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Abstract

In this paper, we study Lie and Jordan Structure in Simple I'— Regular
Ring of characteristic not equal to two. Some Properties of these I'— Regular
Ring are determined.
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1 Introduction

The concept of I'— ring was first introduced by Nobusawa [4] in 1964 and
generalized by Barnes [1] in 1996. The idea of I'— regular ring was studied by
Krishnaswamy [2] in 2009. S.Kyuno [3] worked on the Simple I'— ring with
simple conditions and Herstein [8] studied the Lie and Jordan Strucutures in
Simple ring. In this paper, we have extended the results of Paul[5] into Lie
and Jordan Structure in Simple I'— regular ring. Some characterization of this
['— regular ring have been established.
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2 Preliminaries

Definition 2.1 Let M and I' be two additive abelian groups. There is a
mapping from M x I' x M — M such that

1. (z4y)az = zaz+yaz;z(a+ f)z = zaz+ Bz xa(y + 2) = ray + raz.
2. (xay)pz = xa(yPz) where x,y,z € M and o, 5 € T.
Then, M s called a T'— ring.

Definition 2.2 An element a of a ring R is said to be reqular if there exists
an element v € R such that axa = a. The ring R is reqular if and only if each
element of R is reqular.

Definition 2.3 Let R and T" be two additive abelian groups. An element
a € R is said to be I'— Regular if there exists an element x € I' such that
ara = a. A I'— ring is said to be I'— reqular ring if and only if each element
of R is I'— reqular.

Definition 2.4 A Lie ring L is to be defined as an abelian group with an
operation [e,e] having the properties

1. forallx € L, [x,x] = 0.
2. Bilinearity - [z +y,2) = [r,2] + [ 2] [2,2 + ] = [2,4] + [2,1]
3. Jacobi identity : [z, [y, z]] + [y, [z, z]] + [z, [z, y]] = 0 for all z,y,z € L.

Remark 2.5 Any associative ring can be made into a Lie ring by defining
the bracket opertaion by |x,y] = xy — yx.

Definition 2.6 A subset S of the I'— reqular ring R is a left(right) ideal of
R if S is an additive sub-group of R and RT'S = {caa/c € R,a € T,;a € S}
(STR ={aac/c € R,a € I';a € S}) is contained in S. If S is both left and
right ideal of R, then we say that S is an ideal of two sided ideal of R.

If A and B are ideals in I'— reqular ring R, then the sum of A and B is
also an ideal of R that is A+ B ={a+b/a € Abe B}.

Definition 2.7 Let R be a I'— regular ring. An element a € R is called
a nil-potent of a I'— regular ring for some a € T' there exists a least positive
integer n such that (ac)"a = (acacac............. ntimes)a = 0.

Definition 2.8 An ideal A of a I'— reqular ring R is called a nil-potent
ideal of a I'— regular ring R if (A')"A = (ATATAl............ ntimes)A = 0

where n s the least positive integer.
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Definition 2.9 For any I'— reqular ring R, the Lie and Jordan Structure
of a I'— regular ring is to be defined as the new product of [x,y|, = roy — yax
and (z,y), = roy + yax for every x,y € R and o € T

Definition 2.10 A subset S of R is a Lie sub I'— reqular ring R if S is an

additive sub-group such that for a,b € S,aab — baa must also be in S for all
ael'. A subset S of R is a Jordan sub I'— regular ring R if S is an additive
sub-group such that for a,b € S, aab+ baa must also be in S for all a € T'.

Definition 2.11 Let S be a Lie sub I'— regular ring of R. The additive sub
group V C S is said to be Lie ideal of S if whenever v e V,a € I';a € S then
V,alo, = Vaa—aaV isin V. Again let S be a Jordan sub I'— regular ring of
R. The additive sub group V C S s said to be Jordan ideal of S if whenever
veV,ael,ae S then (V,a), =Vaa+aaV isinV.

Definition 2.12 A I'— reqular ring R is called a Simple I'— regular ring if
RT'R # 0 and its ideals are 0 and R.

