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Abstract 

     In this paper, we give some results on the intuitionistic fuzzy implicative ideals, 
intuitionistic fuzzy positive implicative ideals, intuitionistic fuzzy commutative ideals. 
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1      Introduction 
 
After the introduction of the concept of fuzzy sets by Zadeh [12] several researches 
were conducted on the generalizations of the notion of fuzzy sets.  The idea of 
“intuitionistic fuzzy set” was first published by Atanassov [1, 2] as a generalization of 
the notion of fuzzy set.  The first author (together with Hong, Kim, Meng, Roh and 
Song) [3, 5, 6, 7] considered the fuzzification of ideals and sub- algebras in BCK-
algebras (cf. [3, 4, 5, 6).  In this paper we give some results on the intuitionistic fuzzy 
implicative ideals, intuitionistic fuzzy positive implicative ideals, intuitionistic fuzzy 
commutative ideals.  
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2 Preliminaries 
 
First we present the fundamental definitions.  By a BCK-algebra (see [7, 8, 9]) we 
mean a nonempty set X with a binary operation * and a constant 0 satisfying the 
axioms: 
 
   (BCK-1) y),(zz))(xy)((x ∗≤∗∗∗  
   (BCK-2) y,y))(x(x ≤∗∗  
   (BCK-3)  x,x ≤  
   (BCK-4)  yx ≤  and xy ≤ imply that yx = , 
   (BCK-5)  x0 ≤  
 
for all .Xzy,x, ∈  
A partial ordering “≤ ” on X  can be defined by yx ≤ if and only if 0yx =∗ .  In any 
BCK-algebra X the following holds: 
 
 (P1) x0x =∗  
 (P2) xyx ≤∗  
 (P3) yz)(xzy)(x ∗∗=∗∗  
 (P4) yxz)(yz)(x ∗≤∗∗∗  
 (P5) yxy))(x(xx ∗=∗∗∗  
 (P6) zyzxyx ∗≤∗⇒≤  and xzyz ∗≤∗ , for all Xzy,x, ∈ . 
 
A BCK-algebra X is said to be implicative if x)(yxx ∗∗= , for all x,y X∈ . 
A BCK-algebra X is said to be positive implicative if )z(yz)(xzy)(x ∗∗∗=∗∗   for 
all Xzy,x, ∈ . 
A BCK-algebra X is said to be commutative if )x(yyy)(xx ∗∗=∗∗  for all 

X.zy,x, ∈   
A non-empty subset I of a BCK-algebra X  is called an ideal of X,  
( 1I ) I0∈  

( 2I ) yx ∗  and Iy ∈  imply that Ix ∈  for all Xyx, ∈ . 
A non-empty subset I of a BCK-algebra X is said to be sub-algebra of X if 

Xyx ∈∗ whenever Xyx, ∈  
A non-empty subset I of a BCK-algebra X is called an implicative ideal of X if it 
satisfies (1I ) and ( 3I ) Izx))(y(x ∈∗∗∗ and Iz∈  imply Ix ∈  for all Xzy,x, ∈ . 

A non-empty subset I of a BCK-algebra X is called a commutative ideal of X if it 
satisfies (1I ) and )(I 4  Izy)(x ∈∗∗ and Iz∈ imply Ix))(y(yx ∈∗∗∗  for Xzy,x, ∈ . 
A non-empty subset I of a BCK-algebra X is said to be positive implicative ideal of X 
if it satisfies ( 1I ) and )(I 5  Izy)(x ∈∗∗ and Izy ∈∗  imply Iz x ∈∗  for all Xzy,x, ∈ . 

Let µ and λ be the fuzzy sets in a set X.  For s, t ε [0, 1], the set U (µ, s) = { Xx ∈ / 
µ(x) ≥ s} is called a upper level of µ and the set L (λ, t) = {  Xx∈  / λ(x) ≤ t} is 
called a lower level of λ. 
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An intuitionistic fuzzy set A in a non-empty set X is an object having the form 
X}(x)/xλ(x),µ{x,A AA ∈= , where the function  [0,1]X:µ A → and [0,1]X:λ A →   

denoted the degree of membership (namely µ(x) ) and the degree of non membership 

(namely λ(x) ) of each element Xx∈  to the set A respectively, and 

1  (x)λ (x)µ0 AA ≤+≤ for all Xx∈ .  For the sake of simplicity, we shall use the 

symbol   )λ,µ(X,A AA=  or ).λ,(µA AA=  
 
Definition 2.1. Let )λ,(µA AA=  and )λ,(µB BB= be intuitionistic fuzzy sets in X.  
Then 

 (i)    X}(x))/xµ(x),µ{(x,A A

_

A ∈=    

(ii)   ◊ X}.(x))/xλ(x),λ{(x,A AA

_

∈=  
 
In what follows, let X denote a BCK-algebra unless otherwise specified. 
 
