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§1 Introduction

In 1996, Dontchev introduced contra-continuous functions. J. Dontchev
and T. Noiri introduced Contra-semicontinuous functions in 1999. S. Ja-
fari and T. Noiri defined Contra-super-continuous functions in 1999; Contra-
a—continuous functions in 2001 and contra-precontinuous functions in 2002.
M. Caldas and S. Jafari studied Some Properties of Contra-3—Continuous
Functions in 2001. T. Noiri and V. Popa studied unified theory of contra-
continuity in 2002. A.A. Nasef studied some properties of contra-y—continuous
functions in 2005. M.K.R.S.V.Kumar introduced Contra-Pre-Semi-Continuous
Functions in 2005. Ekici E., introduced and studied another form of contra-
continuity in 2006. Jamal M. Mustafa introduced Contra Semi-I-Continuous
functions in 2010. Recently S. Balasubramanian and P.A.S.Vyjayanthui de-
fined and studied contra r—continuity in 2011. Inspired with these devel-
opments, I introduce a new class of functions called contra rg—continuous
function. Moreover, we obtain basic properties, preservation theorem and re-
lationship with other types of functions.
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§2 Preliminaries

Definition 2.1. A C X is called
(i) closed if its complement is open. B B
(i) regular open[pre-open; semi-open; a-open; (3-open] if A = (A)°[A C (A)°;

A C (A2); AC ((A2)% A C ((A)°)] and regular closed|pre-closed; semi-closed;
a-closed; (-closed] if A = A0[(A°) C A; (A)° C A; ((A)°) C A; ((A°))° C A]
(iii) v—open[ra—open] if there exists a regular open set O such that O C A C
0O]0 Cc A C a(0)]

(iv) semi-@—open if it is the union of semi-regular sets and its complement is
semi-f—closed.

(v) g-closed[resp: rg-closed] if A C U whenever A C U and U is open|[resp:
r-open| in X.

(vi) sg-closed[resp: gs-closed] if s(A) € U whenever A C U and U is semi-
open[resp: open] in X.

(vii) pg-closed[resp: gp-closed; gpr-closed] if p(A) C U whenever A C U and
U is pre-open[resp: open; regular-open] in X.

(viii)ag-closed[resp: ga—closed; rga-closed] if a(A) € U whenever A C U and
U is open[resp: aw—open; ra—open] in X.

(ix) vg-closed if ¥(A) C U whenever A C U and U is v—open in X.

Note 1: From definition 2.1 we have the following interrelations among

the closed sets.
g-closed  gs-closed

! N
rga—closed — rg-closed — Z/g—Closed « sg-closed «+ fBg-closed

T T T T T
/" ra—closed — v—closed \ ) )
Regular closed — m—closed — closed — a—closed — semi closed — —closed

7 N N

mg-closed pre-closed — w—closed > ga—closed

N

gp-closed «— pg-closed rw—closed

Definition 2.2: A function f: X — Y is called
(i) contra-[resp: contra-semi-; contra-pre-;contra-r-;contra-ra—; contra-a—;
contra-(3—; contra-w—; contra-pre-semi-; contra v¥—|continuuos if inverse image
of every open set in Y is closed[resp: semi-closed; pre-closed; regular-closed;
ra—closed; a—closed; f—closed; w—closed; pre-semi-closed; v—closed] in X.

§3 Contra rg-continuous maps:

Definition 3.1: A function f: X — Y is said to be contra vg—continuous
if the inverse image of every open set is vg—closed.
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Note 2: Here after we call contra vg—continuous function as c.rvg.c func-
tion shortly.

Example 1: X =Y = {a,b,c};7 = {¢,{a},{b},{a, b}, X} and 0 = {¢, {a}, {b,c}, Y }.
Let f be identity function, then f is c.vg.c.

Example 2: X =Y = {a,b,¢,d}; 7 = {0, {a}, {b},{d},{a,b},{a,d}, {b,d}, {a,b,c},
{a,b,d}, X} = 0. Let fbe identity function, then f is not c.vg.c.

Example 3: X =Y = {a,b,¢c,d} : 7 = {¢,{a},{b},{a,b}, X} and 0 =
{6, {a},{b},{a,b},{a,b,c},Y}. Let fbe identity function, then f is c.vg.c;

c.gpr.c; but not c.gr.c; c.rg.c; c.gs.c; c.sg.c; c.g.c; ¢.pg.c; ¢.gp.c; c.Ipg.c.

Theorem 3.1:
(i) fis cvg.c. iff f1(A) € vGO(X) whenever A is closed in Y.
(ii)Let f be c.rg.c. and r-open, and A € vGO(X) then f(A) € vGC(Y).

Remark 1: Above theorem is false if r-open is removed from the statement
as shown by:

Example 4: Let X =Y = R and f be defined as flx) = 1 for all x € X
then X is vg—open in X but f{X) is not vg—closed in Y.

Remark 2: We have the following implication diagram for a function
f+(X,7) = (Y,0)

c.g.c c.gs.c
| N
c.rga.c — c.rg.c — C.V(g.C «— c.sg.c <« c.fg.c
T T T T T
S era.c — crv.e N\ T
¢.N.c — C.T.C — C.C — C.q..C — C.8.C — ¢.f3.C
/ N\ N\
C.Tg.C  C.p.Cc — C.w.C ¥ c.ga.c
N\ N\
c.gp.c «— c.pg.c C.IWw.C

Example 5: If fin Example 4 is defined as f(a) = b; f(b) = ¢; f(c) = a,
then f is c.rvg.c. but not c.g.c; c.rg.c; c.gr.c; c.rga.c. and c.v.c.

