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Abstract
In this paper, the exact formulae for the Harary indices of join, disjunction,

symmetric difference, strong product of graphs are obtained. Also, the Schultz and
modified Schultz indices of join and strong product of graphs are computed. We ap-
ply some of our results to compute the Harary, Schultz and modified Schultz indices
of fan graph, wheel graph, open fence and closed fence graphs.
Keywords: Harary index, Graph operations.

1 Introduction

All the graphs considered in this paper are simple and connected. For vertices
u, v ∈ V(G), the distance between u and v in G, denoted by dG(u, v), is the length
of a shortest (u, v)-path in G. The strong product of graphs G and H, denoted by
G � H, is the graph with vertex set V(G) × V(H) = {(u, v) : u ∈ V(G), v ∈ V(H)}
and (u, x)(v, y) is an edge whenever (i) u = v and xy ∈ E(H), or (ii) uv ∈ E(G) and
x = y, or (iii) uv ∈ E(G) and xy ∈ E(H).
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A sum G +H of two graphs G and H with disjoint vertex sets V(G) and V(H) is
the graph on the vertex set V(G) ∪ V(H) and the edge set E(G) ∪ E(H) ∪ {uv | u ∈
V(G), v ∈ V(H)}. Hence, the sum of two graphs is obtained by connecting each
vertex of one graph to each vertex of the other graph, while keeping all edges of
both graphs. The sum of two graphs is sometimes also called a join, and is denoted
by G∇H.

The disjunction G∨H of graphs G and H is the graph with vertex set V(G)×V(H)
and (u1, v1) is adjacent with (u2, v2) whenever u1u2 ∈ E(G) or v1v2 ∈ E(H). The
symmetric difference G ⊕ H of two graphs G and H is the graph with vertex set
V(G) × V(H) and E(G ⊕ H) = {(u1, v1)(u2, v2) | u1u2 ∈ E(G) or v1v2 ∈ E(H) but
not both}.

A topological index of a graph is a real number related to the graph; it does not
depend on labeling or pictorial representation of a graph. In theoretical chemistry,
molecular structure descriptors (also called topological indices) are used for model-
ing physicochemical, pharmacologic, toxicologic, biological and other properties of
chemical compounds [6]. There exist several types of such indices, especially those
based on vertex and edge distances. One of the most intensively studied topological
indices is the Wiener index; for other related topological indices see [10].

Let G be a connected graph. Then Wiener index of G is defined as W(G) =
1
2

∑
u, v ∈V(G)

dG(u, v) with the summation going over all pairs of distinct vertices of G.

Similarly, the Harary index of G is defined as H(G) = 1
2

∑
u, v ∈V(G)

1
dG(u,v) .

The Harary index of a graph G has been introduced independently by Plavsic
et al. [8] and by Ivanciuc et al. [7] in 1993. Its applications and mathematical
properties are well studied in [1, 2, 3, 9]. Zhou et al. [4] have obtained the lower
and upper bounds of the Harary index of a connected graph. Very recently, Xu et
al. [5] have obtained lower and upper bounds for the Harary index of a connected
graph in relation to χ(G), chromatic number of G and ω(G), clique number of G and
characterized the extremal graphs that attain the lower and upper bounds of Harary
index. Also, Feng et. al. [2] have given a sharp upper bound for the Harary indices
of graphs based on the matching number, that is, the size of a maximum matching.
Various topological indices on tensor product, Cartesian product and strong product
have been studied various authors, see [11, 12, 13, 14, 15].

Dobrynin and Kochetova [16] and Gutman [17] independently proposed a vertex-
degree-weighted version of Wiener index called Schultz molecular topological in-
dex or Degree distance, which is defined for a connected graph G as W+(G) =
1
2

∑
u,v∈V(G)

(dG(u)+ dG(v))dG(u, v), where dG(u) is the degree of the vertex u in G. Note

that the degree distance is a degree-weight version of the Wiener index. In [18] it
has been demonstrated that the Wiener index and the Schultz index are closely mu-
tually related for certain classes of molecular graphs. Similarly, the modified Schultz
molecular topological index is defined as W∗(G) = 1

2

∑
u,v∈V(G)

dG(u)dG(v)dG(u, v).
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The first and second Zagerb index are defined as M1(G) =
∑

u∈V(G)
dG(u)2 and

M2(G) =
∑

uv∈E(G)
dG(u)dG(v). In fact, one can rewrite the first Zagreb index as M1(G) =∑

uv∈E(G)
(dG(u) + dG(v)). The Zagreb indices are found to have appilications in QSPR

and QSAR studies as well, see [19]. Ashrafi et al. [20, 21] defined the first Za-
greb coindex and second Zagerb coindex as M1(G) =

∑
uv<E(G)

(dG(u) + dG(v)) and

M2(G) =
∑

uv<E(G)
dG(u)dG(v), respectively.

A path, cycle and complete graph on n vertices are denoted by Pn, Cn and Kn,
respectively. In this paper, the exact formulae for the Harary indices of join, dis-
junction, symmetric difference, strong product of graphs are obtained. Also, the
Schultz and modified Schultz indices of join and strong product of graphs are com-
puted. We apply some of our results to compute the Harary, Schultz and modified
Schultz indices of fan graph, wheel graph, open fence and closed fence graphs.

