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Abstract
The purpose of this paper is to prove two theorems which generalize the
corresponding results of Khojesteh et al [1].
Keywords: Common Fized Points, Multivalued Maps.

1 Introduction

Let T be a selfmap of a complete metric space. Of the thousands of papers
containing fixed point theorems for such a map, the authors of [1] have cat-
egorized such theorems into four broad classes: (1) those for which 7" has a
unique fixed point, and for which {7z }converges to the fixed point beginning
with any = € X; (2) T has a unique fixed point, but {7"z} need not converge
for every x € X; (3) T has more than one fixed point, but {T"z} converges
for every x € X; and (4) T may have more than one fixed point and {7z}
does not necessarily converge to a fixed point.

The authors of [1] have proved a new fixed point theorem for a single-valued
map in category (3). Specifically, Theorem 1 of [1] reads as follows.

Theorem 1.1 Let (X, d) be a complete metric space and let T be a selfmap
of X satisfying

d(z, Ty) + d(y, T'x)
d(xz,Tz) +d(y, Ty) + 1

AT, Ty) < ( )d(z.y) M

for all x,y € X. Then
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(a) T has at least one fixed point p € X;
(b) {T™z} converges to a fixed point for each z € X
(c) if p and ¢ are two distinct fixed points of T', then d(p,q) > 1/2.

The second theorem of [1] deals with a multivalued map in category (3),
and it will be quoted in the next section.

2 Main Results

The first theorem of this paper extends Theorem 1 to two maps and to a much
wider class of maps, while using essentially the same proof technique.
For any map 7', the symbol F(T") denotes the set of fixed points of T

Theorem 2.1 Let (X,d) be a complete metric space, S,T selfmaps of X
satisfying

d(Sz,Ty) < N(z,y)m(z,y) forall z,ye X, (2)
where
N(z,y) :=[max{d(z,y),d(x, Sx) + d(y, Ty),d(z, Ty) + d(y, Tx)}|+  (3)
[d(x,Sx) + d(y, Ty) + 1]
and

m(z,y) == max{d(z,y),d(z, Sx),d(y, Ty), [d(z, Ty) + d(y, Sx)]/2}.  (4)
Then

(a) S and T have at least one common fixed point p € X.

(b) For n even, {(ST)"?x} and T(ST)™?x} converge to a common fixed
point for each x € X.

(c) If p and ¢ are distinct common fixed points of S and T, then d(p, q) >
1/2.

The following Lemma will shorten the proof of Theorem 2.

Lemma 2.2 Suppose that S and T satisfy the hypotheses of Theorem 2.
Then each fized point of S is a fized point of T', and conversely.

Proof of Lemma 1: Let u € F(S) and suppose that u ¢ F(T). From
(3),
max{0,0 + d(u,Tu),d(u,Tu) + 0} <1

N g
(v, u) 0+ d(u,Tu) + 1 ’
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and, from (4),
m(u,u) = max{0,0, d(u, Tu), [d(u, Tu) + 0]/2} = d(u, Tu).
Substituting into (2) gives

d(u, Tu) < d(u,Tu),

a contradiction. Therefore u € F(T). Similarly, it can be shown that, if
v e F(T), then v € F(S).

Proof of Theorem 2: Let oy € X and define {z,} by
Tons1 = STop, Tonyo = T X9,y forall n > 0. (5)

Suppose that there exists a value of n for which x5,,1 = 2,,2. Then, from
(5), xont1 = Twops1 and xg,q € F(T). By Lemma 1, 29,11 € F(S), and (a)
is satisfied.

Similarly, if there exists a value of n for which s, = x9,.1, then xy, €
F(S)N F(T), and again (a) is satisfied.

