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Abstract 

     The objective of this paper is to introduce generalized fractional calculus 
operators involving the Appell’s function F3(.) to the product of the H -function 
and generalized polynomial set. Some special cases involving generalized 
hypergeometric function, Mittag-Leffler function, Riemann zeta function and 
generalized Wright Bessel function are presented to enhance the utility and 
importance of our main results.  
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1 Introduction 
                                    
The fractional integral operators, involving various special functions with them, 
have found significant importance and applications in science and engineering. 
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During the last four decades fractional calculus has been applied to almost every 
field of science, engineering and mathematics. Many applications of fractional 
calculus can be found in fluid dynamics, stochastic dynamical system, non-linear 
control theory and astrophysics. A number of workers like Love [13], McBride 
[15], Kalla [6, 7], Kalla and Saxena [8, 9], Saigo [18, 19, 20], Saigo and Maeda 
[21], Kiryakova [11], etc. have studied in depth, the properties, applications and 
different extensions of various hypergeometric operators of fractional integration. 
A detailed account of such operators along with their properties and applications 
can be found in the research monographs by Miller and Ross [16], Kiryakova 
[11,12] and Debnath and Bhatta [25] etc. A useful generalized of the 
hypergeometric fractional integrals, including the Saigo operators [18] – [20], has 
been introduced by Marichev [14] (see details in Samko et al. [22, p.194, (10.47) 
and whole section 10.3] and later extended and studied by Saigo and Maeda [21, 
p.393, eqn. (4.12) and (4.13)] in terms of any complex order with Appell’s 
function F3(.) in the kernel, as follows: 
 

Let 0  x and  C,',' >∈γβ,βα,α then the generalized fractional calculus 

operators (the Marichev-Saigo-Maeda operators) involving the Appell’s function 
[24] is defined as by the following equations: 
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The left-hand side and right-hand sided generalized integration of the type (1) and 
(2) for a power function are given by: 
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where )}γ−β+α),γ−α+α),β−+<)ρ,>)γ 'Re('Re({Re(min 1Re(0Re( the 

symbol occurring in (3) and (4) is given by 
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H -Function 
 
The H -function, which is a generalization of the Fox H-function was introduced 
by Inayat-Hussain [1, 2] and studied by Buschman and Srivastava [26] and others, 
is defined and represented in the following manner: 
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conditions for the absolute convergence of the defining integral for the H -
function given by (5) have been given by Buschman and Srivastava [26] 
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A Generalized Polynomial Set 
 
Raizada has introduced and studied a generalized polynomial set and is defined by 
the following Rodrigues type formula [27, p.64, eq. (2.1.8)]: 
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The explicit form of this generalized polynomial set [27, p.71, eq. (2.3.4)] is given 
by 
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It is to be noted that the polynomial set defined by (9) is very general in nature 
and it unifies and extends a number of classical polynomials introduced and 
studied by various research workers such as Chatterjea [30], Gould-Hopper [28], 
Singh and Srivastava [29] etc., some of the special cases of (9) are given by 
Raizada in a tabular form [27]. We shall require the following explicit form of (9), 

which will be obtained by taking 0let  and 0B'1,A' →τ== in (9) and use the 
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We arrive at the following polynomial set 
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2 Main Results  
 
This section starts with the assumption of two theorems on the product of the H -
function and the generalized polynomial set associated with Saigo-Maeda 
fractional integral operators (1) and (2). These theorems can be used to establish 
image formulas for the H -function in terms of the various special functions. 
 

