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Abstract

In this paper, first we have established two sets of sufficient conditions for a
TS-1F contractive mapping to have unique fized point in a intuitionistic fuzzy
metric space. Then we have defined (e, X)) IF-uniformly locally contractive
mapping and 1 — chainable space, where it has been proved that the (e, \)
IF-uniformly locally contractive mapping possesses a fixed point.
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1 Introduction

Fuzzy set theory was first introduce by Zadeh[13] in 1965 to describe the situa-
tion in which data are imprecise or vague or uncertain. Thereafter the concept
of fuzzy set was generalized as intuitionistic fuzzy set by K. Atanassov[6, 7] in
1984. It has a wide range of application in the field of population dynamics ,
chaos control , computer programming , medicine , etc.

The concept of fuzzy metric was first introduced by Kramosil and Michalek[9]
but using the idea of intuitionistic fuzzy set, Park[5] introduced the notion
of intuitionistic fuzzy metric spaces with the help of continuous t-norms and
continuous t-conorms, which is a generalization of fuzzy metric space due to
George and Veeramani[l].
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Introducing the contraction mapping with the help of the membership func-
tion for fuzzy metric, several authors[2, 8, 10] established the Banach fixed
point theorem in fuzzy metric space. In the paper[2], to prove the Banach
Fixed Point theorem in intuitionistic fuzzy metric space, Mohamad[2] also in-
troduced one concept of contractive mapping, which is not so natural. There
he proved that every iterative sequence is a contractive sequence and then as-
sumed that every contractive sequences are Cauchy. But all these contraction
mappings, which they have considered to establish different type fixed point
theorem, do not bear the intension of the contraction mapping with respect
to a fuzzy metric, where a fuzzy metric gives the degree of nearness of two
points with respect to a parameter . Considering this meaning of fuzzy met-
ric, in our paper[11], we have redefined the notion of contraction mapping in
an intuitionistic fuzzy metric space and then directly, it has been proved that
the every iterative sequence is a Cauchy sequence, that is, we don’t need to
assume that every contractive sequences are Cauchy sequences. Thereafter
we have established the Banach Fixed Point theorem there. In this paper,
first we have established two sets of sufficient conditions for a TS-IF contrac-
tive mapping to have unique fixed point in a intuitionistic fuzzy metric space.
Then we have defined (e, \) IF-uniformly locally contractive mapping and
n — chainable space, where it has been proved that the (e, A) IF-uniformly
locally contractive mapping possesses a fixed point.

2 Preliminaries

We quote some definitions and statements of a few theorems which will be
needed in the sequel.

Definition 2.1 [3/. A binary operation * : [0, 1] x [0, 1] —
0, 1] s continuous t - norm if * satisfies the following conditions

[

(i) * is commutative and associative ,

(ii) * is continuous ,

(iti) ax1 = a Vace[0,1],

(iv) axb < c¢cxd whenever a < ¢,b < danda,b,c,de [0, 1].

Definition 2.2 [3/. A binary operation o : [0, 1] x [0, 1] —
0, 1] s continuous t-conorm if o satisfies the following conditions
i) <o is commutative and associative
i) o s conltinuous ,
iti) a o0 = a Va € [0,1],
iw) aob < cod whenever a < ¢,b < danda,b,c,d € [0, 1].

Result 2.3 [/). (a) Forany 71,72 € (0,1) with ry > rq, there
exist r3, rqy € (0, 1) suchthat r4 x rg > re and 11 > T4 O To.