Example 6: Let X =Y = {a,b,c};7 = {¢,{a}, {b},{a,b}, X} and o =
{6, {b},{a,b},{b,c},Y}. Let fbe defined as f(a) = b; f(b) = ¢; f(c) = a, then
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f is c.vg.c. but not c.sg.c.

Example 7: Let X =Y = {a,b,c};7 = {¢,{a}, {b},{a,b}, X} and 0 =
{#,{a},{a,b},Y}. Let fbe defined as f(a) = ¢; f(b) = a; f(c) = b. Then f is
c.rg.c; c.vg..c. but not c.c; c.r.c; and c.v..c.

under usual topology on R both c.g.c and c.rg.c. are same.

under usual topology on R both c.sg.c. and c.rvg.c. are same.

Theorem 3.2: (i) If f is vg—open and c.vg.c., then f(A) € vGC(X)
whenever A € vGO(Y).
(i3) If f is an r-open and c.rg.c. mapping, then f'(A) € vGC(X) whenever
A evGO(Y).

Theorem 3.3: Let f, : X; — Y; be cvg.c. for i =1, 2. Let f :
X1 x Xy — Y] XYy be defined as follows: flxy,x2) = (fi(x1), fo(z2)). Then
f: XixXo—Y] xY5 s crvg.c
Proof: Let Uy x Uy C Y] XYy where U; be regular open in Y; for i =1, 2. Then
FHULx Uy) = f7HUL) x f1(Us). But f7H(Uy) and f, 1 (Uy) are vg—closed in
X, and X respectively and thus f; ' (Uy) x f; ' (Uy) is vg—closed in X x Xo.
Now if U is any regular open set in Y; x Y5, then f*(U) = f '(UU;) where
Ui = Ui x Us. Then fH(U) = Uf '(U;) which is vg—closed, since f(U;) is

vg—closed by the above argument.

Theorem 3.4: Leth: X — X1 x X3 be c.vg.c., where h(x) = (hy(z), ha(x)).
Then h; : X — X, is cvg.c. fori =1, 2.
Proof: Let U; is regular open in X;. Then Let U; x X, is regular open in
X1 x Xy, and A1 (U x X3) is vg—closed in X. But h;'(U;) = A1 (U; x X3),
therefore hy : X — Xj is c.vg.c. Similar argument gives hy : X — X5 is c.vg.c.
and thus h; : X — X, is cvg.c. fori=1, 2.

In general we have the following extenstion of theorems 3.3 and 3.4:

Theorem 3.5: (i) If f: X — 1Y) is c.vg.c, then Pyof: X — Y, is
c.vg.c for each A € A, where Py is the projection of I1Yy onto Y.
(i) f: 11X\ — IIY) is cvg.c, iff f : X — Yy is c.vg.c for each X € A.

Note 3: Converse of Theorem 3.5 is not true in general, as shown by the
following example.

Example 8: Let X = X; = X5 = [0,1]. Let f; : X — X; be defined as
follows: fi(z)=1if0<z < % and fi(x) =0 if % <z <I.

Let fo : X — X, be defined as follows: fo(x) = 1if 0 < x < 5 and

1
2
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fo(z) = 0 if % < x < 1. Then f; : X — X, is clearly c.vg.c. fori =1,
2., but h(z) = (fi(x1), fo(x2)) : X — X7 x X5 is not c.vg.c., for Sé(l,O) is
regular open in X; x X5, but h_l(Sé(l, 0)) = {3} which is not vg—closed in X.

Remark 3:In general,
(i) The algebraic sum and product of two c.vg.c. functions is not c.vg.c. How-
ever the scalar multiple of a c.rvg.c. function is c.vg.c.
(ii)The pointwise limit of a sequence of c.vg.c. functions is not c.vg.c. as
shown by the following example.

Example 9: Let X = X; =

are defined as follows: fi(z ) =i
L fo(z) =0if 0 < 2 < § and fo(2)
not c.vg.c.

[7 ] Letfl X—>X1andf2:X—>X2
if0 <z < andfl(x):Oif%<g;<
=1 if < 1. Then their product is

Example 10: Let X =Y = [0, 1]. Let f, is defined as follows: f,(z) = z,
for n > 1 then fis the limit of the sequence where f(z) =0if 0 <z < 1 and
f(z) = 1if x = 1. Therefore f is not c.rvg.c. For (%, 1] is open in Y, fl((%, 1])
= (1) is not vg—closed in X.

However we can prove the following theorem.

Theorem 3.6: Let f, : (X,dx) — (Y,dy), be cvg.c., forn =1, 2... and
let f: (X,dx) — (Y,dy) be the uniform limit of {f,}, then f: (X,dx) — (Y, dy)
18 c.vg.c.

Problem: (i) Are sup{f, g} and inf{f, g} are c.vg.c. if f, g are c.vg.c.
(i) Is Cerge(X, R), the set of all c.vg.c. functions,
(1) a Group. (2) a Ring. (3) a Vector space. (4) a Lattice.
(iii) Suppose f, : X — X;(i = 1,2) are cvg.c. If f: X — X; x X, defined by
f(2) = (f(2), (), then f is cvg.c. .