Therefore we shall assume that
Ty # Tpyq forall n > 0. (6)
From (2),
d(@ani1, Tons2) = d(Son, Ton41) < N(22n, Tont1)m(Z2n, Tont1).  (7)
Defining d,, :== d(zp, xp11), from (3),

max{day,, don + dopt1, d(Ton, Tony2) + 0}
don, + dopt1 +1

don, + dont1
= = Bo,. 8
day, + dopt1 + 1 fe ®)

N(@m $2n+1) =

From (4),

m(@m $2n+1) = maX{d2n7 day, d2n+17 [d($2n, $2n+2) + 0]/2} = maX{d2n, d2n+1)}-

(9)
Substituting (8) and (9) into (7) gives

dont1 < Bay max{day, dap11} = Pondan, (10)
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since 0 < P, < 1 and, from (6), doy 1 # 0.
Similarly, it can be shown that

dan < Pon—1 max{da, 1, don} = Bon_1dan1. (11)
Therefore, from (10) and (11) it follows that
d, < fp_1max{d, 1,d,} <d,_, forall n>0. (12)

Lemma 2.3 For eachn > 0,5, < B,_1.

Proof of Lemma 2: From, (8), 8, < (,_1 is equivalent to
dn + dn+1 < dnfl + dTL
dn+dn+1+1 dn—1+dn+1

Clearing of fractions and simplifying gives d,,.1 < d,,_1, which follows from
(12).
Returning to the proof of Theorem 2, (12) and Lemma 2 imply that

d, < prd,—1 < Bido. (13)

For any positive integers m,n with m > n, it follows from (13) that

m—1 m—1
d(y, ) < Z d; < Z Bido

m—n—1 n

= Bido Z 59_1_51

Therefore {z,} is Cauchy. Since X is complete, there exists a point p € X
such that lim,, x,, = p.
Using (2) - (4), (8), and the fact that each £, < B, gives

d<x2n+17 Tp) = d(SxZna Tp) < 61 maX{d(IQ’mp)u d(x%’w x2n+1)7 (14)
d(p, Tp), [d(z2n, Tp) + d(p, T2n+1)]/2}.

Taking the limit of both sides of (14) as n — oo one obtains

d(p, Tp) < Bd(p, Tp),

which implies that p = T'p. From Lemma 1, p € F(S), and (a) is satisfied.
To prove (b), merely observe that, from (5) and the fact that x is arbitrary,
we may write zo,41 = (ST)"2x and x99 = T(ST)"?x.
To prove (c), suppose that p,q € F\(S) N F(T) with p # q.
From (3) and (4), N(p,q) = 2d(p,q) and m(p,q) = d(p,q). Thus (2) be-

comes

d(p,q) < 2d*(p,q),
which implies (c).
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Corollary 2.4 Let (z

,d) be a complete metric space, T a selfmap of X
satisfying (2) — (4) with S =

T.

Then
(a) T has at least one fixed point.
(b) {T™z} converges to a fixed point of 7.
(c) If p and ¢ are distinct fixed points of T, then d(p,q) > 1/2.

Proof: Set S =T in Theorem 2.

Note that Theorem 1 is a special case of Corollary 1, since (1) is a special
case of (2) with S =T.

For the balance of this paper we shall need the following notations:

CB(X) = {A : A is a nonempty closed and bounded subset of X},

D(A, B) = inf{d(a,b) : a € A,b € B},

d(A, B) = sup{d(a,b) : a € A,b € B},

H(Av B) = maX{SupxeB D(I, A)v SUPgzecA D(l’, B))}

For any multivalued mapping, the statement p € F(T) means that p € Tp.
The following is the statement of Theorem 5 of [1].

Theorem 2.5 Let (X,d) be a complete metric space and let T be a multi-
valued mapping from X into CB(X). Let T satisfy the following:

)d(rc,y)

D(z,Ty) + D(y, TX)
Sz, Tx)+6(y, Ty +1

forall z,y € X. Then T has a fized point x € X.

H(Tz,Ty) < (

The following result generalizes Theorem 3.