On Fixed-point Theorems in Intuitionistic... 3

(b) Forany rs € (0, 1), there exist rg, r; € (0, 1) such that
re x 1¢ > 15 and vy © r7 < T

Definition 2.4 [5] Let % be a continuous t-norm , ¢ be a continuous t-
conorm and X be any non-empty set. An intuitionistic fuzzy metric or
wn short IFM on X is an object of the form
A = A{((z,y, ), plz,y,t), viz,y,t)) + (z,y,1t) €
X2 x (0, 00)} where p, v are fuzzy sets on X% x (0, 00) , pu denotes the
degree of nearness and v denotes the degree of non—nearness of x and y rel-
ative to t satisfying the following conditions :  for all x,y,z € X, s,t > 0
(i) p(z,y,t) +v(z,y,t) <1 V (z,y,t) € X?x(0,00);

(i) p(z,y,t) > 0;

(i) p(z,y,t) = 1 ifandonlyif = =y

(iv) p(x,y,t) = ply,x, t)

(v) p(z,y,s)=p(y,z,t) < pla,z,s+1);
(vi) p(z,y,-): (0, 00) = (0, 1] is continuous;
(vii) v(z,y,t) > 0;

(viii ) v(z,y,t) = 0 ifand only if = = y;
(iz)v(z,y,t) = v(y,z,t)

(z) v(z,y,s)opu(y,z,t) > v(z,z,s +1t);
(zi)v(z,y,-):(0,00) = (0, 1] is continuous.

If A is a IFM on X , the pair (X, A) will be called a intuitionistic
fuzzy metric space or in short IFMS.

We further assume that (X, A) is a IFMS with the property:
(xii) Forall a € (0,1), a*xa =a and a o a = a

Remark 2.5 [5] In intuitionistic fuzzy metric space X, p(x,y,-) s
non-decreasing and v (x,y, +) is non-increasing for all x,y € X.

Definition 2.6 [1] A sequence { z, }, in a intuitionistic fuzzy metric space
is said to be a Cauchy sequence if and only if for each r € (0, 1) and t >0
there exists ng € N such that p(x,, Tpm,t) > 1—r and v(z,, Ty, t) <
r for all n, m > ny.

A sequence { x,, } in a intuitionistic fuzzy metric space is said to converge to
x € X if and only if for each r € (0,1) and t > 0 there ezxists no € N
such that p(x,, xz,t) > 1 —7r and v(z,,x,t) < r forall n,m > ny.

Note 2.7 [12] A sequence { x,, }, in an intuitionistic fuzzy metric space is
a Cauchy sequence if and only if

nleoou(xn,wn+p,t) =1 and nli_)mool/(acn,xwrp,t) =0
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A sequence { x,, }, in an intuitionistic fuzzy metric space converges to x € X
if and only if

Aim g (zn, z,t) =1 and  lim v(z,,z,t) =0

Definition 2.8 [2/ Let (X, A) be a intuitionistic fuzzy metric space. We
will say the mapping f: X — X s t-uniformly continuous if for each ¢,
with 0 < & < 1, there exists 0 < r < 1, suchthat p(x,y,t) > 1—7r and

v(z,y,t) < rampliesp (f(z), f(y),t) =2 1—c and v (f(z), f(y), 1) <
e for each z,y € X and t > 0.

Definition 2.9 [11] Let (X, A) be IFMS and T : X — X. T is said to
be TS-IF contractive mapping if there exists k € (0, 1) such that

kp(T(x), T(y),t) > plz,y,t)

1
and %V(T(:B),T(y),t)§V(x,y,t)Vt>O.
Proposition 2.10 Let (X, A) be a intuitionistic fuzzy metric space. If
f: X — X is TS-IF contractive then f is t-uniformly continuous.

Proof. Obvious

Theorem 2.11 [11] Let (X, A) be a complete IFMS and T : X — X
be TS-IF contractive mapping with k its contraction constant. Then T has a
unique fized point.

3 Fixed-Point Theorems

Definition 3.1 Let (X, A) be an IFMS ,x € X, r € (0,1),t > 0,
B(z,r,t)={y e X/uwz,y,t)>1—r,v(z,y,t) <r}h
Then B(x,r,t) is called an open ball centered at x of radius r w.r.t. t.

Definition 3.2 Let (X, A) be an IFMS and P C X . P is said to be
a closed set in (X, A) if and only if any sequence {x,} in P converges
to x € P i.e, iff. nli_)moou(xn,x,t) =1 and nli_)moou(:cn,x,t) =0 =
x e P.