Solution: No.

Note 4: In general c.gpr.c; c.gp.c; c.pg.c and c.ga.c. are independent of
c.rvg.c. maps

Example 11: f as in Example 1 is c.rvg.c, but not c.gpr.c.
Example 12: f as in Example 2 is c.gpr.c. but not c.vg.c.

Theorem 3.7: If fis vg—irresolute and g is c.vg.c.[c.g.c; c.rg.c|, then go f
is c.vg.c.
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Theorem 3.8: If fis vg—irresolute, vg—open and vGO(X) = 7 and g be
any function, then go fis c.vg.c iff ¢ is c.vg.c.
Proof:If part: Theorem 3.7
Only if part: Let A be closed in Z. Then (gof)~(A) is vg—open and hence open
in X[by assumption]. Since f is vg—open f(go f)}(A) = g '(A) is vg—open
in Y. Thus g is c.vg.c.

Corollary 3.1: If fis vg—irresolute, vg—open and bijective, g is a func-
tion. Then ¢ is c.vg.c. iff go fis c.vg.c.

Theorem 3.9: If g: X — X x Y, defined by g(x) = (z,f(z))Vx € X be
the graph function of f: X — Y. Then g is c.vg.c iff fis c.vg.c.
Proof: Let V € C(Y), then X x V € C(X xY). Since g is c.vg.c., then
FHV) =g (X x V) € vGO(X). Thus, f is c.vg.c.
Conversely, let + € X and F be closed in X x Y containing ¢(x). Then
Fn({z} xY)is closed in {z} x Y containing g(x). Also {z} x Y is home-
omorphic to Y. Hence {y € Y : (x,y) € F} is closed in Y. Since fis c.vg.c.
U{f () : (z,y) € F} is vg—open in X. Further z € J{f '(y) : (z,y) € F} C
g Y(F). Hence g7'(F) is vg—open. Thus g is c.vg.c.

Theorem 3.10: (i) If fis c.vg.c. and g is continuous then go fis c.vg.c.
(i) If f is c.vg.c. and g is nearly-continuous then go fis c.vg.c.
(1ii)If f and g are c.rg.c. then go fisvg.c
() If fis c.vg.c. and g is c.rg.c., then gof is semi-continuous and — continuous.

Remark 4:In general, composition of two c.rg.c. functions is not c.vg.c.
However we have the following example:

Example 13: Let X =Y =7Z={a,b,c}and 7 = p(X); 0 = {¢,{a},{b,c}, Y},
and n = {¢,{a},{b},{a,b}, Z}. Let fand g be identity maps which are c.vg.c.,
then go fis c.vg.c.

Theorem 3.11: Let X, Y, Z be spaces and every vg— closed set be open|r-
open/ in Y, then the composition of two c.vg.c. maps is c.vg.c.

Theorem 3.12: (i) If fis c.vg.c.[c.rg.c.] g is g-continuous[rg-continuous/
and Y is T} /T’T%/ space, then go fis c.vg.c.
(i) If fis c.v.c.[e.r.c.], g is continuous[r-continuous/, then go f is c.vg.c.
(iii)If fis cv.c.[e.r.c.], g is g-continuous{rg-continuous} and Y is T {T’T%},
then go fis c.vg.c.
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Theorem 3.13: (i) If RaC(X) = RC(X) then f is c.ra..c. iff fis c.rg.c.
(ii) If RaC(X) = vgC(X) then fis c.ra.c. iff fis cvg.c.
(1ii)If vgC(X) = RC(X) then fis c.ra.c. iff fis cvg.c.
() If vgC(X) = aC(X) then fis c.a.c. iff fis cvg.c.
(v) If vgC(X) = SC(X) then fis c.sg.c. iff fis c.vg.c.
(vi) If vgC(X) = BC(X) then fis c.Bg.c. iff fis c.vg.c.

Example 14: X =Y = {a,b,c};7 = {¢,{a},{b},{a,b}, X} and o =
{¢,{a},{b,c},Y}. Let fbe identity function, then f is c.vg.c; c.sg.c. but
not c.rg.c

Note 5: Pasting Lemma is not true with respect to c.rg.c. functions.
However we have the following weaker versions.

Theorem 3.14: Let X and Y be such that X = AUB. Let fj, : A=Y
and g/ : B — Y are c.rg.c. such that flx) = g(x)Vx € AN B. Suppose A
and B are r-closed sets in X and RC(X) is closed under finite unions, then the
combination o : X — 'Y 1is c.vg.c.

Theorem 3.15: Pasting Lemma Let X and Y be such that X = AUB. Let

fratA—=Y and g5 : B —Y are cvg.c. such that f(x) = g(z) Vo € AN B,
Suppose A, B are r-closed sets in X and vgC(X) is closed under finite unions,
then the combination o : X —'Y 1is c.vg.c.
Proof: Let F be open set in Y, then o '(F) = f'(F) U g '(F) where f(F)
is vg—closed in A and g '(F) is vg—closed in B = f!(F) and g !(F) are
vg—closed in X = f1(F)Ug ! (F) is vg—closed in X[by assumption] = o~ (F)
is vg—closed in X. Hence « is c.vg.c.

