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Abstract
In this paper we are interessted in generating the α-dense curves in a hyper-

rectangle of Rn using the periodic solutions of some ordinary differential equa-
tions of high order. The solutions are defined by periodic functions. Some
applications and numerical results are introduced to illustrate the idea of this
technique.
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1 Introduction

Global optimization has received a wide attraction from many scientific fields
in the past few years, due to the success of new algorithms for addressing
intractable problems from diverse areas as computational chemistry, biology,
biomedicine, structural optimization, computer sciences, operations research,
economics, engineering design and control. Very interesting results have been
obtained in [2], [6, 7], [11, 12]. However, global optimization multidimensional
problems are difficult to solve numerically and that there is an obstacle to
use directly multidimensional methods, because of their complexity and the
lengthy calculation times [13, 14], [18]. It exist performance methods in the
case unidimensional; it is more reasonable to exploit those methods after some
transformations.
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In this optics the Alienor transformation method has been applied and it
has proved their effectiveness in various situations [1], [10], [15]. It is based
on the idea of reducing several variables of minimization problem to a single
variable of minimization problem allowing the use of well known powerful
methods and techniques available in the case of a single variable [3, 4], [9].
There is a useful notation for this approach which was developed in the eighties
by Cherruault and al.. In this paper, we will show that some α-dense curves can
be obtained from the solution of large class of ordinary differential equations,
this is a new approach to find α-dense curves. This constructive method to
determine the α-dense curves in a space of high dimension consists of using
periodic solutions of ordinary differential equations.

In a general metric space (E, d) some subsets X can be densified with a
degree of density α > 0, by means of curves densified in E satisfying the called
α-density property, which defined in the following theorem.

For E = Rn with n ≥ 2, the case α = 0 leads us to the Peano curves
provided that the subset X to have positive Jordan content. The functions h
of the following theorem are also known as space-filling curves [16], [19]; so
they can be considered as a special subclass of α-dense curves for the limit
case α = 0.

Briefly speaking, the Alienor reducing transformation method can be sum-
marized as follows.

It is asked for solving the global minimization problem:

min
(x1,x2,...,xn)∈n

i=1[ai,bi]

f(x1, x2, ..., xn) (1)

where f is Lipschitz on n
i=1 [ai, bi] .

We construct a parameterized curve h(θ) = (h1 (θ) , h2 (θ) , ..., hn (θ)) , α-
dense in n

i=1 [ai, bi] for θ ∈ [0, θmax] , where θmax is the supremum the domain of
definition of the function h when it “α-densifies” the hyper-rectangle.

The minimization problem (1) is then approximated by the problem

min
θ∈[0,θmax]

f ∗ (θ)

where f ∗ (θ) = f (h1 (θ) , h2 (θ) , ..., hn (θ)) .
In the basic method, the unidimentional minimization problem (1) is solved

by descretizing the interval [0, θmax] via a chosen ∆θ. Then we look for the
minimum of the finite set {f ∗ (θk) , k = 1, ..., N} , where θ0, θ1, ..., θN are the
discretized points. Obviously, the densification parameter α and the step ∆θ
are chosen such that the global minimum is obtained with the desired accuracy
ε.[5], [17] and [20, 21].

The Alienor method has also proved to be a great efficiency when it mixed
with some one dimentional methods as the covering algorithms (the method
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of Piyavskii-Shubert, the Brent algorithm and Evtushenko method).
For this reason, the generating methods for them are specially interesting

for our purpose.
Consider the function h(θ) = (h1 (θ) , h2 (θ) , ..., hn (θ)), defined on the

interval closed and bounded A of R and the value in the indicated hyper-
rectangle.

Definition 1.1 A curve of Rn defined by

h : A→n
i=1 [ai, bi]

is called α-dense in n
i=1 [ai, bi], if for any x ∈ni=1 [ai, bi], there exists θ ∈ A such

that d(x, h (θ) ≤ α, where d is the Euclidean distance in Rn.

