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Abstract

In this paper, we study Lie and Jordan Structure in Simple Γ− Regular
Ring of characteristic not equal to two. Some Properties of these Γ− Regular
Ring are determined.
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1 Introduction

The concept of Γ− ring was first introduced by Nobusawa [4] in 1964 and
generalized by Barnes [1] in 1996. The idea of Γ− regular ring was studied by
Krishnaswamy [2] in 2009. S.Kyuno [3] worked on the Simple Γ− ring with
simple conditions and Herstein [8] studied the Lie and Jordan Strucutures in
Simple ring. In this paper, we have extended the results of Paul[5] into Lie
and Jordan Structure in Simple Γ− regular ring. Some characterization of this
Γ− regular ring have been established.
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2 Preliminaries

Definition 2.1 Let M and Γ be two additive abelian groups. There is a
mapping from M × Γ×M →Msuch that

1. (x+ y)αz = xαz+ yαz;x(α+ β)z = xαz+ xβz;xα(y+ z) = xαy+ xαz.

2. (xαy)βz = xα(yβz) where x, y, z ∈M and α, β ∈ Γ.

Then, M is called a Γ− ring.

Definition 2.2 An element a of a ring R is said to be regular if there exists
an element x ∈ R such that axa = a. The ring R is regular if and only if each
element of R is regular.

Definition 2.3 Let R and Γ be two additive abelian groups. An element
a ∈ R is said to be Γ− Regular if there exists an element x ∈ Γ such that
axa = a. A Γ− ring is said to be Γ− regular ring if and only if each element
of R is Γ− regular.

Definition 2.4 A Lie ring L is to be defined as an abelian group with an
operation [•, •] having the properties

1. for all x ∈ L, [x, x] = 0.

2. Bilinearity : [x+ y, z] = [x, z] + [y, z]; [z, x+ y] = [z, x] + [z, y]

3. Jacobi identity : [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

Remark 2.5 Any associative ring can be made into a Lie ring by defining
the bracket opertaion by [x, y] = xy − yx.

Definition 2.6 A subset S of the Γ− regular ring R is a left(right) ideal of
R if S is an additive sub-group of R and RΓS = {cαa/c ∈ R,α ∈ Γ, a ∈ S}
(SΓR = {aαc/c ∈ R,α ∈ Γ, a ∈ S}) is contained in S. If S is both left and
right ideal of R, then we say that S is an ideal of two sided ideal of R.

If A and B are ideals in Γ− regular ring R, then the sum of A and B is
also an ideal of R that is A+B = {a+ b/a ∈ A, b ∈ B}.

Definition 2.7 Let R be a Γ− regular ring. An element a ∈ R is called
a nil-potent of a Γ− regular ring for some α ∈ Γ there exists a least positive
integer n such that (aα)na = (aαaαaα.............ntimes)a = 0.

Definition 2.8 An ideal A of a Γ− regular ring R is called a nil-potent
ideal of a Γ− regular ring R if (AΓ)nA = (AΓAΓAΓ.............ntimes)A = 0
where n is the least positive integer.
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Definition 2.9 For any Γ− regular ring R, the Lie and Jordan Structure
of a Γ− regular ring is to be defined as the new product of [x, y]α = xαy− yαx
and (x, y)α = xαy + yαx for every x, y ∈ R and α ∈ Γ.

Definition 2.10 A subset S of R is a Lie sub Γ− regular ring R if S is an
additive sub-group such that for a, b ∈ S, aαb − bαa must also be in S for all
α ∈ Γ. A subset S of R is a Jordan sub Γ− regular ring R if S is an additive
sub-group such that for a, b ∈ S, aαb+ bαa must also be in S for all α ∈ Γ.

Definition 2.11 Let S be a Lie sub Γ− regular ring of R. The additive sub
group V ⊂ S is said to be Lie ideal of S if whenever v ∈ V, α ∈ Γ, a ∈ S then
[V, a]α = V αa− aαV is in V . Again let S be a Jordan sub Γ− regular ring of
R. The additive sub group V ⊂ S is said to be Jordan ideal of S if whenever
v ∈ V, α ∈ Γ, a ∈ S then (V, a)α = V αa+ aαV is in V .

Definition 2.12 A Γ− regular ring R is called a Simple Γ− regular ring if
RΓR 6= 0 and its ideals are 0 and R.

Definition 2.13 Let A be an ideal in Γ− regular ring R. Then, the set
R/A is defined by R/A = {x+ aαc/x ∈ R, a, c ∈ A,α ∈ Γ} and

1. (x+ aαc) + (y + aαc) = (x+ y) + aαc;

2. (x+ aαc)α(y + aαc) = xαy + aαc under the operation (+, •).