Theorem 3.16: The following are equivalent:
(i) fis c.vg.c.
(i1)) Vo € X and each V € C(Y, f(x)), U € vGO(X,z) and (U) C V.
(ii3)f (V') is vg—open in X whenever V is closed in Y.

Definition 3.2: A function fis said to be
(i) strongly vg—continuous if the inverse image of every set is vg—clopen.
(ii) perfectly vg—continuous if the inverse image of every open set is vg—clopen.
(iii)M-rvg—open if the image of each vg—open set of X is vg—open in Y.

Theorem 3.17:
(i) Everly strongly vg.c function is c.vg.c. and vg.c.
(ii) Everly perfectly vg.c function is c.vg.c. and vg.c.
(#ii) Everly strongly vg.c function is perfectly vg.c.
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Theorem 3.18: The following statements are equivalent for a function f:
(1) fis cvg.c.;
(2) fH(F) € vGO(X) for every F € C(Y);
(3) for each x € X and each F € C(Y, flx)), 3U € vGO(X,z) > (U) C F;
(4) for each x € X and V € o(Y') non-containing f(z), 3 K € vGC(X) non-
containing x> (V) C K;
(5) f((G)°) € vGC(X) for every open subset G of Y;
(6) f1(F°) € vGO(X) for every closed subset F of Y.
Proof: (1)< (2): Let F € C(Y). ThenY —F € RO(Y). By (1), f'(Y—F) =
X — fY(F) € vGC(X). We have f'(F) € vGO(X). Reverse can be obtained

similarly.

(2)=(3): Let F € C(Y,f(z)). By (2), f(F) € vGO(X) and = € f(F).
Take U = f'(F). Then f(U) C F.

(3)=(2): Let F € C(Y) and 2 € f'(F). From (3), 3 U, € vGO(X,x) >
U, C f1(F). We have f'(F) = Uses1(py Us- Thus f(F) is vg—open.

(3)=(4): Let V € o(Y) not containing f(x). Then, Y =V € C(Y, f(x)). By
(3),3U € vGO(X,2) 2 U)CY —V. Hence, U C f ' (Y =V)Cc X —fHV)
and then f (V) ¢ X —U. Take H = X — U, then H € vGC(X) non-

containing x. The converse can be shown easily.

(1)<(5): Let G € o(Y). Since (G)° € a(Y), by (1), f1((G)°) € vGC(X).

The converse can be shown easily.
(2)<(6): It can be obtained smilar as (1)<(5).

Example 15: Let X = {a,b,c}, 7 = {¢,{a},{b},{a,b},{a,c}, X} and 0 =
{6, {b},{c},{b,c}, X}. Then the identity function f: X — X is c.vg.c. But it
is not regular set-connected.

Theorem 3.19: If fis cvg.c. and A € RO(X)[resp: RC(X)], then
fat A=Y iscrg.c
Proof: Let V € o(Y) = f/_Al(V) = f71(V)NA € vGC(A). Hence f, is c.vg.c.

Remark 5: Every restriction of an c.rg.c. function is not necessarily
c.vg.c.

Theorem 3.20: Let f be a function and ¥ = {U, : a € I} be a vg— cover
of X. If for each a € I, fy, is c.vg.c., then fis an c.vg.c. function.
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Proof: Let ' € C(Y). fy, is cvg.c. for each a € I, frUla(F) € vgOp,.
Since U, € vGO(X), fEQ(F) € vGO(X) for each a € I. Then f'(F) =
Uaelerla(F) € vGO(X). This gives f is an c.vg.c.

Theorem 3.21: If f and g are functions. Then, the following properties
hold:
(1) If f is c.vg.c. and g is reqular set-connected, then go fis c.vg.c. and vg.c.
(2) If fis c.vg.c. and g is perfectly continuous, then go fis vg.c. and c.vg.c.
Proof: (1) LetV € n(Z). Since g is regular set-connected, g~*(V') is clopen.
Since f is c.vg.c., f (g (V) = (gof)~1(V) is vg—open and vg—closed. There-
fore, go fis c.vg.c. and vg.c.

(2) can be obtained similarly.

Theorem 3.22: If f is a surjective M-vg—open/[resp: M-vg—closed] and
g 1s a function such that go fis c.vg.c., then g is vg.c.

Theorem 3.23: If fis c.vg.c., then for each point x € X and each fil-
ter base A in X vg— converging to z, the filter base f(A\) is rc-convergent to f(x).

Theorem 3.24: Let f be a function and x € X. If there exists U €
vGO(X, ) and f; is c.vg.c. at z, then fis c.vg.c. at x.
Proof: If I € C(Y, f{x)). Since fi; is c.vg.c. atx, there exists V € vGO(U, x) >
fV) = (fp)(V) C F.Since U € vGO(X, x), V € vGO(X, z). Hencef is c.vg.c.

at x.

Lemma 3.1:
(i) If V is an open set, then sCly(V') = sCI(V).
()If V is an regular-open set, then sCIl(V) = Int(CI(V).

Lemma 3.2: ForV C Y, 0), the following properties hold:
(1) oV =V for every V € BO(Y),
(2) vV =V for every V € SO(Y),
(8) sV = (V)° for every V € RO(Y).