2 Harary indices of composite graphs

In this section, first we compute the Harary indices of join, disjunction and
symmetric difference of two connected graphs. The proof of the following lemma
follows easily from the definitions of join, disjunction, symmetric difference of two
graphs.
Lemma 2.1.. Let G and H be two graphs. Then

(i) dG+H(u, v) =


0, if u = v
1, if uv ∈ E(G) or uv ∈ E(H) or (u ∈ V(G) and v ∈ V(H))
2, otherwise.

(ii) dG+H(x) =

dG(x) + |V(H)| , if x ∈ V(G)
dH(x) + |V(G)| , if x ∈ V(H)

(iii) dG∨H((u, x), (v, y)) =


0, if u = v and x = y
1, if uv ∈ E(G) or xy ∈ E(H)
2, otherwise.

(iv) dG⊕H((u, x), (v, y)) =


0, if u = v and x = y
1, if uv ∈ E(G) or xy ∈ E(H) but not both
2, otherwise.

�

Theorem 2.2.. Let G1 and G2 be graphs with n and m vertices, respectively. Then
H(G1 +G2) = mn + 1

2

( |E(G1)| + |E(G2)| ) + 1
4

(
n(n − 1) + m(m − 1)

)
.

Proof. Set V(G1) = {u1, u2, . . . , un} and V(G2) = {v1, v2, . . . , vm}. Then by Lemma
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2.1., we have

H(G1 +G2) =
1
2

∑
u,v∈V(G1+G2)

1
dG1+G2(u, v)

=
1
2

( ∑
uv∈E(G1)

1
dG1+G2(u, v)

+
∑

uv<E(G1)

1
dG1+G2(u, v)

+
∑

uv∈E(G2)

1
dG+H(u, v)

+
∑

uv∈E(G2)

1
dG1+G2(u, v)

+
∑

u∈V(G1), v∈V(G2)

1
dG1+G2(u, v)

)
= |E(G1)| + 1

2

(n(n − 1)
2

− |E(G1)|
)
+ |E(G2)|

+
1
2

(m(m − 1)
2

− |E(G2)|
)
+ mn

= mn +
1
2
( |E(G1)| + |E(G2)| ) + 1

4
(
n(n − 1) + m(m − 1)

)
.

�
Using Theorem 2.2., we have the following corollary.

Corollary 2.3.. Let G be graph on n vertices. Then H(G + Km) = mn + 1
2 |E(G)| +

1
4

(
n(n − 1) + m(m − 1)

)
. �

Using Corollary 2.3., we compute the formula for Harary indices of fan and
wheel graphs, Pn + K1 and Cn + K1, see Figs. 1a and 1b.

Example 1.
(i) H(Pn + K1) = 1

4 (n2 + 5n − 2).
(ii) H(Cn + K1) = 1

4 (n2 + 5n).

Theorem 2.4.. Let G1 and G2 be graphs with n and m vertices, respectively. Then
H(G1 ∨G2) = m2

2 |E(G1)| + m2

2 |E(G2)| − |E(G1)| |E(G2)| + 1
4mn(mn − 1).
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Proof. Set V(G1) = {u1, u2, . . . , un} and V(G2) = {v1, v2, . . . , vm}. Let xi j denote the
vertex (ui, v j) of G1 ∨G2. Then by Lemma 2.1., we have

H(G1 ∨G2) =
1
2

∑
xi j, xkp ∈V(G1∨G2)

1
dG1∨G2(xi j, xkp)

=
1
2

∑
xi j ∈V(G1∨G2)

{(
md(ui) + nd(v j) − d(ui) + d(v j)

)
+

1
2

(
mn − md(ui) − nd(v j) + d(ui)d(v j) − 1

)}
=

1
2

∑
xi j ∈V(G1∨G2)

(1
2

md(ui) +
1
2

nd(v j) −
1
2

d(ui)d(v j) +
1
2

(mn − 1)
)

=
m2

2
|E(G1)| + m2

2
|E(G2)| − |E(G1)| |E(G2)| + 1

4
mn(mn − 1).

�
Using similar argument as Theorem 2.4., one can prove the following result:

Theorem 2.5.. Let G1 and G2 be graphs with n and m vertices, respectively. Then
H(G1 ⊕G2) = m2

2 |E(G1)| + m2

2 |E(G2)| − |E(G1)| |E(G2)| + 1
4mn(mn − 1). �

3 Harary index of strong product of graphs
In this section, we obtain the Harary index of G � Kr.

Theorem 3.1.. Let G be a connected graph with n vertices and m edges. Then
H(G � Kr) = r2H(G) + 1

2nr(r − 1).

Proof. Set V(G) = {u1, u2, . . . , un} and V(Kr) = {v1, v2, . . . , vr}. Let xi j denote the
vertex (ui, v j) of G�Kr.One can see that for any pair of vertices xi j, xkp ∈ V(G�Kr),
dG�Kr (xi j, xip) = 1 and dG�Kr (xi j, xkp) = dG(ui, uk).