Definition 2.2.  An IFS )λ,µ(X,A AA=  in X is an intuitionistic fuzzy sub-algebra of 
X  if it satisfies 
 
(IFS 1) (y)}µ(x),min{µy)(xµ AAA ≥∗  

(IFS 2) (y)}λ(x),max{λy)(xλ AAA ≤∗ for all Xyx, ∈ . 
 
Example 2.3. Consider a BCK-algebra X = {0, a, b, c} with the following Cayley 
table: 
 

                           

0

0

00

00000

0|*

ccc

bab

aa

c

b

a

cba

  

 
Let )λ,µ(X,A AA=  be an IFS in X defined by  
 
         (b)µ0.30.7(c)µ(a)µ(0)µ AAAA =>===  
and  

         ).(5.02.0)()()0( bca AAAA λλλλ =<===   

Then )λ,µ(X,A AA= is an IF subalgebra of X. 

 
Proposition 2.4. Let )λ,µ(X,A AA=  be an intuitionistic fuzzy sub-algebra of X, then 
 

(x)µ(0)µ AA ≥ and A Aλ (0) λ (x)≤ for all x X.∈  
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Definition 2.5. An IF )λ,µ(X,A AA=  in X is an intuitionistic fuzzy ideal (IF-ideal) of 
X if it satisfies 
 
(IF1) (x)µ(0)µ AA ≥ and A Aλ (0) λ (x)≤  

(IF2) (x)}µy),(xmin{µ(x)µ AAA ∗≥  

(IF3) (y)}λy),(xmin{λ(x)λ AAA ∗≤ , for all .Xyx, ∈  
 
Theorem 2.6. [4]Let )λ,µ(X,A AA=  be an intuitionistic fuzzy ideal of X.  If  yx ≤  
in X, then 
 
 (y),µ(x)µ AA ≥  (y),λ(x)λ AA ≤  
 
that is Aµ is order-reversing and Aλ is order-preserving. 
 
Theorem 2.7. [4]Every intuitionistic fuzzy ideal of X is an intuitionistic fuzzy sub-
algebra of X. 
 
Theorem 2.8. [4] )λ,µ(X,A AA=  is an intuitionistic fuzzy ideal of X if and only if for  
 

(z)}µ(y),min{µ(x)µzyxX,zy,x, AAA ≥⇒≤∗∈ and (z)}λ(y),max{λ(x)λ AAA ≤ . 
 
Proposition 2.9. [4] )λ,µ(X,A AA=  is an intuitionistic fuzzy ideal of X if and only if 

the non-empty upper s-level cut s);U(µA  and the non-empty lower t-level cut 

t);L(λA are ideals of X, for any [0,1]ts, ∈ . 
 
Corollary 2.10. )λ,µ(X,A AA=  is an intuitionistic fuzzy subalgebra of X if and only 

if the non-empty upper s-level cut s);U(µA  and the non-empty lower t-level cut 

t);L(λA are sub-algebras of X, for any [0,1]ts, ∈ . 
 
Proposition 2.11. [11]In a BCK-algebra X, the following holds, for all Xzy,x, ∈ , 
 
    (i) zy)(xz)(yz)z)((x ∗∗≤∗∗∗∗ . 
    (ii) zz)(xz))(x(xz)(x ∗∗=∗∗∗∗  
   (iii)  yxx))))(y(y(x(yx)))(y(y(x ∗≤∗∗∗∗∗∗∗∗ . 
 