Theorem 3.25: For a function f, the following properties are equivalent:
(1) fis (vg, s)-continuous;
(2) fis cvg.c.;
(8) f1(V) is vg—open in X for each O-semi-open set V of Y;
(4) fH(F) is vg—closed in X for each 0-semi-closed set F of Y.
Proof: (1)=(2): Let F € RC(Y) and = € f*(F). Then f(x) € F and F is
semi-open. Since f is (vg, s)-continuous, 3U € vGO(X,z) > f(U) C F = F.
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Hence z € U C f(F) which implies that z € vg(f*(F))°. Therefore,
FHF) € vg(f(F))° and hence f(F) = vg(f'(F))°. This shows that
fH(F) € vGO(X). It follows that f is c.vg.c.

(2)=-(3): Follows from the fact that every §-semi-open set is the union of
regular closed sets.

(3)<(4): This is obvious.

(4) = (1): Let z € X and V € SO(Y, f(z)). Since Vis closed, it is f-semi-
open. Now, put U = f (V). Then U € vGO(X,z) and f(U) C V. Hence f is
(vg, s)-continuous.

Theorem 3.26: For a function f, the following properties are equivalent:
(1) fis cvg.c.;
(2) (V) is vg—open in X for every V € BO(Y);
(3) (V) is vg—open in X for every V € SO(Y);
(4) £ H((V)°) is vg—closed in X for every V € RO(Y).
Proof: (1) = (2): Let V € BO(Y). By Theorem 2.4 of [3] V is closed and by
Theorem 3.18 (V) € vGO(X).

(2) = (3): This is obvious since SO(Y') C SO(Y).

(3) = (4): Let V € RO(Y) = Y — (V) is closed and hence it is semi-open.

Then X —fHV)) = FUY = (V)°) = FH(Y — (V) ) € vGO(X). Hence
FHV)°) e vGO(X).

(4) = (1): Let V € RO(Y). Then f (V) = f1((V)°) € vGCO(X).

Corollary 3.2: For a function f, the following properties are equivalent:
(1) fis cvg.c.;
(2) (V) is vg—open in X for every V € BO(Y);
(3) (V) is vg—open in X for every V € SO(Y);
(4) f1(sV) is vg—closed in X for every V € RO(Y).
Proof: This is an immediate consequence of Theorem 3.26 and Lemma 3.2.

_The vg—frontier of A C X is defined by vgFr(A) = vg(A) —vg(X — A) =
vg(A) —vg(A)°.

Theorem 3.27: {x € X : f: X — Y is not cvg.c.} is identical with the
union of the vg—frontier of the inverse images of closed sets of Y containing

fx).
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Proof: If f is not cvg.c. at z € X. By Theorem 3.18, 34 a closed set
F e CY,flx) > flU N (Y — F) # ¢ for every U € vGO(X,z). Then
v € vg(f ' (Y —F)) = vg(X —f'(F)). On the other hand, we get = €
FHF) C vg(f H(F)) and hence z € vgFr(f(F)).

Conversely, If f is c.vg.c. at x and let F' € C(Y, f(x)). By Theorem 3.18, there
exists U € vGO(X,z) > x € U C f'(F). Therefore, z € vg(f '(F))°. This
contradicts that € vgFr(f*(F)). Thus f is not c.vg.c.

84 Contra vg—Irresolute Maps

Definition 4.1: A function fis said to be contra vg—irresolute if the in-
verse image of every vg—open set is vg—closed.

Example 16:

(i) Let X =Y = {a,b,c};7 = {9,{a},{b},{a,b}, X} = 0. Let fbe iden-
tity map. Then f is contra vg—irresolute, contra rg-irresolute, contra gr-
irresolute, contra sg-irresolute, contra gs-irresolute, contra g-irresolute, and
contra ra—irresolute but not contra-irresolute, contra r-irresolute, contra pre-
irresolute, contra a—irresolute and contra F—irresolute.

(ii) The identity map f in Example 7 is contra vg—irresolute, contra r-irresolute
but not contra rg-irresolute, contra gr-irresolute, contra sg-irresolute, contra
gs-irresolute, contra g-irresolute, contra continuous, contra-irresolute, contra
pre-irresolute, contra a—irresolute, contra f—irresolute, and contra ra—irresolute.

Example 17: Let X =Y = {a,b,¢,d}; 7 = {9, {a}, {b},{a,b},{a,b,c}, X} =

o. Let fbe defined as f(a) = f(b) = f(c) = d,f(d) = a. Then f is contra
vg—irresolute and vg—irresolute.

Theorem 4.1: (i) Let f be c.rg.c. and r-open, then fis contra vg—irresolute.
(i) f is contra vg—irresolute iff inverse image of every vg—closed set is vg— open.

Theorem 4.2: If f; g are contra vg—1irresolute, then go f is vg—irresolute.

Remark 6: We have the following implication diagram for a function
f: X—->Y
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c.gi c.gs.1
! N
crga.i — crgi — C.Vg.1 < c.sg.i « c.fg.i
T T T T T
Serai—criN T T
cni— cmi— c.c— cai— csc—cfi
/ L\ \
cmgi  c.pd— cwli s cgad
N\ N\
c.gp.i «— c.pg.i c.rw.i

Example 18: The identity map fin Example 1 is contra rvg—irresolute,
contra-irresolute but not contra rga-irresolute, contra rg-irresolute, contra gr-
irresolute, contra sg-irresolute, contra gs-irresolute, contra g-irresolute, contra
r-irresolute.