Theorem 2.1: Let T
2

1
 |arg(z)| and 0  T 0,  x C,,',' π<>>∈,ρ,γβ,βα,α  be such 

that 

)],''Re('Re([0,max rp]n)mqnRe[0Re( β−α,γ−β+α+α>λ++(λ+λ+ρ,>)γ ℓ

then there holds the formula 
 

x)zH]k,m,q,1,0,r,zSzI P1,NjEjeN1,jajEj(e

Q1,MjbjFjfM1,jFjf
NM,

QP,
B,0A,

n
1,','

0,
(














;[ +),(,);,

+);,(,),(
ξλ−ργβ,βα,α

+
ℓ

 

p

nm

e
p

0e

nm

0p

nm1'R B)
rekqnA

! e ! p

p)
x (







 +++−(
=

+=

+

=

+−γ+α−α− ∑∑
ℓ

ℓ   

 

. j j j 1,N j j N 1,P

j j 1,M j j j M 1,Q

(1 R, ;1),(1-R ' , ;1),(1 R ' ', ;1), (e ,E ;a ) , (e ,E )M,N 3
P 3,Q 3 (f ,F ) ,(f ,F ;b ) ,(1 R ', ;1),(1 R ', ;1),(1 R ' , ;1)H x ,ξ γ α α β ξ β α ξξ

β ξ γ α α ξ γ α β ξ
+

+

− − + + + − − ++
+ + − − − − + + − − + +

 
 

   … (14) 

 
where  
 R  qn (m n) rp= ρ + λ + λ + + λ ⋅ℓ  

 
Proof: In order to prove (14), first, we express the generalized polynomial set 
occurring on the left-hand side of (14), in the series form given by (13), and 
replace the H -function in well-known Mellin-Barnes contour integral with the 
help of (5), and also using (1), then inter changing the order of summations and 
integration, which is permissible under the conditions stated with the Theorem 
2.1, it takes the following form after a little simplification: 
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Finally, applying the known result (3), with ρ replaced by 
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Proof: By using the definitions (2), (5) and (13), and changing the order of 
summations and integration, which is permissible under the conditions stated with 
the Theorem 2.2, we get 
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Finally, applying the known result (4), with ρ replaced by 
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3 Special Cases 
 
In view of the importance and usefulness of the theorems discussed in the last 
section, we mention some interesting special cases, which indicate manifold 
generality of the results obtained in this article. 
 
(i) If we reduce the generalized polynomial set to unity and the H -function to the 
generalized Wright hypergeometric function 
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in equation (14), under the conditions stated for the Theorem 2.1, we arrive at the 
following interesting result: 
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Further, on setting Ej = 1 (j = 1,…,P) and Fj = 1 (j = 1,…,Q) in (18), then in 
similar way the H -function reduces to the generalized hypergeometric function 
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Similarly, we can find the result from the Theorem 2.2. 
 

(ii) If we reduce B,0A,
n

S polynomial to unity, the H -function to Mittag-Leffler 

function, defined in the monograph by Erdélyi et al. [4] in (14), under the 
conditions stated for the Theorem 2.1, we obtain the following result 
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Similarly, we can find the result from the Theorem 2.2. 
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(iii) Now, we reduce the H -function to the generalized Riemann zeta function 

and B,0A,
n

S polynomial to unity in (14), under the conditions stated for the 

Theorem 2.1, where the generalized Riemann zeta function [3, p.27, 1.11, eq. (1), 
5] is given by 
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Then we arrive at the following interesting result after a little simplification 
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Similarly, we can find the result from the Theorem 2.2. 
 
(iv) Further, on reducing the H -function to the generalized Wright Bessel 

function µ,δ
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J (z) (see [5]) and B,0A,
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conditions stated for the Theorem 2.1, we obtain the following result: 
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Similarly, we can find the result from the Theorem 2.2. 
 

4 Conclusion 
  
We conclude this investigation by remarking that many other properties of the H -

function and generalized polynomial set B,0A,
n

S as well as the associated 

generalized fractional calculus operators γβ,βα,α
−

γβ,βα,α
+

,','
0,

,','
0,

I andI can be derived 

by applying the methods and techniques which we have discussed. Secondly, by 
suitably specializing the various parameters in the generalized polynomial set 

B,0A,
n

S it reducing in terms of Gould-Hopper polynomial. Thus, the results 

presented in this paper would at once yield a very large number of results 
involving a large variety of special functions occurring in the problems of science 
and engineering. 
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