Theorem 1.2 Consider the function (h1, h2, ..., hn) : A →n
i=1 [ai, bi], with

θ1, θ2, ..., θn, α are strictly positive numbers such that:
a) for any i = 1, 2, ..., n, hi are continuous and surjective
b) for any i = 1, 2, ..., n−1, hi are periodic, respectively of period θ1, θ2, ..., θn−1
c) for any interval I of A and for any i ∈ {1, 2, ..., n− 1}, we have:

µ (I) < θi ⇒ µ (hi+1 (I)) <
α√
n− 1

.

Then the curve defined by h(θ) = (h1 (θ) , h2 (θ) , ..., hn (θ)) , for θ ∈ A, is
α-dense in n

i=1 [ai, bi] .

Proof. The proof will be obtained in a recurrent way:
i) First consider the case n = 2
Let x = (x1, x2) ∈ [a1, b1]×[a2, b2] and consider the interval [x2 − α, x2 + α].

On the one hand the function h2 is surjective, and consecently there exists
a closed interval I ⊂ A such that h2(I) = [x2 − α, x2 + α] ∩ [a2, b2], but
µ (h2(I)) ≥ α, which implies µ(I) ≥ θ1, and thus h1(I) = [a1, b1]. On the
other hand x1 ∈ [a1, b1], then there exists θ′ ∈ I such that x1 = h1 (θ′); and
since h2 (θ′) ∈ [x2 − α, x2 + α] ∩ [a2, b2], we have |x2 − h2(θ′)| ≤ α.

We deduce
‖(x1, x2)− (h1 (θ′) , h2 (θ′))‖ ≤ α.

ii) We suppose that the theorem is true for (n− 1).
Let x = (x1, x2, ..., xn) ∈ni=1 [ai, bi] . Let us consider the interval [xn − α, xn + α].
Inasmuch as hn is surjective, there exists a closed interval I ⊂ A such

that hn(I) = [xn − α, xn + α] ∩ [an, bn], which yields µ (hn(I)) ≥ α√
n−2 , and

therefore µ(I) ≥ θn−1, leading to hn−1(I) = [an−1, bn−1].
Moreover, the sequence of numbers θ1, θ2, ..., θn−1 is increasing, hence the

functions h1, h2, ..., hn−1, restricted to interval I, are surjective and satisfied the



4 Taieb Hamaizia et al.

hypotheses of the theorem. Consequently, the curve defined by (h1 (θ) , h2 (θ) , ..., hn−1 (θ))
for θ ∈ I , is α-dense in n−1

i=1 [ai, bi], but (x1, x2, ..., xn−1) ∈n−1i=1 [ai, bi] involving
the existence of θ′′ ∈ I such that:

‖(x1, x2, ..., xn−1)− (h1 (θ′′) , h2 (θ′′) , ..., hn−1 (θ′′))‖ ≤ α.

Since |xn − hn(θ′′)| ≤ α, we deduce:

‖(x1, x2, ..., xn)− (h1 (θ′′) , h2 (θ′′) , ..., hn (θ′′))‖ ≤ α.

Remark 1.3 For any i ∈ {1, 2, ..., n− 1} , hi is continuous and since it
is θi-periodic and surjective, it reaches the bounds ai and bi in every closed
interval of length θi.

Now, we give a method to determine α-dense curves in hyper-rectangle of
Rn, based on the resolution of ordinary differential equations of the form

dnx(t)

dtn
+ an(t)

dn−1x(t)

dtn−1
+ ...+ a2(t)

dx(t)

dt
+ a1(t)x(t) = g(t) (2)

where x(t) is the unknown function, ak (t) , k = 1, 2, ..., n and g(t) are known
continuous functions defined on −∞ < t <∞ ..