Theorem 4.3: If f is contra vg—irresolute and
(i) g is r-irresolute,then go f is contra vg—irresolute.
(ii)g is contra r-irresolute,then go f is vg—irresolute.

Note 6: contra vg—irresolute and c.vg.c.; contra ga-irresolute; contra pg-
irresolute; contra gp-irresolute maps are independent to each other

Theorem 4.4: (i) If RaC(X) = RC(X) and RaC(Y) = RC(Y), then f is
contra ra—irresolute iff f is contra r-irresolute.
(i1) If RaC(X) =vgC(X) and RaC(Y) =vgC(Y), then fis contra ra—irresolute
iff fis contra vg—irresolute.
(iii) If vgC(X) = RC(X) and vgC(Y) = RC(Y), then f is contra r-irresolute
iff fis contra vg—irresolute.
() If vgC(X) = aC(X) and vgC(Y) = aC(Y), then f is contra a—irresolute

off fis contra vg—irresolute.

Theorem 4.5: Pasting Lemma Let X and Y be spaces such that X =
AUB and let f;y : A—Y and g5 : B — Y are contra vg—irresolute maps
such that f(z) = g(x) Vo € AN B. Suppose A, B are r-open sets in X and
vgC(X) is closed under finite unions, then the combination o : X — Y is
contra vg—irresolute.

Theorem 4.6: (i) If f is contra vg—irresolute and g is vg.c.[rg.c.], then
go f is c.vg.c.
(i)If fis contra vg—irresolute and g is c.vg.c.[c.rg.c.] then go f is vg.c.
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Theorem 4.7: If vGO(Y,0) = o in Y, then f is contra vg—irresolute iff
fis cvg.c.

Theorem 4.8: If vGO(X,7) = 7; vGO(Y,0) = 0, then the following are
equivalent:
(i) f is c.g.c (ii) fis c.vg.c. (1i)f is contra vg—irresolute.

Theorem 4.9: The set of all contra vg—irresolute mappings do not form
a group under the operation usual composition of mappings.

Theorem 4.10: If f is contra vg—irresolute then for every subset A of

X, flvg(A)) € vg(f(A)).
Proof Let A C X and consider vg(f(A)) which is vg—closed in Y, then
f(vg(f(A))) is vg—open in X, by theorem 4.1(ii). Furthermore A C f'(f(A)) C

f(vg(f(A))) and vg(A) C f ' (vg(f(A))), we have fvg(A)) C fif "(vg(f(A))))

= (vg(f(A)) NAY)) € vg(f(A))). Hence flrg(A) € vg(f(A).

Theorem 4.11: If f is contra vg—irresolute then for every subset A of

Y, vg(f ' (vg(A))) C f(vg(A)).

85 The Preservation Theorems and Some Other
Properties

Theorem 5.1: If fis c.vg.c.[resp: c.r.c] surjection and X is vg—compact,
then Y is closed compact.
Proof: Let {G; : i € I} be any closed cover for Y. For G; is closed in Y and
fis cvg.c., f1(G;) is vg—open in X. Thus {f*(G;)} forms a vg—open cover
for X and hence have a finite subcover, since X is vg—compact. Since f is
surjection, Y = f(X) = J._, G;. Therefore Y is closed compact.

Theorem 5.2: If fis a r-irresolute and continuous surjection and X is

mildly compact (resp. mildly countably compact, mildly Lindelof), then Y is
nearly compact (resp. nearly countably compact, nearly Lindelof) and S-closed
(resp. countably S-closed, S-Lindelof).
Proof: Let V € C(Y). Since f is r-irresolute and continuous, f*(V) is
regular-open and closed in X and hence f'(V) is clopen. Let {V, : o € I} be
any closed (respectively open) cover of Y. Then {f '(V, : a € I} is a clopen
cover of X and since X is mildly compact, 3 a finite subset Iy of I such that
X = U{f (Vo : a € Iy}. Since f is surjective, we get Y = |J{V, : a € Iy}.
Hence Y is S-closed (respectively nearly compact). The other proofs can be
obtained similarly.
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Theorem 5.3:If f is c.vg.c.[c.rg.c.], surjection. Then the following state-
ments hold:
(i) If X is locally vg—compact, then Y is locally closed compactflocally nearly
closed compact; locally mildly compact.]
(i) If X is vg— Lindeloffflocally vg—lindeloff], then Y is closed Lindeloff[resp:
locally closed Lindeloff; nearly closed Lindeloff; locally nearly closed Lindeloff;
locally mildly lindeloff].
(1ii)If X is vg—compact[countably vg—compact], then Y is S-closed[countably
S-closed].
() If X is vg—Lindelof, then Y is S-Lindelof/nearly Lindelof].
(v) If X is vg—closed[countably vg—closed], then Y is nearly compact[nearly
countably compact].
(vi) X is vg—compactfvg—Ilindeloff], then Y is nearly closed compact; mildly
closed compact[mildly closed lindeloff].

Theorem 5.4: If f is c.vg.c.[contra vg—irreolute] surjection and X is
vg—connected, then Y is connected[vg—connected]
Proof: If Y is disconnected. Then Y = V; U V5, where V; and V5 are clopen
in Y. Since f is c.vg.c., f1(V1) and f (V%) are disjoint vg—open sets in X and
X = (V) U f(Vy), which is a contradiction for vg—connectedness of X.
Hence, Y is connected.