3      Main Results 
         
In this section we present the results on the intuitionistic fuzzy implicative ideals, 
intuitionistic fuzzy positive implicative ideals and intuitionistic fuzzy commutative 
ideals.  
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Definition 3.1. [11]An IFS )λ,µ(X,A AA=  in a BCK-algebra X is an intuitionistic  
fuzzy implicative ideal (IFI-ideal) of X if it satisfies 
 
(IFI 1) (x)µ(0)µ AA ≥ and )(xλ(0)λ AA ≤  

(IFI 2) (z)}µz),x))(y((xmin{µ(x)µ AAA ∗∗∗≥  

(IFI 3) (z)}λz),x))(y((xmax{λ(x)λ AAA ∗∗∗≤ , for all X.zy,x, ∈  
 
Definition 3.2. [11]An IFS )λ,µ(X,A AA=  in X is an intuitionistic fuzzy commutative 
ideal (IFCI-ideal) of X if it satisfies 
 
(IFCI 1) (x)µ(0)µ AA ≥ and )(xλ(0)λ AA ≤  

(IFCI 2) }(z)µz),y)((xmin{µx))(y(y(xµ AAA ∗∗≥∗∗∗  

(IFCI 3) }(z)λz),y)((xmax{λx))(y(y(xλ AAA ∗∗≤∗∗∗ for all X.zy,x, ∈  
 
Definition 3.3. [11]An IFS )λ,µ(X,A AA=  in a BCK-algebra X is an intuitionistic  
fuzzy positive implicative ideal (IFPI-ideal) of X if it satisfies 
 
(IFPI 1) (x)µ(0)µ AA ≥ and )(xλ(0)λ AA ≤  

(IFPI 2) }z)(yµz),y)((xmin{µz)(xµ AAA ∗∗∗≥∗  

(IFPI 3) }z)(yλz),y)((xmax{λz)(xλ AAA ∗∗∗≤∗ for all .Xzy,x, ∈  
 
Theorem 3.4. An intuitionistic fuzzy ideal )λ,µ(X,A AA=  of X is an intuitionistic 
fuzzy implicative if and only if A is both intuitionistic commutative and intuitionistic 
fuzzy positive implicative. 
 
Proof: Assume that )λ,µ(X,A AA=  is an intuitionistic fuzzy implicative ideal of X. 
By (2.11(i) and 2.8),  we have  
 
       )zz)((xµz)}(yµz),y)((xmin{µ AAA ∗∗≤∗∗∗  

                                             )z))(x(xz)((xµA ∗∗∗∗=  ( by 2.11(ii)) 

                                             z)(xµA ∗=       ( by [11, 3.7(iii)])  
 
and ≥∗∗∗ z)}(yλz),y)((xmax{λ AA  )zz)((xλA ∗∗      

                                             z)))(x(xz)((xλA ∗∗∗∗=  

                                             ),z(xλA ∗= for all X.zy,x, ∈  
 
Then )λ,µ(X,A AA=  is an intuitionistic fuzzy positive implicative ideal of X.  And 
by theorem 2.6, 2.11(iii) and 3.7(iii),  
 

x)))(y(y(xµx)))))(y(y(x(yx)))(y(y((xµy)(xµ AAA ∗∗∗=∗∗∗∗∗∗∗∗≤∗  
 and  
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x))).(y(y(xλx)))))(y(y(x(yx)))(y(y((xλy)(xλ AAA ∗∗∗=∗∗∗∗∗∗∗∗≥∗  
 
It follows from [11, 4.6] that )λ,µ(X,A AA=  is an intuitionistic fuzzy commutative.  

Conversely, suppose that )λ,µ(X,A AA=  is both intuitionistic fuzzy positive 
implicative and intuitionistic fuzzy commutative. 
Since, ),x(yxx)(yx))(y(y ∗∗≤∗∗∗∗  it follows from theorem 2.6. 
 

x))(y(xµx))(yx))(y(yµ AA ∗∗≥∗∗∗∗ and x)).(y(xλx))(yx))(y(yλ AA ∗∗≤∗∗∗∗  
 
Using [11, 5.8], we have  

x))(y(yµx))(yx))(y(yµ AA ∗∗=∗∗∗∗   
and  

x)).(y(yλx))(yx))(y(yλ AA ∗∗=∗∗∗∗   
Therefore  

x))(y(yµx))(y(xµ AA ∗∗≤∗∗  and x))(y(yλx))(y(xλ AA ∗∗≥∗∗ …  (1) 
 
On the other hand since ),x(yxyx ∗∗≤∗  we have, by theorem 2.6  
 

)x)(y(xµy)(xµ AA ∗∗≥∗ and ).x)(y(xλy)(xλ AA ∗∗≤∗    
 
Since )λ,µ(X,A AA=  is an intuitionistic fuzzy commutative ideal of X, by [11, 4.7] 
we have 

