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Abstract

The edge-domsaturation number ds'(G) of a graph G = (V, E) is the least
positive integer k such that every edge of G lies in an edge dominating set of
cardinality k. The connected edge-domsaturation number ds.(G) of a graph
G = (V,E) is the least positive integer k such that every edge of G lies in a
connected edge dominating set of cardinality k. In this paper, we obtain several
results connecting ds'(G), ds..(G)and other graph theoretic parameters.

Keywords: edge-dominating set, edge-domination number, edge-domsaturation
number, connected edge-domsaturation number.

1 Introduction

Throughout this paper, G' denotes a graph with order p and size ¢q. By a graph
we mean a finite undirected graph without loops or multiple edges. For graph
theoretic terms we refer Harary [2]. In particular, for terminology related to
domination theory we refer Haynes et.al [3].

Definition 1.1. Let G = (V, E) be a graph. A subset D of E is said to be
an edge dominating set if every edge in E — D is adjacent to at least one edge
m D. An edge dominating set D is said to be a minimal edge dominating set
if no proper subset of D is a dominating set of G.
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Acharya [1] introduced the concept of domsaturation number ds(G) of a
graph. Arumugam and Kala [4] observed that for any graph G, ds(G) = v(G)
or 7(G)+1 and obtained several results on ds(G). We now extend the concept
of domsaturation to edges.

Definition 1.2. The least positive integer k such that every edge of G lies
m an edge dominating set of cardinality k s called the edge-domsaturation

number of G and is denoted by ds'G).

Definition 1.3. The least positive integer k such that every edge of G lies
in a connected edge dominating set of cardinality k is called the connected edge-
domsaturation number of G and is denoted by ds.(G).

If G is a graph with edge set £ and D is a «-set of G, then for any edge
e€ E—D,DU/{e} is also an edge dominating set and hence ds'(G) = +/(G)
or v'(G) + 1.

Thus we have the following definition.

Definition 1.4. A graph G is said to be of class 1 or class 2 according as

ds'(G) =+'(G) or v (G) + 1.

Definition 1.5. A tree T' of order 3 or more is a caterpillar if the removal
of its leaves produces a path.

Definition 1.6. A tree containing exactly two vertices that are not leaves
(which are necessarily adjacent) is called a double star. Thus a double star is
a tree of diameter three.

We use the following theorems.

Theorem 1.7. [6] For any tree T of orderp # 2, v'(G) < (p—1)/2; equality
holds if and only if T is isomorphic to the subdivision of a star.

Theorem 1.8. [6] Let T be any tree and let e = uv be an edge of mazimum
degree A'(T). Then ' (T) = q — A(T) if and only if diam(T) < 4 and
degw < 2 for every verter w # u,v.

2 Main Results

Theorem 2.1. The path P, of order p, p > 4 is of class 1 if and only if
p=2 (mod 3).

Proof. Let P, = (1,2,...,p) be of class 1. Let e; be the edge joining ¢
and i + 1. If p = 0(mod 3), then e3 does not lie in an edge dominating set of
cardinality v/(G). If p = 1(mod 3), then either e; or ez does not lie in an edge
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dominating set of cardinality 7'(G). Hence if p = 0 or 1(mod 3), then P, is of
class 2.
Conversely, suppose p = 3k + 2. Then 7 (G) = k + 1.

Let D1 = {61, €3,€6, ... ,63k}
Dy = {eg,€5,€7,...,€34-1,€3%41}

and Dj = {61, €4,€7,...,€3k-2, €3k+1}-

Clearly Dy, Dy and D3 are 7/(G) sets of P, and U} D, = F(P,). Hence
ds'(G) = 7/(G) so that P, is of class 1.

Definition 2.2. Let T be a caterpillar. Two supports u and v of T are said
to be consecutive if either u and v are adjacent or every vertex in the u — v
path in T has degree 2.

Theorem 2.3. Let T be a caterpillar. Then T is of class 1 if and only
if every support is adjacent to exactly one pendent vertexr and for any two
consecutive supports u and v, d(u,v) = 2(mod 3).