Corollary 5.1: The inverse image of a disconnected[vg— disconnected)]
space under a c.vg.c.,[contra vg—irreolute] surjection is vg—disconnected.

Theorem 5.5:1f f is c.vg.c., injection and
(i) Y is UT;, then X isvg —T; i = 0,1,2.
(i) Y is UR;, then X isvg— R; i = 0, 1.
(111)Y is UC;[resp : UD;| then X is vg — T;[resp: vg — D], i = 0, 1, 2.
(w)If f is closed and Y is UT;, then X isvg —1T;, i = 3, 4.

Theorem 5.6: If fis c.vg.c.[resp: c.rg.c] and Y is UTy, then the graph
G(f) of f is vg—closed in the product space X X Y.
Proof: Let (z,y) ¢ G(f) = v # flx) = 3 disjoint clopen sets V and W
> fle) € V and ye W. Since f is cvg.c., 3U € vGO(X) > = € U and
flU) ¢ W. Therefore (z,y) € U xV C X xY — G(f). Hence G(f) is
vg—closed in X x Y.

Theorem 5.7: If fis c.vg.c.[c.rg.c] and Yis UTy, then A = {(x1, xa)|f(x1) =
flza)} is vg—-closed in the product space X x X.
Proof:If (x1,22) € X x X — A, then flx;) # flxg) = 3 disjoint V; € CO(o)
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f(z;) € V;, and since f is c.vg.c., f1(V;) € vGO(X, x;) for each j = 1,2. Thus
(w1, 29) € [ (V1) x f1(Va) € vGO(X x X) and [~ (V1) x f(Vo) € X x X — A.
Hence A is vg—closed.

Theorem 5.8: If fisc.r.c{c.c.}; g: X — Y iscwvg.c; and Y is UTy, then
E={xe X : flx)=g(x)} is vg—closed[and hence semi-closed and F— closed]
mn X.

Theorem 5.9: If fis c.vg.c. injection and Y is weakly Hausdorff, then
Xisvg—1T.
Proof: Suppose that Y is weakly Hausdorff. For any x # y € X, 3V, W €
RC(Y) 3 flx) € V,fly) €V, flx) € W and fly) € W. Since fis c.vg.c., f (V)
and f'(W) are vg—open subsets of X such that x € f'(V),y & f'(V),z &
f(W) and y € f1(W). This shows that X is vg — T}.

Theorem 5.10: [If X is vg—ultra-connected and f is c.vg.c., and surjec-
tive, then Y is hyperconnected.
Proof: If Y is not hyperconnected, 3 V € o(Y) 3 V is not dense in Y. Then
Y = By U By; By N By = ¢. Since f is c.vg.c. and onto, A, = f(B;) and
Ay = f1(By) are disjoint non-empty vg—closed subsets of X. By assumption,
the vg—ultra-connectedness of X implies that A; and A, must intersect, which
is a contradiction. Therefore Y is hyperconnected.

Theorem 5.11: If for each x1 # x5 in a space X there exists a function
[ of X into a Urysohn space Y such that flx1) # flxs) and f is cvg.c., at xy
and xy, then X 1s vg —Th.
Proof: Let x; # x5. By the hypothesis 9 a function fwhich satisfies the con-
dition of this theorem. Since Y is Urysohn and f(z1) # f(x2), there exist open
sets V; and V4 containing f(z;1) and f(xy), respectively, such that V; NV, = ¢.
Since f is c.vg.c., at x;, IU; € vGO(X, x;) > f(U;) C V; for i = 1, 2. Hence
Uy NUy = ¢. Therefore, X is vg — T.

Corollary 5.2: If fis an c.vg.c. injection and Y is Urysohn, then X is
vg —Ts.
§6 vg—Regular Graphs:

Recall that for a function f, the subset {(z,f(z)) : € X} C X x Y is
called the graph of f and is denoted by G(f).

Definition 6.1: A graph G(f) of a function f is said to be rg—regular
if for each (z,y) € (X xY) — G(f), U € vGC(X,z) and V € RO(Y,y) >
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(U x V)N G(f) = ¢.

Lemma 6.1: The following properties are equivalent for a graph G(f) of
a function:
(1) G(f) is vg—regular;
(2) for each point (z,y) € (X xY) — G(f), U € vGC(X,z) and V €
RO(Y,y) > AU)NV = ¢.
Proof: It is an immediate consequence of definition of vg—regular graph and
the fact that for any subsets A C X and B C Y,(A x B) N G(f) = ¢ iff
flA)N B = ¢.

Theorem 6.2: If fis c.vg.c., and Y is Ty , then G(f) is vg—regular graph
in X xY.
Proof: Assume Y is 7. Let (z,y) € (X xY) — G(f). It follows that flx
Since Y is Ty, there exist disjoint open sets V and W containing f(x
y, respectively. We have ((V)°) N ((W)°) = ¢. Since f is c.vg.c., f((
is vg—closed in X containing x. Take U = f'((V)°). Then f(U) C ((
Therefore, f({U) N ((W)°) = ¢ and G(f) is vg—regular in X x Y.

Theorem 6.3: Let f have a vg—regular graph G(f). If f is injective, then
X isvg—17.
Proof: Let  # y € X. Then, we have (z, fly)) € (X xY)—G(f). By definition
6.1, 3U € vGC(X) and V € RO(Y) > (z,fly)) € U x V and U)NV = ¢;
hence U N f (V) = ¢. Therefore, we have y ¢ U. Thus, y € X — U and
x & X —U. We obtain that X — U € vGO(X). This implies that X is vg — T}.