 )x))(y(y(xµy)(xµ AA ∗∗∗=∗ and ).x))(y(y(xλy)(xλ AA ∗∗∗=∗  
Hence 

)x))(y(y(xµx))(y(xµ AA ∗∗∗≤∗∗ and )x))(y(y(xλx))(y(xλ AA ∗∗∗≥∗∗ …(2) 
 
Combining (1 ) and (2), we obtain  
 

(x)µx))}(y(yµx))),(y(y(xmin{µx)(y(xµ AAAA ≤∗∗∗∗∗≤∗∗  
and 
  ).(xλx))}(y(yλx))),(y(y(xmax{λx)(y(xλ AAAA ≥∗∗∗∗∗≥∗∗  
  
So )λ,µ(X,A AA=  is an intuitionistic fuzzy implicative ideal of X .  The proof is 
complete. 
 
Theorem 3.5. If )λ,µ(X,A AA=  is an intuitionistic fuzzy ideal of X with the following 
conditions holds  
 
(i) }(z)µz),y)y)(((xmin{µy)(xµ AAA ∗∗∗≥∗  

(ii) }(z)λz),y)y)(((xmax{λy)(xλ AAA ∗∗∗≤∗ , for all Xzy,x, ∈ . Then A is 
intuitionistic fuzzy positive implicative ideal of X. 
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Proof: Suppose )λ,µ(X,A AA=  is intuitionistic fuzzy ideal of X. 
 with condition (i) and (ii).  Using (P3) and (P4), we have  
 

z,y)(xyz)(xz))(yz)z)((x ∗∗=∗∗≤∗∗∗∗ for all x,y,z X∈ , 

 
 therefore by theorem 2.6   
           )zy)((xµz)))(yz)z)(((xµ AA ∗∗≥∗∗∗∗  
 And 
            ).zy)((xλz)))(yz)z)(((xλ AA ∗∗≤∗∗∗∗  
 
Now  

}z)(yµz)),(yz)z)(((xmin{µz)(xµ AAA ∗∗∗∗∗≥∗   

                        z)},(yµz),y)((xmin{µ AA ∗∗∗≥  for all Xzy,x, ∈  
 
and  

}z)(yλz)),(yz)z)(((xmax{λz)(xλ AAA ∗∗∗∗∗≤∗  

                       z)},(yλz),y)((xmax{λ AA ∗∗∗≤ for all X.zy,x, ∈  

Hence )λ,µ(X,A AA=  is an intuitionistic fuzzy positive implicative ideal of X. 
 
Lemma 3.6. Let )λ,µ(X,A AA=  be a fuzzy ideal of X, then A is an intuitionistic fuzzy 
positive implicative ideal of X if and only if 
 
 )z)y)((xµz))(yz)((xµ AA ∗∗≥∗∗∗  and z)),y)((xλz))(yz)((xλ AA ∗∗≤∗∗∗   
 
for all X.zy,x, ∈  
 
Proof: Suppose that )λ,µ(X,A AA=  is a fuzzy ideal of X and  
 

)z)y)((xµz))(yz)((xµ AA ∗∗≥∗∗∗ and z)),y)((xλz))(yz)((xλ AA ∗∗≤∗∗∗  
 
 for all Xzy,x, ∈  Therefore  
 

}z)(yµz)),(yz)((xmin{µz)(xµ AAA ∗∗∗∗≥∗   z)}(yµz),y)((xmin{µ AA ∗∗∗≥   
 

}z)(yλz)),(yz)((xmax{λz)(xλ AAA ∗∗∗∗≤∗ z)},(yλz),y)((xmax{λ AA ∗∗∗≤   
 
for all X.zy,x, ∈  Thus A is an intuitionistic fuzzy positive implicative ideal of X. 

Conversely, assume that )λ,µ(X,A AA=  is an intuitionistic fuzzy positive implicative 

ideal of X implies that )λ,µ(X,A AA=  is an IF-ideal of X.   
 