Definition 2.13 Let A be an ideal in I'— reqular ring R. Then, the set
R/A is defined by R/A = {z + aac/zx € R,a,c € A,a € '} and

1. (x + aac) + (y + aac) = (z 4+ y) + aac;
2. (x + aac)a(y + acc) = vay + aac under the operation (+,e).

Then, the set (R/A,+,e) form a T'— reqular ring R.

Definition 2.14 Let R be a I'— regular ring. The centre of R written as
Z is the set of those elements in R, that is Z = {m € R/max = xam} for all
re€Randa el

Definition 2.15 Let R be a I'— reqular ring and let R,,, and I',,, denote
respectively, the sets of m xn matrices with entries from R and the sets of nxm
matrices with entries from I'. Then, the set R, is a I, reqular ring and mul-
tiplication is defined by (ai;)(ayi)(bi;) = (cij) where (ciz) = 3, >, ipQipgby;-
If m = n, then R, is a I';,— ring.

Definition 2.16 Let R be a I'— reqular ring. Then, R is called a division
I'— regular ring if it has an identity element and its only non-zero ideal is
itself.
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3 Lie and Jordan Structure

In this section, we have developed some characterization of Lie and
Jordan Structures in Simple I'— regular ring.

Theorem 3.1 Let R be a I'— regular ring and A # 0 is a right ideal of R.
For given a € A, (aa)"a = 0 for all « € T and for fized integer n. Then, R
has a non-zero nilpotent ideal.

Proof: To prove this Theorem by using Mathematical induction on n.
Let a # 0 € A satisfying aca = 0 and let us suppose that B = al'A # 0.
If x € R, then [(a + aax)a|"[a + aaz] = 0. Since it is in A, we obtain
[(acz)a] (aax)aa = 0. Thus, [(acz)a]” ! (aax)TA = 0.

Let T = {z € A/2T"A = 0} of course T is an ideal of A. Moreover,
let y € B = (ya)" 'y eT. Therefore B = B/T every element satisfies
(ya)"'y = 0. By our induction hypothesis, B has a nilpotent ideal U # 0.
Let U be its inverse image in B. Since (UT)*U = 0, (UT)*U C T. Hence,
(UT)*1U c TTB = 0. Also, since U # 0, U is not a sub-set of T and hence
UDUI'B#0. But UI'B = UTl'al'B # 0 is a nil-potent ideal of R.

Suppose that a € A satisfying aca = 0 = al'A = 0. For any x € A,
(za)"z = 0, we have (za)" 'zaxr = 0 and so (za)"'2T'A = 0.

Let W = {z € A/aT’'A =0}, W is an ideal of A. If W = A, then
AT'A = 0 and would provide us a nilpotent right ideal. If W = A, then
A= A/W, (za)"z = 0. Our induction gives us a nilpotent ideal V # 0 € A.
If V is the inverse image of V € A then VI'A # 0 C V and is nilpotent. Since,
V is nilpotent, again we have seen that R must have a non-zero nilpotent right
ideal.

If R has a non-zero nilpotent right ideal and it has almost trivially a non -
zero nilpotent ideal. °

Our first objective will be to determine the Lie and Jordan ideals of
the I'— regular ring R itself in the case R is restricted to a Simple I'— regular
ring.

Theorem 3.2 [If U is a Jordan ideal of R, then
za(aab + baa) — (aab + baa)ax € U for all a,b € U and v € R and a € T.

