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1 Introduction

Let H and G be topological groups, H abelian. By a topological extensions of
H by G, we mean a short exact sequence

ε : 1 //H ι //E π //G //1 with π an open continuous homomorphism
and H a closed normal subgroup of E. A cross-section of a topological group
extension (E, π) of H by G is a continuous map u : G → E such that πu(x) = x
for each x ∈ G. The set of all extensions of H by G with a continuous cross-
section, denoted by Extc(G,H), with the Bair-sum is a group [3].

In this paper we show a similar result for topological local groups [5]. In
section 1 we give some definitions which will be needed in sequel. In section 2,
we introduce the pull-back and the push-out of a topological local extension
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and prove that the class of topological local extensions is a group.

We use the following notations:

• ” 1 ” is the identity element of X.

• ”≤” : G ≤ H, G a sublocal group (subgroup) of a local group (group)
H.

• D = {(x, y) ∈ X ×X; xy ∈ X} where X is a local group.

2 Primary Definitions

We recall the following definition from [6]:
A local group (X, .) is like a group except that the action of group is not
necessarily defined for all pairs of elements, The associative law takes the
following form: if x.y and y.z are defined, then if one of the products (x.y).z,
x.(y.z) is defined, so is the other and the two products are equal. It is assumed
that each element of X has an inverse.

Definition 2.1. [5] Let X be a local group. If there exist:

a) a distinguished element e ∈ X, identity element,

b) a continuous product map ϕ : D → X defined on an open subset

(e×X) ∪ (X × e) ⊂ D ⊂ X ×X.

c) a continuous inversion map ν : X → X
satisfying the following properties:

(i) Identity : ϕ(e, x) = x = ϕ(x, e) for every x ∈ X

(ii) Inverse: ϕ(ν(x), x) = e = ϕ(x, ν(x)) for every x ∈ X

(iii) Associativity : If (x, y), (y, z), (ϕ(x, y), z) and (x, ϕ(y, z)) all belong
to D, then

ϕ(ϕ(x, y), z) = ϕ(x, ϕ(y, z))

then X is called a topological local group.

Example 2.2. Let X be a Hausdorff topological space and4X be the diagonal
of X, a ∈ X and D = ({a} ×X) ∪ (X × {a}) ∪4X . Define ϕ : D −→ X by:

ϕ(x, y) =





x , y = a,
y , x = a,
a , x = y,

.
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Now X, by the action of ϕ, is a local group.
If x ∈ X, x 6= a, we have ϕ(x, a) = x. If U is a neighborhood of x, then

ϕ−1(U) = U × {a}. There are two cases;

1) a ∈ U : since X is Hausdorff, there are disjoint neighborhood U1, U2

containing a, x, respectively. Then x ∈ U2 ∩ U and a /∈ U2 ∩ U = V and
ϕ−1(V ) = V × {a}. Hence, ϕ(V × {a}) ⊂ U . So ϕ is continuous.

2) a /∈ U : ϕ−1(U) = U × {a}.
If x = a and W is a closed neighborhood of a in X then ϕ−1(W ) = 4X ∪(W ×
{a})∪ ({a}×W ). Hence, ϕ is continuous. Therefore, ϕ : D → X, (x, y) 7→ xy
and X → X, x 7→ x−1 are continuous. So X is a topological local group.

Definition 2.3. A sublocal group of X is a subset Y ⊆ X such that e ∈ Y ,
Y = Y −1 and if x, y ∈ Y and x ∗ y−1 ∈ X then x ∗ y−1 ∈ Y .

A subgroup of a local group X is a subset H ⊆ X such that e ∈ H,
H ×H ⊆ D and for all x, y ∈ H, x ∗ y ∈ H.

Definition 2.4. A continuous map f : (X, .) → (X ′, ∗) of topological local
groups, is called a homomorphism if:

1. (f × f)(D) ⊆ D′ where D′ = {(x′, y′) ∈ X ′ ×X ′, x′ ∗ y′ ∈ X ′};
2. f(e) = e′ and f(x−1) = (f(x))−1;

3. if x.y ∈ X then f(x) ∗ f(y) exists in X ′ and f(x.y) = f(x) ∗ f(y).

With these morphisms topological local groups form a category which con-
tains the subcategory of topological groups.

Definition 2.5. A homomorphism of topological local groups f : X → X ′

is called strong if for every x, y ∈ X, the existence of f(x)f(y) implies that
xy ∈ X.