Definition 3.3 Let (X, A) be an IFMS, x € X, r € (0,1), ¢t > 0,
S(e,r,t)={ye X/pu(lz,y,t)>1—r,v(x,y,t) <r}.

Hence S(x,r,t) is said to be a closed ball centered at x of radius r w.r.1.
tiff. any sequence {x,} in S(x,r,t) converges toytheny € S(xz,r,t).
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Theorem 3.4 (Contraction on a closed ball) :- Suppose (X, A) is a com-
plete IFMS. Let T : X — X be TS-IF contractive mapping on S(x,r, 1)
with contraction constant k. Moreover, assume that

kp(x,T(x),t) > (1 —r) and liy(x,T(a:),t) <r

Then T has unique fized point in S(x,r,t).

Proof. Let 1y = T(2), 2y = T(x1) = T?*(x), -+ , 2, = T(x,_1)
ie, x, = T™(x) foralln € N. Now

kp(x, T(x),t) > (1 —r)

k
S p(z o t) > (1= 1) (i)
Again,
ltl/(l’,T(:U),t) <r

= v(e,T(x),t) <rk<r
= v(zx,x,t) <r (7)
(i) and (it) = x € S(x,r,t).
Assume that z1, 29, -+ , 2,1 € S(x,r,t). Weshow thatz,, € S(z,r,t).
k:u(xlax27 t) = k:,u(T(:v),T(xl),t)

Z,U(l',l'l,t)

= p(wy, z9,t) > (1;7“) > (1—r)

k % (T(xl) ) T(x2) ) t)

kp(zy, xg,t)

2 M(l’l,l’?, t)
1
= /,L(fL'Q, T3, t) Z EM(II)]“27 t)
1—
> kr > (1—1)
Again,
1 1
Ev(xl,zg, t) = %V(T(IE),T(itl),t)
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IN

V($,$1,t)

= vz, z,t) <kv(z,z,t) <kr<r

1 1
%1/(@, x3,t) = %I/(T(xl),T(Ig),t)
< v(wy, x,t)

= v(wg, x3,t) <kv(z,zy,t) <kr<r

Similarly it can be shown that ,

(s, xzg,t) > 1—r , v(xsg, xq,t) <r, - u(Tp_1,z,,t) > 1—r
and v(zp_1,T,,t) < T

Thus, we see that ,

t t t
M(x,In,t)ZM($,.T1,)*/L(.Il,l’Q,)*"'*M(an_l,l‘n,)
n n n

>T—=r)x1Q=7r)*--x(1—-7r)=1-r7

ie., p(x,x,,t) > 1-r

t t t
v(iz,z,,t) < v <x,x1,> % <:1:1,:B2,> OOV (xn_l,a:n,>
n n n
o

< Troro - r =rT

Thus, p(z,z,,t) > 1 —randv(z,z,,t) < r

= x, € S(x,r,t)

Hence, by the theorem 3.10[11] and the definition3.3, T has unique fixed point
in S(x,r,t).

Note 3.5 [t follows from the proof of Theorem 3.10[11] that for any x € X
the sequence of iterates { T™(x)} converges to the fized point of T.

Lemma 3.6 Let (X, A) be IFMS and T : X — X be t-uniformly con-
tinuous on X. If ©, — x as n — oo in (X, A) then T(z,) — T(x)
as n —oo in (X, A).

Proof. Proof directly follows from the definitions of t-uniformly continuity
and convergence of a sequence in a IFMS.