Then, the set (R/A,+, •) form a Γ− regular ring R.

Definition 2.14 Let R be a Γ− regular ring. The centre of R written as
Z is the set of those elements in R, that is Z = {m ∈ R/mαx = xαm} for all
x ∈ R and α ∈ Γ.

Definition 2.15 Let R be a Γ− regular ring and let Rmn and Γnm denote
respectively, the sets of m×n matrices with entries from R and the sets of n×m
matrices with entries from Γ. Then, the set Rmn is a Γnm regular ring and mul-
tiplication is defined by (aij)(αji)(bij) = (cij) where (cij) =

∑
p

∑
q aipαpqbqj.

If m = n, then Rn is a Γn− ring.

Definition 2.16 Let R be a Γ− regular ring. Then, R is called a division
Γ− regular ring if it has an identity element and its only non-zero ideal is
itself.
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3 Lie and Jordan Structure

In this section, we have developed some characterization of Lie and
Jordan Structures in Simple Γ− regular ring.

Theorem 3.1 Let R be a Γ− regular ring and A 6= 0 is a right ideal of R.
For given a ∈ A, (aα)na = 0 for all α ∈ Γ and for fixed integer n. Then, R
has a non-zero nilpotent ideal.

Proof: To prove this Theorem by using Mathematical induction on n.
Let a 6= 0 ∈ A satisfying aαa = 0 and let us suppose that B = aΓA 6= 0.
If x ∈ R, then [(a + aαx)α]n[a + aαx] = 0. Since it is in A, we obtain
[(aαx)α]n−1(aαx)αa = 0. Thus, [(aαx)α]n−1(aαx)ΓA = 0.

Let T = {x ∈ A/xΓA = 0} of course T is an ideal of A. Moreover,
let y ∈ B ⇒ (yα)n−1y ∈ T . Therefore B̄ = B/T every element satisfies
(yα)n−1y = 0. By our induction hypothesis, B̄ has a nilpotent ideal Ū 6= 0.
Let U be its inverse image in B. Since (ŪT )kŪ = 0, (UΓ)kU ⊂ T . Hence,
(UΓ)k+1U ⊂ TΓB = 0. Also, since Ū 6= 0, U is not a sub-set of T and hence
U ⊃ UΓB 6= 0. But UΓB = UΓaΓB 6= 0 is a nil-potent ideal of R.

Suppose that a ∈ A satisfying aαa = 0⇒ aΓA = 0. For any x ∈ A,
(xα)nx = 0, we have (xα)n−1xαx = 0 and so (xα)n−1xΓA = 0.

Let W = {x ∈ A/xΓA = 0}, W is an ideal of A. If W = A, then
AΓA = 0 and would provide us a nilpotent right ideal. If W = A, then
Ā = A/W , (x̄α)nx̄ = 0. Our induction gives us a nilpotent ideal V̄ 6= 0 ∈ Ā.
If V is the inverse image of V̄ ∈ A then V ΓA 6= 0 ⊂ V and is nilpotent. Since,
V is nilpotent, again we have seen that R must have a non-zero nilpotent right
ideal.

If R has a non-zero nilpotent right ideal and it has almost trivially a non -
zero nilpotent ideal. •

Our first objective will be to determine the Lie and Jordan ideals of
the Γ− regular ring R itself in the case R is restricted to a Simple Γ− regular
ring.

Theorem 3.2 If U is a Jordan ideal of R, then
xα(aαb+ bαa)− (aαb+ bαa)αx ∈ U for all a, b ∈ U and x ∈ R and α ∈ Γ.

Proof: Since a, b ∈ U and α ∈ Γ for any x ∈ R, we have
aα(xαb− bαx) + (xαb− bαx)αa ∈ U . But aα(xαb− bαx) + (xαb− bαx)αa =
{(aαx− xαa)αb+ bα(aαx− xαa)}+{xα(aαb+ bαa)− (aαb+ bαa)αx}. The
left side and the first term on the right side are in U . Hence
xα(aαb+ bαa)− (aαb+ bαa)αx ∈ U •

Theorem 3.3 Let R be a Γ− regular ring in which 2x = 0 ⇒ x = 0 and
suppose further that R has no non-zero nilpotent ideal of R contains a non-
zero(associative) ideal of R.
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Proof: Let U 6= 0 be a Jordan ideal of R and suppose that a, b ∈ R. By
Theorem 3.2, for any x ∈ R and α ∈ Γ,

We have xαc−cαx where c = aαb+bαa ∈ U . → 3.31
However, since c ∈ U , xαc+cαx ∈ U . → 3.32

Adding 3.31 and 3.32, we get 2xαc ∈ U for all x. Hence, for y ∈ R, (2xαc)αy+
yα(2xαc) ∈ U . Since 2yαxαc ∈ U , we obtain 2xαcαy ∈ U i.e., 2RΓcΓR ⊂ U .
Now 2RΓcΓR is an ideal of R so we do unless 2RΓcΓR = 0. If 2RΓcΓR = 0,
by our assumption RΓcΓR = 0. Since R has no nilpotent ideals this forces
c = 0, that is given a, b ∈ U then aαb+ bαa = 0.