A morphism is called a monomorphism (epimorphism) if it is injective
(surjective).

We denote the product of p copies of X by Xp.

Lemma 2.6. [1, Lemma 2.5] Let U be a symmetric neighborhood of the identity
in a topological local group X. There is a neighborhood U0 of identity in U such
that for every x, y ∈ U0, xy ∈ U .

Definition 2.7. Let X,Y be topological local groups and U is a symmetric
neighborhood in X. The continuous map f : U → Y is an open continuous
local homomorphism of X onto Y if
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1. there exists a symmetric neighborhood U0 in U such that if x1, x2 ∈ U0,
then x1x2 ∈ U ;

2. f(x1x2) = f(x1)f(x2) x1, x2 ∈ U0;

3. for every symmetric neighborhood W , W ⊆ U0, f(W ) is open in Y .

The map f is called an open continuous local isomorphism of X to Y if U0

can be chosen so that f |U0 is one to one.

Definition 2.8. A topological local group extension of a topological local group
Y by a topological local group X is a triple (E, π, η) where E is a topological
local group, π is an open continuous local homomorphism of E to X, and η is
an open continuous local isomorphism of Y onto the kernel of π [2].

Remark. If (E, π, η) is a topological local group extension of N by X, with π
a strong homomorphism and N = kerπ, then N is a closed normal topological
subgroup of E.

3 The Group of Topological Local Extensions

It is known that the set of extensions of a group is an abelian group [3]. We
show that the class of topological local group extensions with the Bair-sum
forms a group.

Definition 3.1. Let ε1 = (E1, π1, η1) and ε2 = (E2, π2, η2) be topological local
extensions of an abelian topological group C by a topological local group X. If
there exists a strong isomorphism σ of E1 onto E2 such that σ ◦ η1(n) = η2(n)
and π1 = π2 ◦ σ.

ε1 : 1 //C //E1

σ

²²

π1 //X //1

ε2 : 1 //C //E2
π2 //X //1

The ε1 and ε2 are equivalent, ε1 ≡ ε2.

Lemma 3.2. Let ε = (E, π, η) be an extension of an abelian topological group
C by a topological local group X. If γ : X ′ → X is a strong homomorphism,
then there exists an extension εγ = (E ′, π′, η′) of C by a topological local group
X ′, such that the following diagram commutes.

εγ : 0 //C ι′ //E ′

σ

²²

π′ //X ′

γ

²²

//1

ε : 0 //C
ι //E

π //X //1

(3.1)

where E ′ = {(e, x′)|π(e) = γ(x′), e ∈ E, x′ ∈ X ′}.
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Proof. The maps π and γ are strong local homomorphisms. We consider

E ′ = {(e, x′)|π(e) = γ(x′), e ∈ E, x′ ∈ X ′};
E ′ is a sublocal group of E ⊕X ′. By [5, Proposition 2.22], E ′ is a topological
local group. We define

π′ : E ′ → X ′, π′(e, x′) = x′, σ : E ′ → E, σ(e, x′) = e, η′ : C → kerπ ⊕ {1X′},
η′(n) = (η(n), 1X′).
Since π is onto then so is π′.

Let V1 is a neighborhood of the identity in X. By Lemma 2.6, there is a
symmetric neighborhood V0 in V1 such that π(e1).π(e2), γ(x′1).γ(x′2) ∈ V1 for
π(e1), π(e2), γ(x′1), γ(x′2) ∈ V0 which π(e1) = γ(x′1), π(e2) = γ(x′2).
Since π and γ are strong homomorphisms, if π(e1)π(e2) = γ(x′1)γ(x′2) , π(e1e2) =
γ(x′1x

′
2), then (e1e2, x

′
1x
′
2) is defined in E ′. We define an action on E ′ by

(e1, x
′
1).(e2, x

′
2) := (e1e2, x

′
1x
′
2).

Now π′ is a local homomorphism, since π′ is onto.

π′((e1, x
′
1).(e2, x

′
2)) = π′(e1e2, x

′
1x
′
2) = x′1x

′
2 = π′(e1, x

′
1).π

′(e2, x
′
2),

Since π and γ are strong homomorphisms. Therefore, π′ is strong. Similarly
σ is a strong homomorphism.