Proof: Since a,b € U and a € " for any = € R, we have
aa(xab — bax) + (xab — bar)aa € U. But aa(xab — bax) + (rab — bar)aa =
{(aax — zaa)ab + ba(acr — zaa)} +{zxa(aab + baa) — (aab + baa)ax}. The
left side and the first term on the right side are in U. Hence
za(aab + baa) — (aab + baa)ax € U o

Theorem 3.3 Let R be a I'— regular ring in which 2x = 0 = x = 0 and
suppose further that R has no non-zero nilpotent ideal of R contains a non-
zero(associative) ideal of R.
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Proof: Let U # 0 be a Jordan ideal of R and suppose that a,b € R. By
Theorem 3.2, for any x € R and o € T,

We have rac— cax where ¢ = aab+baa € U. — 3.31

However, since c € U, xac+cax € U. — 3.32
Adding 3.31 and 3.32, we get 2zac € U for all z. Hence, for y € R, (2zac)ay+
ya(2zac) € U. Since 2yaxac € U, we obtain 2zacay € U ie., 2RIcl’'R C U.
Now 2RI'cI'R is an ideal of R so we do unless 2RI'cI'R = 0. If 2RI'c'R = 0,
by our assumption RI'cI'R = 0. Since R has no nilpotent ideals this forces
c¢ = 0, that is given a,b € U then aab + baa = 0.

Let a #2 0 € U, then for any z € R, « € I" and b = aax + xaa € U. Hence,
ac(aax + xaa) + (aaxr + raa)aa = 0. that is acacr + raaca + 2aczaa = 0.
Now, for a € U and acaa = 0, this reduces to 2acxaa =0 forallz € R, a € T
and so al'RT'a = 0. But al'R # 0 is a nilpotent right ideal of R. This is a con-
tradiction to our assumption. Inotherwords, we have shown that U contains a
non-zero ideal of R. °

Lemma 3.4 Let R be a I'— regular ring with no non-zero nilpotent ideals
in which 2x = 0 = x = 0. Suppose that U # 0 is both a Lie ideal and I'—
reqular ring of R. Then, either U C Z or U contains a non-zero ideal of R.

Proof: Let us first suppose that U has a I'— regular ring is not commu-
tative. Then, for some x,y € U and « € I', we have zay — yax # 0. For any
m € Rand § € I we have zf(yam) — (yam)Sz € U that is (ray — yaz)fm +
yB(xam — max) € U. The second memeber of this is in U since both y and
(xam —max) are in U (U is both Lie ideal and sub I'— regular ring). The net
result of all this is that (zay — yax)I'R C U. But then for some m, s € R and
a, f €T, we have ((zay—yax)am)fs—sp((xay—yax)am) € U = RI'(zay—
yax)'R = 0, then RI'(zay—yax)l'RT (zay—yaz)'R = 0. This is a contradic-
tion to our assumption. We have shown that the result is correct if U is a sub
I'— regular ring of R is not commutative. So, by using sub-lemma 3.5 a must
be in Z as follows. .

Sub-Lemma 3.5 Let R be a I'— reqular ring with no non-zero nilpotent
1deals in which 2z = 0 = x = 0. If a € R commutes with acx — xaa for all
re R, aecl thena isin Z.

Proof: Suppose that U is commutative, we want to show that it lies in Z.
Given a € U, x € R then aax —zaa € U. Now for z,y € R we have aac — caa
where ¢ = (aa(zay — yar)aa — aa(ray — yax)aa).

Expanding aa(zay —yar)aa as (aax — raa)oy + xalacy — yaa) using this
and commutes with (aazr — zaa) and (aay — yaa) yields
2(acx — zaa)falaay — yaa) = 0 for all 2,y € R and g € I'. Since 2m = 0
forces m = 0 we obtain (aax — zaa)B(aay — yaa) = 0. In this, put y = aax
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this results in (aax — raa)l' Rl (aax — zaa) = 0. Since R has no nilpotent, we
conclude that (aax —zaa) = 0 and so a must be in Z. o

Theorem 3.6 Let R be a Simple I'— regular ring of characteristic # 2.
Then any Lie ideal of R which is also a sub I'— regular ring if R must either
be R itself or it contained in Z.

Proof: Lemma 3.4 immediately gives the result of the Theorem. °
Definition 3.7 If U is a Lie ideal of R, let T(U) = {x € R/[x, R|r C U}.

Lemma 3.8 For any I'— regular ring R, if U is a Lie ideal of R. Then,
T(U) is both a sub I'— regular ring and a Lie ideal of R. Moreover U C T(U).