Theorem 6.4: Let f have a vg—regular graph G(f). If f is surjective, then
Y is weakly T.
Proof: Let y; # y2 € Y. Since f is surjective f{z) = y; for some z € X and
(z,y2) € (X xY) — G(f). By definition 6.1, 3U € vGC(X) and F € RO(Y) >
(x,y2) € U x F and [U)NF = ¢; hence y; & F. Then y, €Y — F € RC(Y)
and y; € Y — F. This implies that Y is weakly 7.

Example 19: Let X = {a,b,c}, 7 = {¢,{a,b}, X} and 0 = {¢, {a}, {b,c}, X}.
Then, the identity function fis contra-vg—continuous but it is not weakly con-
tinuous.

Corollary 6.1:
(i) If f is M-vg—open and c.vg.c., then f is al.vg.c.
(i)If fis cvg.c. and'Y is almost reqular, then fis al.vg.c.



Contra vg— Continuity 17

Definition 6.2:. A function f is said to be faintly rg—continuous if
for each z € X and each f-open set V of Y containing f(x), there exists
UevGO(X,z)> f(U) CV.

Theorem 6.5: LetY be E.D. Then, fis c.vg.c. iff it is vg.c.
Proof: Necessity. Let + € X and V € o(Y, flx)). Since Y is E.D., V is
clopen and hence V is closed. By Theorem 3.18, 3U € vGO(X,z) > AU) C V.
Therefore f is vg—continuous.
Sufficiency. Let F be any closed set in Y. Since Y is E.D., F is also open and

fHF) € vGO(X). Hence f is c.vg.c.

§7 Contra-vg—Closed Graphs

Definition 7.1: A function fis said to have a contra-vg—closed graph if
for each (z,y) € (X xY) — G(f) there exists U € vGO(X, z) and a closed set
V of Y containing y such that (U x V') N G(f) = ¢.

Lemma 7.1: [ has a contra-vg—closed graph iff for each (z,y) € (X X
Y)— G(f)AU € vGO(X,x) and V € C(Y,y) > AU)NV = ¢.

Theorem 7.1: If fis cvg.c., and Y is Cy, then G(f) is contra-vg— closed.
Proof: Suppose that (z,y) € (X xY) — G(f). Then y # f(x). Since Y is Cy,
there exist open sets V and W in Y containing y and f(x), respectively, such
that VN W = ¢. Since f is c.vg.c., there exists U € vGO(X,x) > {U) C W.
This shows that f(U) NV = ¢ and hence G(f) is ontra-vg—closed.

Corollary 7.1: Iffis cvg.c. andY is Cy, then G(f) is contra-vg—closed.

Theorem 7.2: If f is an injective c.vg.c. function with the contra-
vg—closed graph, then X is vg —T,.
Proof: Let z # y € X. Since f is injective, flz) # fly) and (z, fly)) € (X X
Y) — G(f). Since G(f) is contra-vg—closed, by Lemma 7.1 3 U € vGO(X, x)
and V € RC(Y,fly)) > AU)NV = ¢. Since f is c.vg.c., by Theorem 3.18
1 G € vGO(X,y) > f(G) C V. Therefore, we have f{U) N G) = ¢; hence
UNG = ¢. Hence X is vg — Th.

References

[1] Ahmad Al-Omari and Mohd.Salmi Md.Noorani, Some properties
of contra-b-continuous and almost contra-b-continuous functions,
Euro.J.P.A.M., 2(2) (2009), 213-230.



18

2]

[10]

[11]

[12]

S. Balasubramanian

S. Balasubramanian and P.A.S. Vyjayanthi, contra v—continuity, Bull.
Kerala. Math. Association, 8(2)(2011)211 - 228.

M. Caldas and S. Jafari, Some properties of contra-3—continuous func-
tions, Mem. Fac. Sci., Kochi Univ. (Math.), 22(2001), 19-28.

J. Dontchev, Contra-continuous functions and strongly S-closed space,
LJ.M.€.M.S.,19(2) (1996), 303-310.

J. Dontchev and T. Noiri, Contra-semicontinuous functions,
Math. Pannonica, 10(2) (1999), 159-168.

J. Dontchev, Another form of contra-continuity, Kochi.J.M.,1(2006), 21-
29.

S. Jafari and T. Noiri, Contra-a—continuous functions between topologi-
cal spaces, Iranian International Journal of Science, 2(2) (2001), 153-167.

S. Jafari and T. Noiri, On contra-precontinuous functions, B.M.M.S.S.,
25(2) (2002), 115-128.

Jamal M. Mustafa, Contra semi-I-continuous functions, Hacettepe Journal
of Mathematics and Statistics, 39(2)(2010), 191-196.

A.A. Nasef, Some properties of contra-y—continuous functions, Chaos
Solitons Fractals, 24(2) (2005), 471-477.

T. Noiri and V.Popa, A unified theory of contra-continuity,
Ann. Univ.Sci. Budapest, 44(2002), 115-137.

M.K.R.S. Veera Kumar, Contra-pre-semi-continuous functions,
B.M.M.S.S., 28(1) (2005), 67-71.