Now, we show that π′ is continuous. For every x′ ∈ X ′, there is a symmetric
neighborhood Vx′ of x′. It is enough to show that π′−1(Vx′) is open in E ′. There
exists a symmetric neighborhood V of γ(x′) in X such that Vx′ ⊆ γ−1(V ). Since
π is onto, then there exists e ∈ E such that γ(x′) = π(e). Since π is continuous,
so there is a symmetric neighborhood Ve of e such that Ve ⊂ π−1(V ). Now
Ve ⊕ Vx′ is a symmetric open set in E ⊕X ′. Therefore, V(e,x′) = [Ve ⊕ Vx′ ]∩E ′

is an open set in E ′ and (e, x′) ∈ V(e,x′) ⊂ π′−1(Vx′). So π′−1(Vx′) is an open
set in E ′.

We have π′(V(e,x′)) = π′((Ve ⊕ Vx′) ∩ E ′) = V ′
x′ where V ′

x′ is a symmetric
neighborhood of x′ and V ′

x′ ⊆ Vx′ . Then, π′ is an open continuous map. We
will have ση′ = η and η′ is a local isomorphism.

The diagram (3.1) commutes, since γπ′(e, x′) = γ(x′) = π(e) = πσ(e, x′),
i.e. γπ′ = πσ. Suppose ε′′ = (E ′′, π′′, η′′) is an extension of C by X ′, such that
the following diagram commutes

ε′′ : 0 //C //E ′′

σ′′
²²

π′′ //X ′

γ

²²

//1

ε : 0 //C //E π //X //1

Let σ′ : E ′′ → E ′, σ′(e′′) = (σ′′(e′′), π′′(e′′)). Then, π′σ′ = π′′ and σ′η′′ = η′.
Now by the five lemma [3], (1C , σ′, 1X′) : ε′′ → εγ, ε′′ and εγ are equivalent.
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Note 3.3. As in Lemma 3.2, if there exists εγ
(IdC ,σ,γ) //ε , then εγ is a pullback

of ε.

Lemma 3.4. Let ε = (E, π, η) and ε1 = (E1, π1, η1) be extensions of two
abelian topological groups C , C1 by topological local groups X, X1, respectively.
Assume α1, σ1, γ1 are strong homomorphisms of ε1 to ε. Suppose γ1 = γ :
X1 → X. Then we have

ε1
(α1,σ′,IdX) //εγ

(IdC ,σ,γ) //ε.

Proof. By assumptions and Lemma 3.2, we have the following commutative
diagrams:

ε1 : 0 //C1

α1

²²

//E1

σ1

²²

π1 //X1

γ1

²²

//1 εγ : 0 //C
ι′ //E ′

σ

²²

π′ //X1

γ

²²

//1

ε : 0 //C //E
π //X //1 ε : 0 //C //E

π //X //1

where σ′ : E1 → E ′, σ′(e1) = (σ1(e1), π1(e1)). Then, σ1 = σ ◦ σ′.
So, the diagram (α1, σ

′, IdX1) : ε1 → εγ is commutative, π′σ′ = π1 and σ′η1 =
η′.

Lemma 3.5. Let ε = (E, π, η) be an extension of an abelian topological group
C by a topological local group X. If α : C → C ′ is a continuous homomor-
phism of topological local groups, then there exists an extension αε = (K, π′, η′)
of abelian topological group C ′ by a topological local group X such that the
following diagram commutes.

ε : 0 //C

α

²²

ι //E

σ

²²

π //X //1

αε : 0 //C ′ ι′ //K
π′ //X //1

(3.2)

where K = C′⊕E
H

, H = {(−α(n), ι(n))|n ∈ C} and σ a strong local homomor-
phism.

Proof. Suppose

H = {(−α(n), ι(n))|n ∈ C}.
Then, H is a subgroup of C ′ ⊕ E. By [5, Proposition 2.22], C ′ ⊕ E is a
topological local group. The map ι is injective and ι(C) ≡ kerπ. Then, ι(C)
is a closed subgroup of E and α a homomorphism of topological groups. So H
is a closed topological subgroup of C ′ ⊕ E. Since −α(C) is an open subgroup
of C ′ then −α(C) is a closed topological subgroup of C ′. Note that H is a
normal subgroup , since for every (n′, e) ∈ C ′ ⊕ E,
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(n′, e)(−α(n), ι(n)) = (n′ − α(n), e.ι(n))) = (−α(n) + n′, ι(n).e) =
(−α(n), ι(n))(n′, e)

Since (−α(n), ι(n)) ∈ H and ι(n) ∈ H and by [5, Defintion 3.1] and H E E,
then ι(n).e is defined. So, (n′, e)H = H(n′, e).