Proof: If U is a Lie ideal of R then U C T'(U). Since [T(U), M]r C U C
T(U) must be a Lie ideal of R. Suppose that a,b € T'(U) and m € R then
(aab)am — ma(aab) = ac(bam) — (bam)aa + ba(maa) — (maa)ab. Since
a,b € T(U), the right side of aa(bam) — (bam)aa + ba(maa) — (maa)ab € U
and therefore [aab, R]r C U that is aab € T(U). o

Theorem 3.9 Let R be a Simple I'— reqular ring of characteristic # 2 and
let U be a Lie ideal of R. Then, either U C Z or U D [R, R]r.

Proof: By Theorem 3.6 and Lemma 3.8, T'(U) is a both a sub I'— regular
ring and a Lie ideal of R. Therefore, T(U) C Z or T(U) = R. If T(U) = R,
then by the Definition 3.7, we have [R,Rjr CU. f T(U) C Z and U C T(U),
we obtain U C Z. .

Corollary 3.10 If R has a non-commutative Simple I'— regular ring of
characteristic # 2, then the sub I'— regular ring generated by [R, R]r is R.

Proof: Any additive sub-group containing [R, R]r is trivially a Lie ideal of
R. Hence, the sub I'— regular ring is generated by [R, R|r is a Lie ideal of R.
Hence, by Theorem 3.6, it equals to R orisin Z. If it isin Z, then [R, R]r C Z.
Thus, for a € R, a commutates with all aaa. In aaa, o € T" then by the Sub-
Lemma 3.5, we get a € Z, that is R C Z. Since R to be non-commutative, that
is ruled out hence the corollary. °

In Theorem 3.6, R has a Simple I'— regular ring of characteristic # 2. Now,
we should like to settle the problem when R has characteristic 2, Theorem 3.6
fail?

Suppose that R has a Simple I'— regular ring of characteristic 2 and that
U is a Lie ideal and sub I'— regular ring of R, we obtain U # Rand U is not a
subset of Z. As in the proof of Lemma 3.4, we obtain U as a sub I'— regular
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ring of R must be commutative. That is given u,v € U, then uav + vau =0
for all a € I'.

Let a € U then aas + saa € U for all s € R and o € I'. Hence, aa(aas +
saa) = (aas + saa)aa. This says that aca € Z. Since, for any m € R, we
have aam + maa € U, also (aam + maa)a(aam + maa) € Z. If Z = 0, then
aca = 0. that is (aam + maa)a(aam + maa) € Z = 0 from which we get
((aam)a)?(aam) = 0. But aI'R is a right ideal of R in which every element
in the form ((aam)a)?(aam) = 0. By Theorem 3.1, R would have a nilpotent
ideal, that is R would be nilpotent which is impossible for a Simple I'— regular
ring.

Therefore, we assume that Z # 0 and that there is an element a € U,
a ¢ Z such that aaa # 0 € Z and (aam + maa)a(aam + maa) € Z for all
mé€ Rand o €T

Theorem 3.11 Let R be a Simple I'— regular ring of characteristic 2 and
suppose that there exist an element a € R, a ¢ R such that for all aca € Z,
a € T and [(aazx + zaa)al?(acx + zaa) € Z for allx € R and o € . Then,
R is a 4 - dimensional over Z.

Proof: If Z = 0, then both aca = 0 and [(aax + raa)a]?*(aax + xaa) = 0.
Hence, [(acz)a)tlacr] = aal(aar + raa)a)?(aax + xaa)ax = 0 for all z € R.
But then the right ideal al'R satisfies (ua)u = 0 for all elements of u € al'R,
by Theorem 3.1, this is not possible in a simple ['— regular ring.

Suppose that Z # 0, hence 1 € R. If aaa = 0, then b = a + 1 satisfies
bab = 1 and [(bax + zab)al®[baz + xab] € Z for all x € R. Therefore, we
may assume that aaa = p # 0 € Z. Let Z = Z(vV/P),then R=R® Z # Z
is simple. Moreover in R, we have [(aaZ + ZTaa)a]?(aaZ + ZTaa) € Z for all
T € R.