Theorem 2.6 Let (X,d) be a complete metric space, T : X — CL(X)
satisfying, for all x,y € X,

H(Sz,Ty) < N(z,y)m(z,y), (15)
where

N(z,y) :=[max{d(z,y), D(x,Sx) + D(y,Ty), D(x,Ty) + D(y, Sz)]+ (16)
[0(x, Sx) + d(y, Ty) + 1],

and

m(x,y) = max{d(x,y), D(x,Sx), D(y,Ty), [D(z, Ty) + D(y, Sx)]/2}, (17)
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Then

(a) S and T have at least one common fixed point p € X.

(b) For n even, {(ST)"2x} and T(ST)™2x} converge to a common fixed
point for each x € X.

(c) If p and ¢ are distinct common fixed points of S and 7', then d(p, q) >
1/2.

We shall first prove the following Lemma.

Lemma 2.7 If S and T satisfy the hypotheses of Theorem 4, then every
fixed point of S is a fixed point of T, and conversely.

Proof of Lemma 3: Suppose that p is a fixed point of S. Using (15) and the
definition of H,

D(p,T) < H(p,Tp) < H(Sp,Tp) < N(p,p)m(p,p).

Using (16),
N(p,p) = max{d(p,p), D(p, Sp) + D(p, Tp), D(p, Tp) + D(p, Sp)}
mre o(p, Sp) +6(p,Tp) + 1
D(p,Tp)
: D(p,Tp) + 1 gt

and, from (17),

m(p, p) = max{d(p, p), D(p, Sp) + D(p, Tp), [d(p, Tp) + d(p, Sp)]/2}
= D(p, Tp).

Therefore
D(p,Tp) < BD(p,Tp),

which implies that p is also a fixed point of 7.
In a similar manner it can be shown that, if p € T'p, then p € Sp.
Returning to the proof of Theorem 4, part (a), let g € X, x; € Txy.

The following Lemma is an observation of Nadler [2].

Lemma 2.8 Let A,B € CB(X), and let x € A. Then, for each a > 0,
there exists a y € B such that

d(z,y) < H(A,B) + .
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Using Lemma 4, for any 0 < hy < 1, choose x5 € Tz so that
1
d(l‘l,ffg) S H(SZE(),TIl) + <h_ - 1) H(Sl‘o,TJZl)
1

1
—H(S[L‘(), le)
ha

In a similar manner, for any 0 < hy < 1 choose x3 € Sz, so that
1
d(.TQ, I’g) S h—H(SZ‘Q, T(L’1>,
2
and, in general, for any 0 < ho, < 1, choose xg,,1 € Sxs, so that
1
d(T2n, Tont1) < h—H(SfﬁzmTﬁan*l), (18)

2n

and, for any 0 < hg,11 < 1, choose 9,11 € T'x2,11 so that

d(Tont1, Tonta) < H(Sxon, Txopt1). (19)

2n+1

Without loss of generality we may assume that H(Sxy,,Txe,—1) # 0
and H(Sxon, Txon11) # 0 for each n. For, if there exist an n such that
(Sxon, Txon_1) = 0, then Sxzy, = Tz, 1, which implies that xs, € Szg,,
since To, € Txy, 1, and g, is a fixed point of S, hence of T" by Lemma 3.
Similar remarks apply if there exists an n for which H(Sxzo,, Txony1) = 0.
We may also assume that z, # x,.1 for each n. For, if there exists an
n for which zs, = 29,41, then, since xo,11 € Sxop, Tony1 € F(5), and by
Lemma 3, x9, € F(T). Similarly, z9,.1 = 22,42 for any n implies that
Tony1 € F(T) N F(S).