K = C′⊕E
H

, σ : E → C′⊕E
H

, e 7→ (0, e)H

K, C′⊕E
H

are topological local groups [5, Lemma 1.8, Defintion 3.8].
Let V1 be a neighborhood of the identity in E. By Lemma 2.6, there is a
symmetric neighborhood V0 in V such that e1e2 ∈ V1 for e1, e2 ∈ V0. We define
an action on K by

((n′1, e1)H).((n′2, e2)H) =: (n′1n
′
2, e1e2)H. for e1, e2 ∈ V0

Now σ(e1e2) = (0, e1e2)H = ((0, e1)H)((0, e2)H) = σ(e1)σ(e2) ∈ (0⊕ V1)H for
e1, e2 ∈ V0. Then σ is a strong homomorphism. We define

ι′ : C ′ → C′⊕E
H

, ι(n′) = (n′, 1E)H, π′ : ((n′, e)H) 7→ π(e) η′ : C ′ → kerπ′,

n 7→ (0, η(n))H

We show that π′ is an onto continuous strong homomorphism. For ev-
ery x ∈ X, since π is onto, then there is e ∈ E, such that π(e) = x.
We can write π(e) = π′((n′, e)H) for each n′ ∈ C ′. Then, π′ is onto. If
((n′1, e1)H).((n′2, e2)H) is defined in C′⊕E

H
, then

π′(((n′1, e1)H).((n′2, e2)H)) = π′((n′1n
′
2, e1e2)H) = π(e1e2) = π(e1)π(e2)

and

π′((n′1, e1)H).π′((n′2, e2)H) = π(e1)π(e2).

where e1, e2 ∈ V0. So, π′ is a local homomorphism.
Since π is strong and π′ onto, we have

π′((n′1, e1)H).π′((n′2, e2)H) = π(e1)π(e2) = π(e1.e2) = π′((n1n2, e1e2)H),

where e1, e2 ∈ V0. Now, we show that π′ is an open continuous map. It is
enough to show that for every x ∈ X, there is a symmetric neighborhood Vx

such that π′−1(Vx) is open in K. Since π is open, onto and continuous, then
there is e ∈ E with π(e) = x and a symmetric neighborhood Ve of e such that
π(Ve) = Vx, so Ve ⊆ π−1(Vx). Then, C ′ ⊕ Ve is open in C ′ ⊕ E. Suppose

H ′ = {(−α(n), ι(n))|ι(n) ∈ Ve, n ∈ C ′},
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Then, H ′ is a normal subgroup of C ′ ⊕ Ve. So H ′ = H ∩ (C ′ ⊕ Ve) and by [4,
Theroem 17.2, p.94], H ′ is closed in C ′ ⊕ Ve . Since C′⊕Ve

H′ is open in π′−1(Vx)
then π′ is continuous.

We have π′(C′⊕Ve

H′ ) = π(Ve) = Vx. So, π′ is open. Hence, the diagram (3.2)
is commutative π′σ = π , ση = η′ and uniqueness of αε is similar to Lemma
3.2.

Remark. As in Lemma 3.4, if there exists ε
(α,σ,IdX1

)
//
αε , then αε is called a

pushout of ε.

Note 3.6. As in Lemma 3.4, we will have the factorization of ε1
(α1,σ1,γ1) //ε

with α = α1 : C1 → C:

ε1

(α,σ,IdX1
)

//
αε1

(IdC1
,σ′,γ1)

//ε.

Note 3.7. Consider

ε1
(α1,σ1,γ1) //ε

(α2,σ2,γ2) //ε2

By Lemmas 3.2 and 3.5, there exist unique εγ1 and α2ε between ε1, ε and ε,
ε2,respectively. Then

ε1

(α1,σ′1,IdX1
)
//εγ1

(IdC ,σ′′1 ,γ1)
//ε

(α2,σ′′2 ,IdX)
//
α2ε

(IdC2
,σ′′2 ,γ2)

//ε2

Therefore, we have εγ1 −→ α2(εγ1) and (α2ε)γ1 −→ α2ε, since they are
unique up to equivalent extensions. Then, α2(εγ1) = (α2ε)γ1 .