Let z)(yxa ∗∗=  and y,xb ∗=   
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Since )z(yyy))(xz))(y((x ∗∗≤∗∗∗∗ ,  
 
we have that  

  (0)µz)z))(y((yµz)y)(xz))(y(((xµz)b)((aµ AAAA =∗∗∗≥∗∗∗∗∗=∗∗  
and so,  

)zz)(y((xµz))(yz)((xµ AA ∗∗∗=∗∗∗ )z(aµA ∗=   

z)}(bµz),b)((amin{µ AA ∗∗∗≥ z)}(bµ(0),min{µ AA ∗≥   

).zy)((xµz)(bµ AA ∗∗=∗=  
Therefore  
 z),y)((xµz))(yz)((xµ AA ∗∗≥∗∗∗  for all Xzy,x, ∈ . 
And  

)0(λz)z))(y((yλz)y)(xz))(y(((xλz)b)((aλ AAAA =∗∗∗≤∗∗∗∗∗=∗∗  
And so,  

)zz)(y((xλz))(yz)((xλ AA ∗∗∗=∗∗∗ z)(aλA ∗=    

z)}(bλz),b)((amax{λ AA ∗∗∗≤ z)}(bλ(0),max{λ AA ∗≤  

).zy)((xλz)(bλ AA ∗∗=∗=  
Therefore 

z),y)((xλz))(yz)((xλ AA ∗∗≤∗∗∗  for all X.zy,x, ∈   
Thus 

),z)y)((xµz))(yz)((xµ AA ∗∗≥∗∗∗  z)),y)((xλz))(yz)((xλ AA ∗∗≤∗∗∗   
 
for all X.zy,x, ∈  
 
Theorem 3.7. If )λ,µ(X,A AA=  is intuitionistic fuzzy positive implicative ideal of X 
then (PI 1) for any  
 
             x,y,a,b X, ((x y) y) a  b   µ (x y)  min{µ (a),µ (b)}

A A A
∈ ∗ ∗ ∗ ≤ ⇒ ∗ ≥  

 
and  

(b)}λ(a),max{λy)(xλ AAA ≤∗ . 
 
(PI 2) For any  

x,y,z,a,b X, ((x y) z) a b µ ((x ) (y z)) min{µ (a),µ (b)}
A A A

z∈ ∗ ∗ ∗ ≤ ⇒ ∗ ∗ ∗ ≥

and  
λ ((x ) (y z))   max{λ (a),λ (b)}.A A Az∗ ∗ ∗ ≤   

 
Proof: Suppose, )λ,µ(X,A AA=  is intuitionistic fuzzy positive implicative ideal of 
X. 
(PI1). Let Xzy,x, ∈  be such that bay)y)((x ≤∗∗∗ .  Using 2.6,  
 
we have 
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(b)}µ(a),min{µy)y)((xµ AAA ≥∗∗ and (b)}.λ(a),max{λy)y)((xλ AAA ≤∗∗  
 
It follows that   
 

}y)(yµy),y)((xmin{µy)(xµ AAA ∗∗∗≥∗ (0)}µy),y)((xmin{µ AA ∗∗=  
 

y)y)((xµA ∗∗=  (b)}.µ(a),min{µ AA≥    
 
And  

}y)(yλy),y)((xmax{λy)(xλ AAA ∗∗∗≤∗   
 

(0)}λy),y)((xmax{λ AA ∗∗= y)y)((xλA ∗∗=  (b)}.λ(a),max{λ AA≤  
 
(ii) Now let Xzy,x, ∈  be such that baz)y)((x ≤∗∗∗ . 

Since )λ,µ(X,A AA=  intuitionistic fuzzy positive implicative ideal of X, it follows 
from known lemma 3.6,  
 
µ ((x ) (y z))   µ ((x y) z)  min{µ (a),µ (b)}A A A Az∗ ∗ ∗ ≥ ∗ ∗ ≥   

 
and     

λ ((x ) (y z))   λ ((x y) z)   max{λ (a),λ (b)}A A A Az∗ ∗ ∗ ≤ ∗ ∗ ≤  

 
This completes the proof. 
 
Theorem.3.8. Let )λ,µ(X,A AA=  be IFS in X satisfying the condition      
 

}(b)µ(a),min{µy)(xµbay)y)((x AAA ≥∗⇒≤∗∗∗  
and  

},(b)λ(a),max{λy)(xλ AAA ≤∗   
 
for any X,ba,y,x, ∈ Then )λ,µ(X,A AA=  intuitionistic fuzzy positive implicative 
ideal of X. 
 
Proof: First we prove that )λ,µ(X,A AA=  is an IF-ideal of X. 
Let Xzy,x, ∈  be such that zyx ≤∗ . 
 
