) = 49(3) 2| < e2 7l 2117 (26)
for each x,z € X. Replacing x by 5 in (26), we get
Jo(3) —a0(3) =] < 21 @)
for each x,z € X. Combining (26) and (27), we get
x x x x
_ =z < _ e 2 - el
lo(e) = 160(3). 1 < o(o) = 4(5). ] + [49(3) - 169 (3) <]
< 27|z, 2| + 42277 |z, 2P
= ¢||x, z||P[27P + 277 - 4]
for each x,z € X. By using induction on n, we have
z n—1
lot@) = 49(55) 2| < ella 2l Y- w2t
7=0
n—1
= ez, 2|? Z 9(=p+2)j—p
=0
27P(1 — 2(2—p)n)
=ello, 2l (— =) (28)
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for each x,z € X. Form,n € N, Forz € X

H4 g(zm) 4:g<2n>’z H4 I\ gmn) =40\ 5a ) #

Xz X
=4 (Gm) —o(5)
g 2m—n2n g 2n <

» m—n—1
I 2||" Z o(=p+2)j—p
=0

m—n—1
= ¢||z, z||? Z 9(2=p)(n+j)—p
§=0
2(—p+2)n—p(1 — 2(—p+2)n)

1 —2-p+2 }

§4"-6’

Xz
2n

=ell, 2|"|
—>0asn—

for each z € X. Therefore {4" f(5%)} is a 2-Cauchy sequence in X, for each
v € X. Since X is a 2-Banach space, the sequence {4" f(57)} 2-converges, for
each x € X. Define QQ : X — X as

n—oo

Q(z) := lim 4”f<2£n>

for each x € X. Now, by (28)

l; oo” () — 4" (:U> H <e ||p—2—P
lim Jig(z I\ ) ? elle, 21" =55
for each x,z € X. Therefore
| f(x) (z) = £(0),2]| < cliz. 2|1
x)— Q) — z
’ w4

for each x,z € X. The further part of the proof is similar to that of the proof
of Theorem 3.1.
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