Let ε1 = (E1, π1, η1) and ε2 = (E2, π2, η2) be topological local extensions
of an abelian topological group C1 , C2 by topological local group X1, X2,
respectively. Suppose

ε1 ⊕ ε2 : 0 //C1 ⊕ C2
(ι1,ι2) //E1 ⊕ E2

(π1,π2)//X1 ⊕X2
//1 (3.3)

Now we define an action in Ext(X,C). Let ε1, ε2 ∈ Ext(X, C), then ε1+ε2 =PC

(ε1 ⊕ ε2)∆X
where PC : C ⊕C → C, PC(c1, c2) = c1 is the projection map and

∆X : X → X ×X, ∆(x) = (x, x) is the diagonal map. we have

PC
(ε1 ⊕ ε2) : 0 //C // C⊕E1⊕E2

H
//X ⊕X //1

PC
(ε1 ⊕ ε2)∆X

: 0 //C //E ′ //X //1

where E ′ is a sublocal group of C⊕E1⊕E2

H
⊕X, similar to Lemma 3.2.
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Theorem 3.8. Let C be an abelian topological group and X a topological local
group. The set Ext(X, C) of all equivalence classes of extensions of C by X
is an abelian group under the binary operation:

ε1 + ε2 =PC
(ε1 ⊕ ε2)∆X

. ε1, ε2 ∈ Ext(X, C) (3.4)

The class of the fibered extension C ½ C ⊕X ³ X is the zero element of this
group, while the inverse of any ε is the extension −1C

ε. For, i = 1, 2, and the
homomorphisms αi, α : C → C ′ and the strong homomorphisms γi, γ : X → X ′

one has

α(ε1 + ε2) ≡ αε1 + αε2, (ε1 + ε2)γ = ε1γ + ε2γ (3.5)

(α1+α2)ε = α1ε + α2ε, ε(γ1+γ2) = εγ1 + εγ2 . (3.6)

Proof. Let ε1 and ε2 be two topological local extensions of an abelian topolog-
ical group C by a topological local group X. We clearly have

(α1⊕α2)(ε1 ⊕ ε2) = α1ε1 ⊕ α2ε2, (ε1 ⊕ ε2)(γ1⊕γ2) = ε1γ1
⊕ ε2γ2

, (3.7)

By Lemma 3.2, for α : C → C ′ and PC : C ⊕ C → C, we have

αPC = PC′(α⊕ α) : C ⊕ C → C ′,

and similarly for γ : X ′ → X and ∆X : X → X ⊕X;

∆Xγ = (γ ⊕ γ)∆X′ : X ′ → X ⊕X.

Now we prove (3.5) and (3.6)

α(ε1+ε2) ≡αPC
(ε1⊕ε2)∆X

≡PC′ (α⊕α) (ε1⊕ε2)∆X
≡PC′ (αε1⊕αε2)∆X

≡α ε1+αε2.

(ε1 + ε2)γ ≡PA
(ε1 ⊕ ε2)∆X γ ≡PA

(ε1 ⊕ ε2)(γ⊕γ)∆X′
≡PA

(ε1γ ⊕ ε2γ)∆X′ ≡ ε1γ + ε2γ.

For (3.6), it is enough to show that

∆C
ε ≡ (ε⊕ ε)∆X

, εPX
≡PC

(ε⊕ ε). (3.8)

Since (∆C , ∆E, ∆X) : ε → ε ⊕ ε, then there exist ∆C
ε, (ε ⊕ ε)∆X

between ε,
ε⊕ ε and ε, ε⊕ ε, respectively.

ε : 0

(∆C ,σ1,IdX)

¸¸

//C

∆C
µµ

∆C

²²

ι //E

∆E
µµ

σ1

²²

π //X

∆X

¯¯

//1

(∆C ,σ′2,IdX)

®®

∆C
ε : 0

(IdC⊕C ,σ′1,∆X) ¶¶

//C ⊕ C // C⊕C⊕E
H

²²

∆C
π

//X //1

(ε⊕ ε)∆X
: 0 //C ⊕ C //K

σ2

²²

(π⊕π)∆X //X

∆X

²²

//1

(IdC⊕C ,σ2,∆X)

ªª
ε⊕ ε : 0 //C ⊕ C //E ⊕ E //X ⊕X //1
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Hence ∆E = σ′1 ◦ σ1 = σ2 ◦ σ′2. So there exists σ′ : C⊕C⊕E
H

→ K , ((c1, c2), e) +
H 7→ (σ′1(((c1, c2), e) + H), ∆C

π(((c1, c2), e) + H)) such that:

H = {(−∆C(c), ι(c))|c ∈ C}E C ⊕ C ⊕ E;

K = {(e1, e2, x)|π ⊕ π(e1, e2) = ∆X(x)} ≤ E ⊕ E ⊕X;

σ′1 : ((c1, c2), e) + H) 7→ ι⊕ ι(c1, c2) + ∆E(e);

∆C
π : ((c1, c2), e) + H 7→ π(e).