Then 0z)y)(xzy)0)0)(((x =∗∗=∗∗∗∗ , that is zy)0)0)(((x ≤∗∗∗  
 
Since, for x,y,a,b X∈ ,  

((x y) y) a  b   µ (x y)   min{µ (a),µ (b)}A A A∗ ∗ ∗ ≤ ⇒ ∗ ≥  

and  
(b)}λ(a),max{λy)(xλ AAA ≤∗  
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Put zby,a0,y === ,  
 
we get  

(z)}µ(y),min{µ0)µ(x(x)µ AAA ≥∗=  
and   

(z)}.λ(y),max{λ0)(xλ(x)λ AAAA ≤∗=   
 
It follows that A =(X, AA λ,µ  ) is IF- ideal of X. 
Note that 

00y))y)((xy)y)(((x =∗∗∗∗∗∗  
 implies  

X.yx,0,y))y)((xy)y)(((x ∈∀≤∗∗∗∗∗  
From hypothesis we have  

)yy)((xµ(0)}µy),y)((xmin{µy)(xµ AAAA ∗∗=∗∗≥∗  
and  

)yy)((xλ(0)}λy),y)((xmax{λy)(xλ AAAA ∗∗=∗∗≤∗ .  
 
And so )λ,µ(X,A AA=   is intuitionistic fuzzy positive implicative ideal of X. 
 
Theorem 3.9. Let )λ,µ(X,A AA=   be an IFS in X satisfying baz)y)((x ≤∗∗∗ imply 

 }(b)µ(a),min{µz))(yy)((xµ AAA ≥∗∗∗ and (b)}λ(a),max{λz))(yy)((xλ AAA ≤∗∗∗  
for any X.ba,z,y,x, ∈   
 
Then )λ,µ(X,A AA= is an intuitionistic fuzzy positive implicative ideal of X. 
 
Proof: Let Xba,y,x, ∈  be such that bay)y)((x ≤∗∗∗ ,  
that is 

 0ba)y)y)(((x =∗∗∗∗     
therefore  

))y(yy)((xµ0)y)((xµy)(xµ AAA ∗∗∗=∗∗=∗  (b)}µ(a),min{µ AA≥   
And 
  ))y(yy)((xλ0)y)((xλy)(xλ AAA ∗∗∗=∗∗=∗ (b)}λ(a),min{λ AA≥ .  
 
It follows from 3.8, )λ,µ(X,A AA=   is an intuitionistic fuzzy positive implicative 
ideal of X.  
 
Theorem 3.10. Let )λ,µ(X,A AA=  be an intuitionistic fuzzy positive implicative 

ideal of BCK-algebra X, then so is  A (X,µ ,µ )A A= . 

 
Proof: We have .Xx(x),µ(0)µ(x)µ1(0)µ1(x)µ(0)µ AAAAAA ∈∀≤⇒−≥−⇒≥  
Consider for any X,zy,x, ∈  
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}z)(yµz),y)((xmin{µz)(xµ AAA ∗∗∗≥∗  

           z)}(yµz),1y)((xµmin{1z)(xµ1 AAA ∗−∗∗−≥∗−⇒  

           z)}(yµz),1y)((xµmin{11z)(xµ AA ∗−∗∗−−≤∗⇒  

           }z)(yµz),y)((xµmax{z)(xµ AAA ∗∗∗≤∗⇒  
 
Hence  A (X,µ ,µ )A A= is an intuitionistic fuzzy positive implicative ideal of BCK-

algebra X. 
 
Theorem 3.11. Let )λ,µ(X,A AA=  be an intuitionistic fuzzy positive implicative 

ideal of BCK-algebra X then so is )λ,λ(X,A AA=◊  . 
 
Proof: We have  X.x(x),λ(0)λ(x)λ1(0)λ1(x)λ(0)λ AAAAAA ∈∀≥⇒−≤−⇒≤  
Consider for any Xzy,x, ∈   
 

}z)(yλz),y)((xmax{λz)(xλ AAA ∗∗∗≤∗  

               z)}(yλz),1y)((xλmax{1z)(xλ1 AAA ∗−∗∗−≤∗−⇒  

               z)}(yλz),1y)((xλmax{11z)(xλ AAA ∗−∗∗−−≤∗⇒  

               z)}.(yλz),y)((xλmin{z)(xλ AAA ∗∗∗≥∗⇒  
 
Hence )λ,λ(X,A AA=◊ is an intuitionistic fuzzy positive implicative ideal of BCK-
algebra X. 
 
Theorem 3.12. )λ,µ(X,A AA=  is an intuitionistic fuzzy positive implicative ideal of 

BCK-algebra X if and only if   A (X,µ ,µ )A A= and )λ,λ(X,A AA=◊ are 

intuitionistic fuzzy positive implicative ideal of BCK-algebra. 
 