Proof. Suppose T is a caterpillar of class 1. If there exists two pendent ver-
tices vy, vy which are adjacent to w, then there is no 7/(G) -set containing uw .
Hence every support is adjacent to exactly one pendent vertex. Now, let S de-
note the set of all supports of T'. Suppose there exists two consecutive supports
uw and v such that d(u,v) = 0 or 1(mod 3). Let P = (u = uy,ug,...,ux = v)
be the u — v path in 7. Then usus does not lie in a 7/(G)- set and hence it
follows that for any two consecutive supports v and v, d(u,v) = 2(mod 3).

Conversely, let T" be a caterpillar in which every support is adjacent to
exactly one pendent vertex and d(u,v) = 2(mod 3) for any two consecutive
supports u and v. Let k& denote the number of supports in T. We prove that
T is of class 1 by induction on k. If k =2, T is a path P, with p = 2(mod 3)
vertices and by the theorem [2.1], T is of class 1. Suppose the theorem is true
for all caterpillars with k& — 1 supports. Let T be a caterpillar with k& supports
wy, Wa, . .., wg such that w; and w;,; are consecutive supports. Let x; be the
pendent vertex adjacent to w;. Let Py = (w1, vy, ..., U3ma1, w2) be the wy —wy
path and let Ty = T — {x1,wy,v1,...,03,41}. Clearly P; is of class 1 and
by induction hypothesis 77 is of class 1. Further the union of any minimum
edge dominating set of P, and any minimum edge dominating set of T} is a
minimum edge dominating set of T". Hence T is of class 1.

Theorem 2.4. If G is a k-reqular graph which is edge domatically full, then
G s of class 1.

Proof. Since G is edge domatically full, d'(G) = ¢ (G) + 1=k + 1.
Let {D{, D5, ..., D; .} be an edge domatic partition of G. Any set D either
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contains an edge x or exactly one of its neighbours. Hence each D) is indepen-
dent. Also for all 1 < j <k+1, i # j, every edge in D} is adjacent to exactly
one edge in D. Hence all sets D; are of equal cardinality and |Dj| =+/(G) so
that G is of class 1.

Lemma 2.5. Let G be a path of even order which is of class 1. Then
Y (G) + B1(G) =p—1 if and only if G = Ps.

Proof. If G = F, clearly v/(G) + 51(G) = p — 1. Conversely, suppose
Y (G) + p1(G) = n — 1. Since G is a path of even order, obviously it is of
class 1. By theorem 2.1 , we have p = 3k + 2. Obviously 51(G) = p/2. Then
v(G) = p—2/2. But P, is a path and so 7/(G) = [E}].Now &2 = [21] =

3
% = (3’“3—“] = k = 2. Therefore k=2. Hence G = F%.

Theorem 2.6. Let G be any connected graph which is of class 1. Then
ds'(G) = q— B1(G) (where q is the number of edges)if and only if G is isomor-
phic to Cy, the subdivision of a star or Pg.

Proof. Suppose ds'(G) = ¢ — 51(G). Then ds'(G) = v'(G) = q¢ — B1(G).
Since 7/(G) < p/2 and p1(G) < p/2, we have v/ (G) + £1(G) < p and hence
qg < p. If ¢ = p, then p is even, v = 1 = p/2 and G is unicyclic. Hence it
follows from [6] that G = C}. If ¢ = p — 1,then we have the following cases:

Case(i). p is odd.
Now+'(G) = 51(G) = @ and G is a tree. Hence it follows from theorem 2.6
that GG is isomorphic to the subdivision of a star.

Case(ii) p is even.
Now we have v'(G) = @2;2), p1(G) = & and G is a path. Hence it follows from
lemma 2.5 that G is isomorphic to Fs. The converse is obvious.

Theorem 2.7. For any (p,q) graph G which is of class 1, ds'(G)+d'(G) =
g+ 1if and only if G = Cs, Kq,-1 or mK,.

Proof. Suppose ds'(G) + d'(G) = g+ 1. Since G is of class 1, we have
ds'(G) = 7(G), i.e. ¥'(G)+ d'(G) = q+ 1. Since 7 (G)d'(G) < ¢, we have
(d'(G) — 1)(¢ — d'(G)) < 0. Further, d'(G) > 1 and ¢ > d'(G). So (q —
d(G))(d'(G) —1) =0. Hence ¢ = d'(G) or d'(G) = 1. If d'(G) = 1, then G
is isomorphic to mK,. If ¢ = d'(G), then G = C5 or K;,_;. The converse is
obvious.