Now we show that σ′ is an isomorphism. It is enough to prove that Idc◦∆C
π =

(π ⊕ π)∆X
◦ σ′. Then by the five lemma [3], σ′ is an isomorphism.

We have IdC(∆C
π((c1, c2), e)) = IdC(π(e)) and

(π⊕π)∆X
(σ′((c1, c2), e)+H) = (π⊕π)∆X

(σ′1(((c1, c2), e)+H), ∆C
π(((c1, c2), e)+

H)) = ∆C
π(((c1, c2), e) + H) = π(e). Then, ∆C

ε ≡ (ε ⊕ ε)∆X
. Similarly, we

have εPX
≡PC

(ε⊕ ε) by (PC , PE, PX) : ε⊕ ε → ε.

For αi : C → C ′ and γi : X ′ → X, i = 1, 2, we define

α1 + α2 : C
∆C //C ⊕ C

α1⊕α2//C ′ ⊕ C ′PC′ //C ′

By (3.8), then (3.6) holds:

α1ε +α2 ε ≡PC′ (α1ε⊕ α2ε)∆X
≡PC′ (α1⊕α2(ε⊕ ε))∆X

≡ PC′ (α1⊕α2)∆C
ε ≡ α1+α2ε.

Similarly, εγ1 + εγ2 = εγ1+γ2 .
Now we show that Ext(X,C) is a group. we clearly have

(∆X ⊕ IdX)∆X = (IdX ⊕∆X)∆X , (3.9)

and

PC(PC ⊕ IdC) = (IdC ⊕ PC)PC : C ⊕ C ⊕ C → C (3.10)

ε1 + (ε2 + ε3) = ε1 + PC
(ε2 ⊕ ε3)∆X

= PC
(ε1 ⊕ PC

(ε2 ⊕ ε3)∆X
)∆X

= PC(IdC⊕PC)(ε1 ⊕ (ε2 ⊕ ε3))(IdX⊕∆X)∆X
.

Similarly

(ε1 + ε2) + ε3 = PC(PC⊕IdC)((ε1 ⊕ ε2)⊕ ε3)(∆X⊕IdX)∆X
.

By (3.9), (3.10), E1⊕(E2⊕E3) ≡ (E1⊕E2)⊕E3, Note 3.7 and the uniqueness
of lemmas 3.2, 3.5, we obtain

PC(IdC⊕PC)(ε1 ⊕ (ε2 ⊕ ε3))(IdX⊕∆X)∆X
≡ PC(PC⊕IdC)((ε1 ⊕ ε2)⊕ ε3)(∆X⊕IdX)∆X

.

Hence, (ε1 + ε2) + ε3 ≡ ε1 + (ε2 + ε3).
Suppose τC : C1 ⊕ C2 → C2 ⊕ C1, τC(c1, c2) = (c2, c1) is an isomorphism and
(τC , τE, τX) : ε1 ⊕ ε2 → ε2 ⊕ ε1.
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We can obtain τC
(ε1⊕ε2) ≡ (ε2⊕ε1)τX

. It is easy to show that PCτC = PC

and τX∆X = ∆X . Thus,

ε1+ε2 = PC
(ε1⊕ε2)∆X

= PCτC
(ε1⊕ε2)∆X

≡ PC
(ε2⊕ε1)τX∆X

= PC
(ε2⊕ε1)∆X

= ε2+ε1.

So, Ext(X, C) is abelian.
For every ε ∈ Ext(X,C), there is the commutative diagram:

ε : 0 //C

0
²²

ι //E

σ

²²

π //X //1

ε0 : 0 //C //C ⊕X //X //1

where σ(e) = (0, π(e)), then ε0 = 0C
ε where 0C : C → C is a zero homomor-

phism. Therefore,

ε + ε0 = Idcε + 0C
ε = (IdC+0C)ε ≡ Idcε = ε

Hence, ε0 is the zero element of Ext(X,C).
By (3.6), and

ε + −IdC
ε = Idcε + −IdC

ε = (IdC − IdC)ε ≡ 0cε = ε0

Then, −IdC
ε is the inverse element of ε of Ext(X, C). Therefore, Ext(X, C) is

a group.
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