Theorem 3.13. )λ,µ(X,A AA=  is an intuitionistic fuzzy positive implicative ideal of 

BCK-algebra X if and only if  the non-empty upper s-level cut s);U(µA  and the non-

empty lower t-level cut t);L(λA are PI-ideals of X,  for any [0,1]ts, ∈ . 
 
Proof: Suppose )λ,µ(X,A AA=  is an intuitionistic fuzzy positive implicative ideal of 

X and U(µ ;s)A φ≠   for anys [0,1]∈ .  It is clear that for any Xx ∈ ,  

 
 (x)µ(0)µ AA ≥ s(x)µ(0)µ AA ≥≥⇒ s(0)µA ≥⇒ implies 0 U(µ ;s)

A
.∈    

 
Furthermore if )s;U(µzys),;U(µzy)(x AA ∈∗∈∗∗  
implies  

sz))y)((xµA ≥∗∗  and s.z)(yµA ≥∗    
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Therefore  

ss}min{s,z)}(yµz),y)((xmin{µz)(xµ AAA =≥∗∗∗≥∗   
 
implies x z U(µ ;s)A∗ ∈ .   

 
This shows that s);U(µA is positive implicative ideal of X. 

Similarly, we can prove t),L(λA  is positive implicative ideal of X, [0,1]ts, ∈∀  

Conversely, assume that for anys,t [0,1]∈ , )s;U(µA  and t),L(λA  are either empty or 
positive implicative ideals of X.   
 
Put t(x)λ  s,(x)µ AA ==  for any Xx ∈ .   
 
Since (x)µs(0)µs);U(µ0 AAA =≥⇒∈  and 0 L(λ ,t) λ (0)   t λ (x)A A A∈ ⇒ ≤ =  

 
thus  

(x)µ(0)µ AA ≥ and )(xλ(0)λ AA ≤ for all x X∈ .  
 
Now we only need to show that (IFPI 3),  
 
then take )s;U(µzyz,y)(xz)}(yµz),y)((xmin{µs 1AAA1 ∈∗∗∗⇒∗∗∗= . 
 
Since )s;U(µ 1A  is implicative ideal of X 
 
 we have 

1A1A sz)(xµ)s;U(µzy ≥∗⇒∈∗  z)}(yµz),y)((xmin{µ AA ∗∗∗= .   
Therefore  

}z)(yµz),y)((xmin{µz)(xµ AAA ∗∗∗≥∗  for all Xzy,x, ∈  
 
Similarly we can prove z)}(yλz),y)((xmin{λz)(xλ AAA ∗∗∗≤∗ for all .Xzy,x, ∈  
 
Hence )λ,µ(X,A AA=  is an intuitionistic fuzzy positive implicative ideal of BCK-
algebra X. 
Theorem 3.14. )λ,µ(X,A AA=  is an intuitionistic fuzzy implicative or commutative 

ideals of BCK-algebra X if and only if  the non-empty upper s-level cut s);U(µA  and 

the non-empty lower t-level cut t);L(λA are implicative or commutative ideals of X, 
for any [0,1]ts, ∈ . 
 
Corollary 3.15. )λ,µ(X,A AA=  is an intuitionistic fizzy implicative ideal of BCK-

algebra X if and only if the non-empty upper s-level cut s);U(µA  and the non-empty 
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lower t-level cut t);L(λA are both commutative and positive ideals of X, for 
any ]1,0[, ∈ts . 
 
Corollary 3.16. )λ,µ(X,A AA=  is an intuitionistic fuzzy commutative and 
intuitionistic fuzzy positive implicative ideals of BCK-algebra X if and only if the non-
empty upper s-level cut s);U(µA  and the non-empty lower t-level cut t);L(λA are 
implicative ideals of X, for any ]1,0[, ∈ts . 
 
Theorem 3.17. Let )λ,µ(X,A AA=  be an IFS of a BCK-algebra. If A is an 
intuitionistic fuzzy positive implicative ideal of X then the set 

(0)}µ(x)X/µ{xJ AA =∈=  and (0)}λ(x)X/λ{xK AA =∈= are an PI-ideal of X. 
 