2 Construction of α-Dense Curves

In this section we will discuss the periodic solution of nth order differential
equation. In particular, for the third order differential equation

d3x(t)

dt3
= p (t)

d2x(t)

dt2
+ q (t)

dx (t)

dt
+ r (t)x (t) (3)

where x = x(t) is an unknown function and p (t), q (t), r (t) are continuous
functions defined as follows:

q(t) =
(β2 − γ2) tan (t) + β3 (γ2 − 1) tan (βt) + γ3 (1− β2) tan (γt)

(−β2 + γ2) tan (t) + β (−γ2 + 1) tan (βt) + γ (−1 + β2) tan (γt)
,

p(t) =
γ3 tan (γt)− tan (t) + (γ tan (γt)− tan (t)) q (t)

1− γ2
,

r(t) = p(t) + (1 + q(t)) tan(t),

where (β, γ) ∈ R2 is a fixed couple, such that

2π.
√

2

α
< β <

α.γ

2π.
√

2
.
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The number α is strictly positive and belongs to a neighbourhood of 0. Then
the fundamental system of solution of (3) is (sin(γt), sin(βt), sin(t)) generates
an α-dense curve in [−1, 1]3.

Indeed the equation (3) can be written in the system form

Ẋ = A(t)X , where X =

 x1
x2
x3

 and A(t) =

 0 1 0
0 0 1
−r(t) −q(t) −p(t)


There exists x ∈ C3 (I) such that {x(γt), x(βt), x(t)} is a fundamental

system of solutions of the equation (3). Using any method of solving high
ordinary differential equations, we can find the fundamental set of solution of
the homegeneous equation (3) which has the form {sin(γt), sin(βt), sin(t)} .

Consider the function

h(θ) = (h1(θ), h2 (θ) , h3(θ)) : [0, 2π]→ [−1, 1]3

θ → (sin (γθ) , sin (βθ) , sin (θ))

a) h1, h2, h3 are continuous and surjective
b) h1, h2 are periodic, with period T

α1
= 2π

γ
, T
α2

= 2π
β

c) h1, h2, h3 are Lipshitzian, respectively of constants c1 = γ, c2 = β, c3 = 1
d) according to the hypotheses, we have:

2π.
√

2

α
< β <

α.γ

2π.
√

2
.

So, for any interval I of A = [0, 2π] and for any i = 1, 2

µ (I) <
2π

αi
⇒ µ (hi+1 (I)) <

α√
2
.

Thus all the hypotheses of theorem (2) are satisfied. Then the curve defined
by h(θ) = (sin γθ, sin βθ, sin θ) ,for θ ∈ [0, 2π] is α-dense in [−1, 1]3.

As another example, let the differential equation

d3x (t)

dt3
− p (t)

d2x (t)

dt2
− q (t)

dx (t)

dt
− r (t)x (t) = 0 (4)

where p (x), q (x) and r (x) are defined as follows:

q(x) =
(β2 − γ2) tan (x) + β3 (γ2 − 1) tan (βx) + γ3 (1− β2) tan (γx)

(−β2 + γ2) tan (x) + β (−γ2 + 1) tan (βx) + γ (−1 + β2) tan (γx)
,

p(x) =
γ3 tan (γx)− tan (x) + (γ tan (γx)− tan (x)) q (x)

1− γ2
,

r(x) = p(x) + (1 + q(x)) tan(x),
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where (β, γ) ∈ R2 with 1 < β < γ. such that

2π.
√

2

α
< β <

α.γ

2π.
√

2
,

the number α is strictly positive and in the neighbourhood of 0. Then the
fundamental system of solution of (4) is (cos(γt), cos(βt), cos(t)) generates an
α-dense curve in [−1, 1]3.

Indeed the equation (4) can be written in the form ẋ = A(t)x where:

A(t) =

 0 1 0
0 0 1
−r(t) −q(t) −p(t)


There exists x ∈ C3 (I) such that {x(γt), x(βt), x(t)} is a fundamental system
of solutions of the equation (4). Using any method of solving high ordinary
differential equations, we can find the set of solution of (4) that has the form
{cos(γt), cos(βt), cos(t)} .