Lemma 3.7 Let (X, A) be IFMS. If z,, — zand y, — yin (X, A)
then w(xp, Yo, t) = p(z,y,t)andv(x,, yn,t) — v(z,y,t)asn —
oo forall t >0 in R.
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Proof. We have,
im p(z,,z,t) = 1,nlemV(xn,x,t) =0

n — o

and nlgmw w(yn,y,t) =1, nhﬁmoo v(Yn,y,t)
t t
,u(ﬂfn,yn,t)ZM<$n,$72)*M(9E,Z/n;2>

2 (o g)on (eovg)on (v )

Lp, T, = €, y y Yn vy T

Z W 5 % Yy 1 L\y,y 4

= lim pu(xy,yn,t) > plz,y,t)

n — oo

t t
,u(q:,y,t) Z H (I,I‘n,2> * W (xnayaz)

t t
Z M <l‘,l‘n, 2) * (xnayna 4) * U (ynaya

lim p(x,, yo,t) Vit > 0.

n — o

AN
N———

= p(z,y,t) >
Then,
lim p(xn, Yo, t) = pu(x,y,t) foral t > 0,

n — oo

Similarly, lim v(xy, Yo, t) = v(x,y,t) forall £ > 0.

Theorem 3.8 Let (X, A) be a complete IFMS and T : X — X be a
t-uniformly continuous on X. If for same positive integer m, T™ is a TS-IF
contractive mapping with k its contractive constant then T has a unique fized

point i X.

Proof. Let B = T™, n be an arbitrary but fixed positive integer and

r € X.
we now show that B"T(z) — B"(x)in (X, A).
Now,

ku(B"T(x), B"x),t) = ku (B(B" 'T(z)), B(B" '(z)), t)
> p(B" "' T(x), B""!(z), t)

i.e, p (B"T'(x), B"(x), t) p(B" T (x), B Yz), t)

v

‘HN"_‘F\P—‘

u (B(B"*T(x)), B(B"(x)), t)

(B *T(x), B" *(x), t)

Y
e

2
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2 e ;L(T($), x7t)

= nli_)moou(B”T(x),B”(x),t) > lim — u(T(x), z,t)
= nImeM(BnT(I)’ B"(x),t) =1

Similarly, — lim v (B"T(x), B"(x),t) = 0, forall ¢t > 0.

Thus, B"T(x) — B"(z)in (X, A).

Again, by the theorem 3.10[11], we see that B has a unique fixed point y(say),
and from the note [3.5], it follows that B"(z) — yas n — oo in (X, A).

Since T is t-uniformly continuous on X, it follows from the above lemma]3.6]
that B"T(z) = T B™"(x) — T(y)asn — ooin (X, A).

Againsince lim p (B"T(z), B"(xz),t) = 1 and Jlim v (B"T(z), B™"(x), t)
= 0, we have by the lemma [3.7]

nli_)moou (T(y),y,t) =1 andnli_)mooy (T(y),y,t) =0, forall t > 0,

ie, u(T(l),y,t) =1and v (T(y),y,t) =0, forall t > 0.

= T(y) = y = yis a fixed point of T.

If y is a fixed point of T, i.e., T(y') = %, then T™(y) = T™ YT(y)) =

T Yy) = -~ =9 = B(y) =y = vy is a fixed point of B.

But y is the unique fixed point of B, therefore y = 1 which implies that y is

the unique fixed point of T. This completes the proof.

Definition 3.9 Let (X, A) be a IFMS and T : X — X. For ¢ >
0 and 0 < X < 1, 7T is said to be (e, \) IF-uniformly locally
contractive if

plz,y,t) >e = Apu(Te, Ty, t) > p(z,y,t)
1
viz,y,t) <1 —e¢ = XV(Tx,Ty,t) <v(z,y,t)