Let a 6= 0 ∈ U , then for any x ∈ R, α ∈ Γ and b = aαx+ xαa ∈ U . Hence,
aα(aαx+ xαa) + (aαx+ xαa)αa = 0. that is aαaαx+ xαaαa+ 2aαxαa = 0.
Now, for a ∈ U and aαa = 0, this reduces to 2aαxαa = 0 for all x ∈ R, α ∈ Γ
and so aΓRΓa = 0. But aΓR 6= 0 is a nilpotent right ideal of R. This is a con-
tradiction to our assumption. Inotherwords, we have shown that U contains a
non-zero ideal of R. •

Lemma 3.4 Let R be a Γ− regular ring with no non-zero nilpotent ideals
in which 2x = 0 ⇒ x = 0. Suppose that U 6= 0 is both a Lie ideal and Γ−
regular ring of R. Then, either U ⊂ Z or U contains a non-zero ideal of R.

Proof: Let us first suppose that U has a Γ− regular ring is not commu-
tative. Then, for some x, y ∈ U and α ∈ Γ, we have xαy − yαx 6= 0. For any
m ∈ R and β ∈ Γ we have xβ(yαm)− (yαm)βx ∈ U that is (xαy− yαx)βm+
yβ(xαm −mαx) ∈ U . The second memeber of this is in U since both y and
(xαm−mαx) are in U (U is both Lie ideal and sub Γ− regular ring). The net
result of all this is that (xαy− yαx)ΓR ⊂ U . But then for some m, s ∈ R and
α, β ∈ Γ, we have ((xαy−yαx)αm)βs−sβ((xαy−yαx)αm) ∈ U ⇒ RΓ(xαy−
yαx)ΓR = 0, then RΓ(xαy−yαx)ΓRΓ(xαy−yαx)ΓR = 0. This is a contradic-
tion to our assumption. We have shown that the result is correct if U is a sub
Γ− regular ring of R is not commutative. So, by using sub-lemma 3.5 a must
be in Z as follows. •

Sub-Lemma 3.5 Let R be a Γ− regular ring with no non-zero nilpotent
ideals in which 2x = 0 ⇒ x = 0. If a ∈ R commutes with aαx − xαa for all
x ∈ R, α ∈ Γ then a is in Z.

Proof: Suppose that U is commutative, we want to show that it lies in Z.
Given a ∈ U , x ∈ R then aαx−xαa ∈ U . Now for x, y ∈ R we have aαc− cαa
where c = (aα(xαy − yαx)αa− aα(xαy − yαx)αa).

Expanding aα(xαy−yαx)αa as (aαx−xαa)αy+xα(aαy−yαa) using this
and commutes with (aαx− xαa) and (aαy − yαa) yields
2(aαx − xαa)βα(aαy − yαa) = 0 for all x, y ∈ R and β ∈ Γ. Since 2m = 0
forces m = 0 we obtain (aαx − xαa)β(aαy − yαa) = 0. In this, put y = aαx
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this results in (aαx−xαa)ΓRΓ(aαx−xαa) = 0. Since R has no nilpotent, we
conclude that (aαx−xαa) = 0 and so a must be in Z. •

Theorem 3.6 Let R be a Simple Γ− regular ring of characteristic 6= 2.
Then any Lie ideal of R which is also a sub Γ− regular ring if R must either
be R itself or it contained in Z.

Proof: Lemma 3.4 immediately gives the result of the Theorem. •

Definition 3.7 If U is a Lie ideal of R, let T (U) = {x ∈ R/[x,R]Γ ⊂ U}.

Lemma 3.8 For any Γ− regular ring R, if U is a Lie ideal of R. Then,
T (U) is both a sub Γ− regular ring and a Lie ideal of R. Moreover U ⊂ T (U).