Consider the function

h(θ) = (h1(θ), h2 (θ) , h3(θ)) : [0, 2π]→ [−1, 1]3

θ → (cos (γθ) , cos (βθ) , cos (θ))

a) h1, h2, h3 are continuous and surjective
b) h1, h2 are periodic,respectively of period T

α1
= 2π

γ
, T
α2

= 2π
β

c) h1, h2, h3 are Lipshitzian, respectively of constants c1 = γ, c2 = β, c3 = 1
d) for any interval I of [0, 2π] and for any i = 1, 2

µ (I) <
2π

αi
⇒ µ (hi+1 (I)) <

α√
2
.

Then the curve defined by h(θ) = (cos γθ, cos βθ, cos θ) , for θ ∈ [0, 2π] is α-
dense in [−1, 1]3 .

In the case of fourth order, we consider the linear ordinary differential
equation

d4x(t)

dt4
+
(
λ2 + β2

) d2x(t)

dt2
+
(
β2λ2

)
x(t) = 0.

The vector function of solution has the form {a1 cosλt, a2 sinλt, a3 cos βt, a4 sin βt} ,
a1, a2, a3, a4 are arbitrary constants

Set h(θ) = (h1(θ), h2(θ), h3(θ), h4(θ)) = (a1 cosλθ, a2 sinλθ, a3 cos βθ, a4 sin βθ).
where a1, a2, a3, a4 ∈ [0, 1] and verified:

a2 <
α

2π
√

3
, a3β <

α

2π
√

3
λ and a4 <

α

2π
√

3
.
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The number α is strictly positive and in the neighbourhood of 0. It is easy to
see that:

a) hi are continuous and surjective, for i = 1, ..., 4
b) h1, h2, h3 are periodic, respectively of period T

α1
= T

α2
= 2π

λ
, T
α3

= 2π
β

c) hi are Lipshitzian of constants c1 = a1λ, c2 = a2λ, c3 = a3β, c4 = a4β,
for i = 1, ..., 4

d) for any interval I of A = [0, 2π] and for any i = 1, 2, 3

µ (I) <
2π

αi
⇒ µ (hi+1 (I)) <

α√
3
.

Then the curve difined by h(θ) = (a1 cosλθ, a2 sinλθ, a3 cos βθ, a4 sin βθ), for
θ ∈ [0, 2π] is α-dense in [−1, 1]4 of R4.

In the case of second order, consider the linear ordinary differential equation
and homogeneous

d2x(t)

dt2
+ β2x(t) = 0.

The set of solution has the form {a1 cos βt, a2 sin βt} , a1, a2 are arbitrary
constants

Set h(θ) = (h1(θ), h2(θ)) = (a1 cos βθ, a2 sin βθ), where a1, a2 are constants
strictly positive numbers such that: a1 ∈ [0, 1] and a2 verified

a2 <
α

2π
.

The number α is strictly positive and in the neighbourhood of 0. It is clear
that

a) h1, h2 are continuous and surjective
b) h1is periodic of period T

α1
= 2π

β

c) h1, h2 are Lipshitzian of constants c1 = a1β., c2 = a2β
d) for any interval I of A = [0, 2π] and for i = 1

µ (I) <
2π

α1

⇒ µ (h2 (I)) < α.

Then this solution generates an α-dense curve in [−1, 1]2 .

3 Conclusion

α-dense curves can be generated by non-periodic solutions of ordinary dif-
ferential equations. Indeed, the α-density of these curves is obtained from
relationship existing between functions h1, h2, ..., hn. However, periodic func-
tions are often used because of their simplicity in calculations. It is why we
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often use sinusoidal functions which, in addition to the periodicity, generate
curves of class C∞. Other classes generating this type of curves, have been
given in [8], [16] and [19]. This permits us to improve the Alienor method used
in the multidimentional problems of optimization and for the approximation
of several variables functions.
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