Theorem 2.8. IfT is a bistar, then T 1is of class 2.

Proof. Since the non-pendent edge of 7" is an edge dominating set of T,
we have 7/(T") = 1. There is no 7y-set containing any of the pendent edges and
so T is of class 2.
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Theorem 2.9. Let T' be any tree and let e = uv be an edge of maximum
degree N'(T'). Then ds'(T) = q — A'(T) 4+ 1 if and only if T is isomorphic to
bistar or diam(T') = 4, deqw < 2 for every vertex w # u,v and there exist at
least one pair of end vertices which are distant 3 apart.

Proof. By theorem 1.8, it is enough to investigate those graphs that
are of class 2. If diam(T) = 1 or 2, then obviously T is of class 1. If
diam(T) = 3, then T has exactly one non-pendent edge. Therefore T is of
class 2. If diam(T) = 4, then each nonpendent edge of T' is adjacent to a
pendent edge of T and hence the set of all nonpendent edges of T" forms a
minimum edge dominating set and 7/(T") = ¢ — A’(T"). Based on the distance
between the pendent vertices, we have the following cases:

Case(i). d(u,v) # 3, for every u,v € S.
Then d(u,v) = 1,2 or 4. Since diam(T) = 4, it is impossible that d(u,v) = 1
or 2. Hence there exists u,v € S with d(u,v) = 4. In this case T is of class 1.

Case(ii). There exists u,v € S with d(u,v) = 3.
Let e, ¢’ be the pendent edges incident with u, v respectively. Since diam(T') =
4, at least one of e, ¢’ should be adjacent to two non-pendent edges. Without
loss of generality let e be adjacent to two non-pendent edges. Then there os
no two element edge dominating set containing e so that T is of class 2.

Theorem 2.10. Let G be a graph with A'(G) = q — 2. Let e be an edge
of degree ¢ — 2 and let f be an edge which is non adjacent to e. Then G is of
class 1 if and only if for every g1 € E(G)\ (N[f]U{e}), there exists go € N|f]
such that N[gi1] U N[g2] = E(G).

Proof. Suppose G is of class 1. Let e be an edge of degree ¢ — 2 and
let f be an edge non-adjacent to e. Let g € E(G) \ (N[f]U{e}). Since
ds'(G) = +(G) = 2, there exists g2 € F(G) such that {g1,¢2} is an edge
dominating set. Clearly, go € N|[f] and N[g;] U N[gs] = E(G). The converse
is immediate.

Theorem 2.11. Given three positive integers a, b and c with2 < a < b < ¢,
there ezists a graph G with v (G) = a,ds'(G) = a + 1, EIS(G) = b and
B(G) =cif and only if b <2a—1 andc=b+ 1.

Proof. If there exists a graph G with 7/(G) = a, ds'(G) =
EIS(G) = b and B(G) = b+ 1, then it follows from [5] that b < 2a — 1
and c=b+ 1.

Conversely, let b < 2a—1and ¢ =b+1. Let b =a+k, where 0 < k <a—1.
Construct a graph as follows: Let {ujvy, ugvs, ....., uqv,} be a set of indepen-
dent edges. Add vertices x1, %o, ...., Trp11 and yi, Yo, ....., Yp+1 and join x; with
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u; and y; with v; for all 7, 1 < ¢ < k+ 1. Also add a vertex z and join z with
u; and v; for all 4, k+2 <1 < a.

Clearly {uqv1, ugvs, ....., UV, } is a minimum edge dominating set of G and
hence 7/(G) = a. But z;u; and yv;, 1 < i < k + 2 does not belong to any +/
set. Therefore ds'(G) = 7/(G) + 1. Therefore {x1uy, y1v1, Ugva, ....., UV, } 1S an
edge-domsaturation set with cardinality a + 1.

AISO, I= {U,l.lfl, ULy ..... s Uk+1Lk+1, UV1Y1, UV2Y2, ..... Vi+1Yk+1, Ug4+2UVk 42, «-.t s U,a’Ua}
is a maximum matching in G. Hence 51(G) = a+k+1 = ¢. Since [} =
I — {uyzy,v1y1} U {wgv1} is a maximum matching containing ujv;, we have

EIS(ujv1) = a+ k and hence EIS(G) = — 1 =b.