Proof: If U is a Lie ideal of R then U ⊂ T (U). Since [T (U),M ]Γ ⊂ U ⊂
T (U) must be a Lie ideal of R. Suppose that a, b ∈ T (U) and m ∈ R then
(aαb)αm − mα(aαb) = aα(bαm) − (bαm)αa + bα(mαa) − (mαa)αb. Since
a, b ∈ T (U), the right side of aα(bαm)− (bαm)αa+ bα(mαa)− (mαa)αb ∈ U
and therefore [aαb,R]Γ ⊂ U that is aαb ∈ T (U). •

Theorem 3.9 Let R be a Simple Γ− regular ring of characteristic 6= 2 and
let U be a Lie ideal of R. Then, either U ⊂ Z or U ⊃ [R,R]Γ.

Proof: By Theorem 3.6 and Lemma 3.8, T (U) is a both a sub Γ− regular
ring and a Lie ideal of R. Therefore, T (U) ⊂ Z or T (U) = R. If T (U) = R,
then by the Definition 3.7, we have [R,R]Γ ⊂ U . If T (U) ⊂ Z and U ⊂ T (U),
we obtain U ⊂ Z. •

Corollary 3.10 If R has a non-commutative Simple Γ− regular ring of
characteristic 6= 2, then the sub Γ− regular ring generated by [R,R]Γ is R.

Proof: Any additive sub-group containing [R,R]Γ is trivially a Lie ideal of
R. Hence, the sub Γ− regular ring is generated by [R,R]Γ is a Lie ideal of R.
Hence, by Theorem 3.6, it equals to R or is in Z. If it is in Z, then [R,R]Γ ⊂ Z.
Thus, for a ∈ R, a commutates with all aαa. In aαa, α ∈ Γ then by the Sub-
Lemma 3.5, we get a ∈ Z, that is R ⊂ Z. Since R to be non-commutative, that
is ruled out hence the corollary. •

In Theorem 3.6, R has a Simple Γ− regular ring of characteristic 6= 2. Now,
we should like to settle the problem when R has characteristic 2, Theorem 3.6
fail?

Suppose that R has a Simple Γ− regular ring of characteristic 2 and that
U is a Lie ideal and sub Γ− regular ring of R, we obtain U 6= Rand U is not a
subset of Z. As in the proof of Lemma 3.4, we obtain U as a sub Γ− regular
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ring of R must be commutative. That is given u, v ∈ U , then uαv + vαu = 0
for all α ∈ Γ.

Let a ∈ U then aαs + sαa ∈ U for all s ∈ R and α ∈ Γ. Hence, aα(aαs +
sαa) = (aαs + sαa)αa. This says that aαa ∈ Z. Since, for any m ∈ R, we
have aαm+mαa ∈ U , also (aαm+mαa)α(aαm+mαa) ∈ Z. If Z = 0, then
aαa = 0. that is (aαm + mαa)α(aαm + mαa) ∈ Z = 0 from which we get
((aαm)α)2(aαm) = 0. But aΓR is a right ideal of R in which every element
in the form ((aαm)α)2(aαm) = 0. By Theorem 3.1, R would have a nilpotent
ideal, that is R would be nilpotent which is impossible for a Simple Γ− regular
ring.

Therefore, we assume that Z 6= 0 and that there is an element a ∈ U ,
a /∈ Z such that aαa 6= 0 ∈ Z and (aαm + mαa)α(aαm + mαa) ∈ Z for all
m ∈ R and α ∈ Γ.

Theorem 3.11 Let R be a Simple Γ− regular ring of characteristic 2 and
suppose that there exist an element a ∈ R, a /∈ R such that for all aαa ∈ Z,
α ∈ Γ and [(aαx + xαa)α]3(aαx + xαa) ∈ Z for all x ∈ R and α ∈ Γ. Then,
R is a 4 - dimensional over Z.

Proof: If Z = 0, then both aαa = 0 and [(aαx+xαa)α]3(aαx+xαa) = 0.
Hence, [(aαx)α]4[aαx] = aα[(aαx+ xαa)α]3(aαx+ xαa)αx = 0 for all x ∈ R.
But then the right ideal aΓR satisfies (uα)4u = 0 for all elements of u ∈ aΓR,
by Theorem 3.1, this is not possible in a simple Γ− regular ring.

Suppose that Z 6= 0, hence 1 ∈ R. If aαa = 0, then b = a + 1 satisfies
bαb = 1 and [(bαx + xαb)α]3[bαx + xαb] ∈ Z for all x ∈ R. Therefore, we
may assume that aαa = p 6= 0 ∈ Z. Let Z̄ = Z(

√
P ), then R̄ = R ⊗ Z 6= Z̄

is simple. Moreover in R̄, we have [(aαx̄ + x̄αa)α]3(aαx̄ + x̄αa) ∈ Z̄ for all
x̄ ∈ R̄.