Since, dimR/Z = dimR/Z, to prove the theorem it is enough to do so in
R. Also b = a/q where q € Z, then gaq = p satisifes bab = 1 and
[(baz + Tab)a]?[baz + Tab] € Z. Hence without loss of generality we may
suppose that a € R, a # Z, aca = 1 and [(aax + zaa)a)®*(aax + raa) € Z for
all z € R.

Now R is a dense I'— regular ring of linear I'— regular transformations on
a vector space V over a division I'— regular ring A (Since Z # 0 and R is
simple). Since (¢ + 1)a(a+1) =0, (a+ 1) # 0, V must be more than 1 -
dimensional over A. Since a # 1 it is immediate that there is a v € V such
that v, vaa are linearly I'— regular independent over A.

If for some w € V, v, vaa and wa(1l+a) are linearly I'— regular independent
over A, then the sub I'— regular space V; spanned by these is invariant under

010
a and a induces the linear I'— regular transformations {1 0 0] on V. By
0 0 1
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010
density of R on V, there is an x € R which includes | 0 0 0] on V. Hence,
000

on Vp. But [(aax +zaa)al?(acr +zaa) € Z.

o O O

01
(accx +zaa) induces | 1 0
0 0

. Thus, we

o O =
o OO

0
Yet does not induces a scalar on Vj. Since it induces | 1
0

have that for all w € V such that v, vaa, w are linearly I'— regular independent

over A. If V' is more than 2-dimensional over A, there is a w € V such that

v, vaa,w are linearly I'— regular independent over A. By the above, waa is in
10

0
the sub I'— regular space V, they span. The matrix of aon V'is |1 0 0
p qg T

on Vi. But (aax+zaa)

o O O

0 1
By density there is an z € R which induces [ 0 0
0 0

010
induces |0 1 0|. We hve [(acx + zaa)a]?(acz + zaa) is not a scalar.
0 p O
Thus, we must have that V' is 2-dimensional over A. All the remains is to
show that A is commutative. Let ¢ = ]; q , then al'sa = I, where I'y is the

set of all 2 x 2 matrices of I'— regular ring over A and I is the identity matrix.

Now, we have al';a = I, becomes P q)(on o) (p q)_ (10 Tt
r S Qo1 Qg9 T S 0 1

yields
L. panp + qoaoip + posr + qoger =1
2. pon1q + qo1q + ponas + qages = 0
3. ranp + sagp + rojar + sager =0

4. rapp 4 sao1p + raqeq + Saigss = 1.

In particular not both p,r = 0. If ¢ € A, then using x = (8 é) and

[(aTyz + 2T9a)T]*(al9x + xT9a) € Z. Now
(P q\ (an a) (0 ¢ 0 t\ fan a2\ (p q) _
rasatia= (19 (0 02) (000) + (0 0) (o o) (72) -
taq1p + tager  pagit + qagrt + taeq 4 tasr

0 ronit 4+ St . Therefore,
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[(aTyz+2T9a)T]3 (al9x+12T5a) € Z. This gives for all t € A, 4 times of (tay1p+
tager) and (ragit+ sagot) are in Z. If p # 0, then (taqp+ tager) runs through
as t does, so every x € A would satisfy (z['5)3r € Z. But a non-commutative
division I'— regular ring cannot be purely inseparable over its centre. This p #
0 implies A is commutative. Similarly,  # 0 implies A is commutative. Since,
one of these must hold we get that A is commutative and so R is 4 - dimensional
over Z. °

Theorem 3.12 If R is a simple I'— reqular ring and if U is a Lie ideal of
R, then either U C Z or U D [R, R|r except R is of characteristic 2 and is
4-dimensional over its centre. °

Corollary 3.13 If R is a simple non-commutative I'— reqular ring, then the
sub I'— regular ring generated by [R, R]r is R. .
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