Proof: Assume that )λ,µ(X,A AA=  intuitionistic fuzzy positive implicative ideal of 

X. Since, J0(0)µ(0)µ AA ∈⇒= . 
 
If Jzyz,y)(x ∈∗∗∗ )(0µz)y)((xµ AA =∗∗⇒ and  ).(0µz)(yµ AA =∗  
 
Since 

}z)(yµz),y)((xmin{µz)(xµ AAA ∗∗∗≥∗ (0),µ(0)}µ(0),min{µ AAA ==  
but, 

(0).µz)(xµ AA ≤∗  Therefore, J.zx(0)µz)(xµ AA ∈∗⇒=∗  
 
Thus, J  is an implicative ideal of X and K0(0)λ(0)λ AA ∈⇒=  
 
If Kzyz,y)(x ∈∗∗∗  
Then 

(0)λz)y)((xλ AA =∗∗  
And 

(0).λz)(yλ AA =∗  
Since, 

}z)(yλz),y)((xmax{λz)(xλ AAA ∗∗∗≤∗ (0)λ(0)}λ(0),max{λ AAA ==  
but, 

(0)λz)(xλ AA ≥∗ .   
 
Therefore, Kzx(0)λz)(xλ AA ∈∗⇒=∗ . 
Thus, K is an implicative ideal of X 
 
Theorem 3.18. (Extension property for intuitionistic fuzzy positive implicative ideals)  
Let )λ,µ(X,A AA=   and )λ,µ(X,B BB=  are two fuzzy ideals of X such that 

A(0) = B(0) and A B⊆  (that is (0)λ(0)λ(0),µ(0)µ BABA ==  and (x),µ(x)µ BA ≤  
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Xx(x),λ(x)λ BA ∈∀≥ ).  If )λ,µ(X,A AA=   is an intuitionistic fuzzy positive 
implicative ideal of X,, then so is B. 
 
Proof: Suppose that  )λ,µ(X,A AA=  is intuitionistic fuzzy positive implicative ideal 
of X 
 
 ))z(yz))y)((xz)(((xµz))y)((xz))(yz)(((xµ BB ∗∗∗∗∗∗=∗∗∗∗∗∗   (by P2) 

                                           )z)(yz)z))y)((x(((xµB ∗∗∗∗∗∗=          (by P2) 

                   )z)(yz)z))y)((x(((xµA ∗∗∗∗∗∗≥          (Sinceµ µA B⊆ ) 

                                           )zy)z))y)((x(((xµA ∗∗∗∗∗≥                  (by lemma 3.6) 

                                           )zz)y)((xy)(((xµA ∗∗∗∗∗=                   (by P2) 

                                           )z)y)((xz)y)(((xµA ∗∗∗∗∗=                  (by P2) 
                                           (0)µ(0)µ BA ==                                         (by BCK-3 ). 
 
It follows from (F1) and (F2) that  
 

)}zy)((xµz)),y)((xz)(yz)(((xmin{µz))(yz)((xµ BBB ∗∗∗∗∗∗∗∗≥∗∗∗  
 
                      z))}y)((xµ(0),min{µ BB ∗∗≥ z)y)((xµB ∗∗= for all X.zy,x, ∈  
 
Therefore, for any X,zy,x, ∈  z)y)((xµz))(yz)((xµ BB ∗∗≥∗∗∗  and 
 

))z(yz))y)((xz)(((xλz))y)((xz))(yz)(((xλ BB ∗∗∗∗∗∗=∗∗∗∗∗∗     (by P2) 

                                             )z)(yz)z))y)((x(((xλB ∗∗∗∗∗∗=                 (by P2) 

                     )z)(yz)z))y)((x(((xλA ∗∗∗∗∗∗≤          (Since AB λλ ⊆ ) 

                                             )zy)z))y)((x(((xλA ∗∗∗∗∗≤                       (by 3.6)         

                                             )zz)y)((xy)(((xλA ∗∗∗∗∗=           

                                             )z)y)((xz)y)(((xλA ∗∗∗∗∗=     

                                             (0)λ(0)λ BA ==                                               (by BCK-3) 
 
It follows from (F1) and (F2) that  
 
     )}zy)((xλz)),y)((xz)(yz)(((xmax{λz))(yz)((xλ BBB ∗∗∗∗∗∗∗∗≤∗∗∗  
 
                  z))}y)((xλ(0),max{λ BB ∗∗≤  z)y)((xλB ∗∗= for all X.zy,x, ∈  
 
Therefore z),y)((xλz))(yz)((xλ BB ∗∗≤∗∗∗ for all X.zy,x, ∈  

Hence )λ,µ(X,B BB=  is an intuitionistic fuzzy positive implicative ideal of X. 
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