Since, dimR̄/Z = dimR/Z, to prove the theorem it is enough to do so in
R̄. Also b = a/q where q ∈ Z̄, then qαq = p satisifes bαb = 1 and
[(bαx̄ + x̄αb)α]3[bαx̄ + x̄αb] ∈ Z. Hence without loss of generality we may
suppose that a ∈ R, a 6= Z, aαa = 1 and [(aαx+ xαa)α]3(aαx+ xαa) ∈ Z for
all x ∈ R.

Now R is a dense Γ− regular ring of linear Γ− regular transformations on
a vector space V over a division Γ− regular ring ∆ (Since Z 6= 0 and R is
simple). Since (a + 1)α(a + 1) = 0, (a + 1) 6= 0, V must be more than 1 -
dimensional over ∆. Since a 6= 1 it is immediate that there is a v ∈ V such
that v, vαa are linearly Γ− regular independent over ∆.

If for some w ∈ V, v, vαa and wα(1+a) are linearly Γ− regular independent
over ∆, then the sub Γ− regular space V0 spanned by these is invariant under

a and a induces the linear Γ− regular transformations

0 1 0
1 0 0
0 0 1

 on V0. By
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density of R on V , there is an x ∈ R which includes

0 1 0
0 0 0
0 0 0

 on V0. Hence,

(aαx+xαa) induces

0 1 0
1 0 0
0 0 0

 on V0. But [(aαx+xαa)α]3(aαx+xαa) ∈ Z.

Yet does not induces a scalar on V0. Since it induces

0 1 0
1 0 0
0 0 0

. Thus, we

have that for all w ∈ V such that v, vαa, w are linearly Γ− regular independent
over ∆. If V is more than 2-dimensional over ∆, there is a w ∈ V such that
v, vαa, w are linearly Γ− regular independent over ∆. By the above, wαa is in

the sub Γ− regular space V , they span. The matrix of a on V is

0 1 0
1 0 0
p q r

.

By density there is an x ∈ R which induces

0 1 0
0 0 0
0 0 0

 on V1. But (aαx+xαa)

induces

0 1 0
0 1 0
0 p 0

. We hve [(aαx+ xαa)α]3(aαx+ xαa) is not a scalar.

Thus, we must have that V is 2-dimensional over ∆. All the remains is to

show that ∆ is commutative. Let a =

(
p q
r s

)
, then aΓ2a = I2 where Γ2 is the

set of all 2×2 matrices of Γ− regular ring over ∆ and I2 is the identity matrix.

Now, we have aΓ2a = I2 becomes

(
p q
r s

)(
α11 α12

α21 α22

)(
p q
r s

)
=

(
1 0
0 1

)
. It

yields

1. pα11p+ qα21p+ pα12r + qα22r = 1

2. pα11q + qα21q + pα12s+ qα22s = 0

3. rα11p+ sα21p+ rα12r + sα22r = 0

4. rα11p+ sα21p+ rα12q + sα22s = 1.

In particular not both p, r = 0. If t ∈ ∆, then using x =

(
0 t
0 0

)
and

[(aΓ2x+ xΓ2a)Γ]3(aΓ2x+ xΓ2a) ∈ Z. Now

aΓ2x + xΓ2a =

(
p q
r s

)(
α11 α12

α21 α22

)(
0 t
0 0

)
+

(
0 t
0 0

)(
α11 α12

α21 α22

)(
p q
r s

)
=(

tα11p+ tα22r pα11t+ qα21t+ tα12q + tα22r
0 rα11t+ sα22t

)
. Therefore,
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[(aΓ2x+xΓ2a)Γ]3(aΓ2x+xΓ2a) ∈ Z. This gives for all t ∈ ∆, 4 times of (tα11p+
tα22r) and (rα11t+sα22t) are in Z. If p 6= 0, then (tα11p+ tα22r) runs through
as t does, so every x ∈ ∆ would satisfy (xΓ2)3x ∈ Z. But a non-commutative
division Γ− regular ring cannot be purely inseparable over its centre. This p 6=
0 implies ∆ is commutative. Similarly, r 6= 0 implies ∆ is commutative. Since,
one of these must hold we get that ∆ is commutative and so R is 4 - dimensional
over Z. •

Theorem 3.12 If R is a simple Γ− regular ring and if U is a Lie ideal of
R, then either U ⊂ Z or U ⊃ [R,R]Γ except R is of characteristic 2 and is
4-dimensional over its centre. •

Corollary 3.13 If R is a simple non-commutative Γ− regular ring, then the
sub Γ− regular ring generated by [R,R]Γ is R. •
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