Definition 3.10 Let 0 < n < 1 and (X, A) be a IFMS. Then
(X, A) is said to be IF 1n— chainable space if for every a,b € X there
exist a finite set of points a = xo, x1, -+, r, = b such that

p(xi1,x;,t) >mn and v(z, 1, z;,t) <1l—-n, i=1,2,---,n

Theorem 3.11 Let (X, A) be a complete IFMS and IFe — chainable
space. If T : X — X is (e, X\) IF-uniformly locally contractive then T has a
fixed point in X.
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Proof. Let x be an arbitrary but fixed point of X. If Tx = =z then
a fixed point is assured. We assume therefore that Tx # x. Since X is
IF ¢ — chainable space, there exists a finite set of points = zq, z1, -+, T, =
Tx such that

pw(xi—1, xz;,t) >¢e and v(x;_q,x;,t) < 1l—¢, i=1,2,---,n
Again, since T is (e, A) IF-uniformly locally contractive, we have
(i1, xi,t) > = Apu(Tax;—q, Ty, t) > p(x,_q, z;,t) > ¢

ie., p(Tx;_q, Tz, t) > % > g

1
I/(ZEZ‘_l,ZEZ‘,t) <1l—¢ = XV(TJIi_l,T.%'i,t) < V(Ii_l,xi,t> < 1l-—c¢

ie, v(Tx;_q1,Tr;,t) < AX(l-¢)<1l-—c¢
and therefore,
)\2/L(T2£Ci,1 s Tzilii, t) = A ()\/,L(T(Tl'lfl) s T(Tﬁlﬂ'l) s t))

> Ap(Tzi—q, Te; t) > e

— M(TQJZZ‘_l,TgJZZ‘, t) > £

1
- V(TQZ',L',l, TQI',L', t) =

N V(T(Txil),T(Txi),t))

> =

(

1
< V(T$i,1,T$i,t)<X(1—8>

>l >

— v(T?z;_ 1, T, t) <1 — ¢

In the similar way we have,
Mo (Tiy, TPy, t) = A (Ap(T (i), T(T?x:), t))

> N pu(T?w,_y, TPz, t) > A2e

- M(TBZEZ‘_17T3$Z', t) > €

AT (T™ai oy, T, t) = A0 (A p(T(T™ aiy), T(T™ 'a) , 1))
> /\m_l,u(Tm_la:i_l,Tm_lxi, t) > A" le

— pu(T™z;—q, T"x;, t) > €;
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1 1 1
(T T ) = 55 (5 o(T(T%0)  T(T%0) 1))
1 9 1
<ﬁl/(Tﬂ?Z,1,Tﬂfi,t><F(1—€>
— v(T?z; 1, T?z;, t) < (1—¢)
! (T™z; T™r;, t) = b (11/(T(Tm_11:- Y, T(T™ ta;) t))
)\my Ti—1, Xy, Am_l )\ i—1) > )
1 m—1 m—1 1
< )\mfly(T iL'ifl,T Z’l,t) < )\m71<1_6)

p(Tme, T™ e t) = p(T™xg, T™x,, t)

t t
> (u <Tma:0, Tz, n> kL <me1,me2, n)
)
* * Tpn-1, Tn, —
2 1 n

> €
ie. p(T™x, T™ " o t) >¢e forall t > 0 and for all m € N;

and,

v(T™x, T™ e t) = v(T™xy, Tz, , t)

t t
< (V(meo,mel,><>1/<me1,me2,)
n n
t
O e <>V<Tm$n1,Tm£L‘n,>>
n
<1-—c¢

ie. v(T™z, T™ " 'x t) < 1—¢ forallt > 0 and for all m € N.

Now, for all t > 0 and 7 < k we have,

. . ) t . ) t
p(Tiz, TrFa t) > p (Tﬂx, T/ 1y, k) % [ (T]“x, Tit2y p j)
_] J—

t
X ek /L(Tklsc,Tkx,) > £
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t

v(T/x, Trz, t) < v <zj, T g, ) o v (Tj’”x7 Tit2 g,

t
o e oy(T’“lx,T"”x,) < 1-—c.
k=

= {77z} is a Cauchy sequence in (X, A). Since (X, A) is complete,
there exists € € X such that T'z — £ as ¢ — oo in (X, A). Again,
since T is IF-uniformly locally contractive, it follows that T is t-uniformly
continuous on X and hence by the lemma(3.6), we get

T¢ = lim TT'2 = lim Tl = ¢

7 — o0 7 — 0

which shows that ¢ is a fixed point of T'.
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