3 Connected Edge-Domsaturation Number of
a Graph

Definition 3.1. Let G be a connected graph. The least positive integer k
such that every edge of G lies in a connected edge dominating set of cardinality
k s called the connected edge-domsaturation number of G and is denoted by

ds.(G).

Example 3.2. (i) ds\.(K,) =p—2
(i) ds,(P,) = p 2
(iii) ds.(K,,) = min{q, p}.

Observation 3.3. If G is any connected graph with A'(G) = g — 1 and
G 2 Ky, then ds.(G) =~L(G) + 1.

Proof. Since A'(G) = ¢ — 1, we have 7/(G) = 1. Further any edge with
degree less than ¢—1 does not lie on a v.(G)-set. Therefore ds.(G) = v.(G)+1.

Observation 3.4. For any connected graph G with p > 4 and §'(G) = 1,
we have ds.,(G) = v.(G) + 1.

Proof. Since no pendent edge lies on a v.(G)-set, the result follows.
We now find an upper bound on connected edge-domsaturation number for
trees and unicyclic graphs.

Observation 3.5. For any tree T' of order p > 4, v.(T) = p—3 if and only
if T is a path or K 3.
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Observation 3.6. For any tree T' of order p > 4, ds.(T) = p — 2 if and
only if T'is a path.

Corollary 3.7. For any tree T of order p > 4, ds.(T) + x(T) < p and
equality holds if and only if T is a path.

Proof. It follows from observation 3.6 that for any tree 7', ds.(G) < p—2.
Also x(G) = 2. Therefore ds,,(G) + x(G) < p. Further ds,(G) + x(G) = p i
and only if ds.(G) = p — 2 or equivalently T is a path.

Theorem 3.8. Let G be a connected unicyclic graph with cycle C. Then
ds.(G) = p—2if and only if G = C or a cycle C with exactly one pendent
edge.

Proof. Let G be a unicyclic graph with ds.(G) = p — 2. Let C be the
unique cycle in GG and suppose G # C. Let S be the set of all pendent
edges of G. We observe that ds.(G) = p — |S| if no vertex in C is of degree
2 and ds.(G) = p — |S| — 1 otherwise. In the former case, |S| = 2. But
this is impossible as in this case no vertex in C' is of degree 2. Therefore
ds.(G) =p—1S| — 1. Now |S| = 1 and so G has exactly one pendent edge.

Theorem 3.9. For any tree T, T % Ki,, ds.(T) =q—A(T)+1 if
and only if T has at most one vertexr of degree greater than 2 or exactly two
adjacent vertices of degree greater than 2.

Proof. We observe that, ds.(T) = ¢ — k + 1, where k is the number of
pendent edges of T'. Hence ds,(G) = ¢ — A'(G) + 1 if and only if A(G) = k.
However if T has two non-adjacent vertices of degree greater than 2, then
k > A’(G) and hence the result follows.

Theorem 3.10. Let G be a connected unicyclic graph with cycle C' and
G 2 C. Then ds.(G) = ¢ — A'(G) + 1 if and only if one of the following

conditions hold.
1. G has exactly one vertex of degree greater than 2

2. G has exactly two vertices u,v of degree greater than 2 and w,v are
adjacent

3. C = (43, all the vertices of C' are of degree > 3, one vertex of C is of
degree 3 and all the vertices not on C have degree one or two.

Proof. Let G be a connected unicyclic graph with ds.(G) = ¢— A'(G) +1
and as in the proof of theorem 3.8, we have |S| = A'(G)—1or |S| = A'(G) -2,
where S is the number of pendent edges of T'.
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Case(i). |S|=A'(G) — 1.
In this case, every vertex of C' is of degree > 3. Now if C' # Cj3, then G has at
most A’'(G) pendent edges. Thus C' = C3. It follows that at most one vertex
of C'is of degree 3 and all vertices not on C' have degree 1 or 2. Hence G is of
the form described in (3).