The h,, are defined by h,, = \/B,, where

dnfl + dn

ﬁn . dn—l+dn+1

(20)

From (16) and (20),

max{da,_1, D(xon, Sta,) + D(xan_1, Txon, ), D(xon, Txon_1) + D(T2n_1,ST2,)}
d(zan, Sxon) + 0(z2n—1, Txon_1) + 1
max{dy, 1, don + don_1,0 + d(xen_1, Toni1)}
dop + dop—1 +1
don—1 + dap

_ — By, 21
dop 1 + day, + 1 B (21)

N(x2n7 x?n—l) =
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m(xon, Ton—1) = max{do,_1, D(xop, STap), D(xen_1, Txon_1),
[D(22, Tx2n—1) + D(x9n_1, Sxa,)]/2}
< max{dan—1, don, don-1, [0 + d(T2n-1, T2n11)]/2}-
Therefore
m(Tan, Ton—1) < max{ds,_1,da,}. (22)
Using (16), (21), and (22) in (19) yields
day, < %%H(ngn,hgn_l) < \/Bon max{dy, 1, dap,}.

Since each z,, # ,,1,ds, > 0, the above inequality implies that

dQn S V 52nd2n1- (23)

A similar computation verifies that

dont1 < \/ Bant1don. (24)

From inequalities (23) and (24), for all n > 0,

dn—i—l S V Bn—&-ldn- (25)

Therefore {d,,} is a monotone decreasing positive sequence, so it has a limit
¢>0.

Taking the limit of both sides of (25) as n — oo, and using (20), it follows
that ¢ = 0.

For any integers m,n > 0, using (25) and the triangular inequality,

m—1 m—1 m—1
d(zp, ) < dy, < Z(ﬁk—l -+ Bo)do = do Z ,
k=n k=n k=n

where ay, 1= B_1 - -+ Bo. Since limy ayy1/ar = limy, B = 0, the series converges,
which implies that {z,} is a Cauchy sequence, hence convergent to some point
p, since X is complete.

D<p7 Tp) S d(p7 x2n+1) + D($2n+17 Tp) (26)
S d<p7 x2n+1) + H(Sx2n7 Tp)
Using (16),
N($2nap) = max{d(xgn,p), D<x2n> S$2n) + D(p, Tp)a (27)

D(w2p, Tp) + d(p, Szan) }+
[0(22n, Sz9n) +6(p, T) + 1]
< max{dxa,, p), d(xa, Ton+1) + d(p, Tp),
d(w2n, Tp) + d(p, Toni1) }+
[d(72n, T2ns1) + d(p, Tp) + 1]
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From (16),

m(zan, p) = max{d(xan, p), D(xon, Sta,), D(p, Tp), (28)
[D(220, Tp) + D(p, Sx2)]/2}
< max{d(zan,p), don, D(p, Tp),
[d(z2n, Tp) + d(p, T2n+1)]/2}

Substituting (27) and (28) into (26), using (15), and taking the limit of
both sides as n — 00, one obtains

d(p,Tp)
d(p,Tp)+1

which implies that D(p,Tp) = 0, and hence that p € F(T'). From Lemma 3,
p € F(S).

The proof of part (b) uses the same argument as that of the proof of part
(b) in Theorem 2.

(b). Suppose that p and ¢ are distinct common fixed points of S and 7'
Then

D(p,Tp) <) + D(p, Tp),

d(p,q) =D(p,q) < D(p, Sp) + D(Sp, Tq) + D(q,Tq) (29)
< H(Sp,Tq).

Using (16),

- d(p,q),0,D(p,Tq) + D(q, Sp)
N(p.g) = max{ 5(p, 5p) + 0(¢. Tq) + 1 )

d(p,q),d(p,q) + d(q,p)
= max { d(p, Sp) +d(q,Tq) + 1 }

= 2d(p, q)-
Using (17),
m(p, q) = max{d(p, q),0,0, [D(p,Tq) + D(q, Sp)]/2}
=d(p,q).

Using (15) and substituting it into (29) gives

d(p, q) < 2d*(p, q),

which yields the result.
Theorem 5 of [1] is a special case of Theorem 4 .
On page 3, formula (24) of [1] has an error. The expression

(1-7)
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should read )
— 1),
(%
Also, formula (27) of [1] is incorrect, since 0 < (3, < 1. However, the
remaining argument remains valid with 3, replaced by /3,.
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