Case(ii). |S| = A'(G) — 2
In this case, there exists at least one vertex of degree 2 on C'. Let e = uv be
an edge of maximum degree A’'(G). Since |S| = A'(G) — 2, at least one of u, v
lies on C' and all vertices different from u,v have degree one or two. If both
u, v have degree at least 3 then G satisfies (2), Otherwise G satisfies (1).

4 Domsaturation Number of a Graph

Theorem 4.1. Let G be any connected graph and let G' be the graph
obtained from G by concatenating a vertex of G with the center of a star

kin,(n>2). Then ds(G) =~v(G) +1 .

Proof. Let u € V(G) be the support vertex of a star. Suppose u is not
dominated by any vertex of GG, then clearly u belongs to the y-set. Suppose u
is dominated by some vertices of (G. Since number of pendent vertices > 2. So
in this case also u belongs to the y-set.In both these cases the pendent vertices
does not belong to any ~v-set. So ds(G) = v(G) + 1.

Theorem 4.2. Given any three positive integers a,b, and ¢ with 3 < a <
b < ¢, their exists a graph G with ds(G) = a,I1S(G) =b and I'(G) = c.

Proof. Case(i). a =3
0 ife<2b—2

Let k = and
c—2b+2 ife>2b—2

{26—2—0 if ¢ < 2h—2
let a =

0 if ¢ > 2b— 2.
Let Py = (v1,v9,v3,v4) be a path on 4 vertices. Attach b — 2 pendent
vertices Uy, Ug, . .., Up_2 t0 vy and b — 2+ k pendent vertices wq, wa, ..., Wy_oik
to v3. Add the edges ujwy, usws, ..., usw,. For the resulting graph G, we

have 7(G) = 2. But the pendent vertices does not lie in any dominating set of
cardinality 2. Thus ds(G) = 3 = a.

If b = ¢, then clearly IS(G) = 1S(ve) or 15(vs).

If b < ¢, then IS(G) = 1S(vs3). Since v is the only vertex which is the mini-
mum of all 1S (v)’s, for every v € V(G). In both the cases, {vs, uy, us, ..., up_2,v1}
is the desired I.S-set of G. Hence IS(G) =b—2+2=b.
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Also {uq,ug, ..., Up_9, Wai1, Was2,- -, Wp_2+k, V1, Vq} is the maximum car-
dinality of a minimal dominating set and hence I'(G) = 2b— 2+ k — «.

Ife<2b—2,then2b—2+k—a=20—2—-(20—2—c¢) =c.

Ifc>2b—2,then 20 —2+k—a =20—2+c—2—2b = c. Hence I'(G) = c.

Case(ii). a > 4

Let k = 0 ifcs2b—a and
c—2b+a ifc>2b—a

2b—a—c ife<2b—2
0 ifc>2b—a

Let P = (vy,v,...,0,) be a path on a vertices. Attach pendent vertices
UL, Uy . . ., Ug $O U1, 0y, . .., U, Tespectively. Attach b— (a — 1) pendent vertices
51,52, ., Shb—(a—1) 1O V2, attach b—(a—1)+k pendent vertices t1, ta, ..., ty—(a—1)+k
to v3 add the edge uju, and the edges sy, Sota, . .. Sata-
Clearly {uq,v9,v3,....,0,_1} is a - set.But the pendent vertices adjacent to
v, v3 and the vertices vy, v, does not belong to any v set.Therefore ds(G) = a.
If a =b=c¢then k = 0 and o = 0. Hence IS(G) = I5(i) = a for all
i€ VIfa<band b= ¢ then IS(vy) or IS(v3) is the IS-set of G. If
a < b < ¢, then I1S(v3) is the only set having minimum cardinality among all

let a =

IS-sets. From these three cases, {vs, 51,52, ..., Sb—(a—1), U1, Us, Us, - . . , Ug—1,Va }
is the desired IS-set. Hence IS(G) =b—(a—1)+1+14+a—3 =10>. Also
{51,582, -1 Sb—(a—1), tat1: tat2s - - - s th—(a—1)4+hk> Ud; Uss - - -, Uq—1, Va, V1 } 1S & domi-

nating set of maximum cardinality and hence I'(G) =20 —a+ k —a. Asin
case(i), we have I'(G) = c.
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