H(G � Kr) =
1
2

∑
xi j, xkp ∈V(G�Kr)

1
dG�Kr (xi j, xkp)

=
1
2

( n−1∑
i= 0

r−1∑
j, p= 0
j, p

1
dG�Kr (xi j, xip)

+

n−1∑
i, k= 0
i, k

r−1∑
j= 0

1
dG�Kr (xi j, xk j)

+

n−1∑
i, k= 0
i, k

r−1∑
j, p= 0
j, p

1
dG�Kr (xi j, xkp)

)

=
1
2

(
nr(r − 1) + 2rH(G) + 2r(r − 1)H(G)

)
= r2H(G) +

1
2

nr(r − 1).
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�
By direct calculations we obtain expressions for the values of the Harary indices

of Pn and Cn. H(Pn) = n
( n∑

i=1

1
i

)
− n and H(Cn) =


n
( n

2∑
i=1

1
i

)
− 1, if n is even

n
( n−1

2∑
i=1

1
i

)
, if n is odd.

As an application we present formulae for Harary indices of open and closed
fences, Pn � K2 and Cn � K2, see Fig. 2.

By using Theorem 3.1., H(Cn) and H(Pn), we obtain the exact Harary indices of
the following graphs.
Example 2.
(i) H(Pn � K2) = n

(
4

n∑
i=1

1
i − 3

)
.

(ii) H(Cn � K2) =


n
(
1 + 4

n
2∑

i=1

1
i

)
− 4, if n is even

n
(
1 + 4

n−1
2∑

i=1

1
i

)
, if n is odd.

4 Schultz and modified Schultz indices of join and
strong product of graphs

In this section, we obtain the Schultz and modified Schultz indices of G1 + G2

and G � Kr.
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Theorem 4.1.. Let G1 and G2 be graphs with n and m vertices, respectively. Then
W+(G1 +G2) = M1(G) + M1(H) + 2(M1(G) + M1(H)) + nm(3n + 3m − 4).

Proof. Set V(G) = {u1, u2, . . . , un} and V(H) = {v1, v2, . . . , vm}. By Lemma 2.1., we
have

W+(G + H) =
1
2

∑
u,v∈V(G+H)

(
dG+H(u) + dG+H(v)

)
dG+H(u, v)

=
1
2

( ∑
uv∈E(G)

(
dG(u) + m + dG(v) + m

)
+ 2

∑
uv<E(G)

(
dG(u) + m + dG(v) + m

)
+

∑
uv∈E(H)

(
dH(u) + n + dH(v) + n

)
+ 2

∑
uv∈E(H)

(
dH(u) + n + dH(v) + n

)
+

∑
u∈V(G), v∈V(H)

(
dG(u) + m + dH(v) + n

))
= M1(G) + M1(H) + 2(M1(G) + M1(H)) + nm(3n + 3m − 4).

�
Using similar arguments as Theorem 4.1., one can prove the following result:

Theorem 4.2.. Let G1 and G2 be graphs with n and m vertices p and q edges,
respectively. Then W∗(G1+G2) = M2(G)+M2(H)+mM1(G)+nM1(H)+2M2(G)+
2M2(H)+2mM1(G)+2nM1(H)+mn(3mn−m−n)+4pq−m2 p−n2q+2mn(p+q).
�

Using Theorems 4.1. and 4.2., we have the following corollaries.

Corollary 4.3.. Let G be graph on n vertices. Then W+(G+Km) = M1(G)+2M1(G)+
m(m − 1)2 + nm(3n + 3m − 4)

)
. �

Corollary 4.4.. Let G be graph on n vertices and p egdes. Then W∗(G + Km) =
M2(G)+mM1(G)+ 2M2(G)+ 2mM1(G)+mn(3mn−m− n)+mp(2n−m)+ 1

2m(m−
1)(4p − n2 + 2mn + 3m2 − 4m + 1). �

One can observe that M1(Cn) = 4n, n ≥ 3, M1(P1) = 0, M1(Pn) = 4n − 6, n > 1
and M1(Kn) = n(n − 1)2. Similarly, M1(Kn) = 0, M1(Pn) = 2(n − 2)2 and M1(Cn) =
2n(n − 3).

By direct calculations we obtain the second Zagreb indices and coindices of
Pn and Cn. M2(Pn) = 4(n − 2), M2(Cn) = 4n, M2(Pn) = 2n2 − 10n + 13, and
M2(Cn) = 2n(n − 3).

Using Corollaries 4.3. and 4.4., we compute the formulae for Schultz and mod-
ified Schultz indices of fan and wheel graphs.
Example 3.
(i) W+(Pn + K1) = 7n2 − 13n + 10.
(ii) W+(Cn + K1) = n(7n − 9).
(iii)W∗(Pn + K1) = 12n2 − 32n + 29.
(iv)W∗(Cn + K1) = 12n2 − 18n.
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Theorem 4.5.. Let G be a connected graph with n vertices and m edges. Then
W+(G � Kr) = r

(
r2W+(G) + 2r(r − 1)W(G) + 2r(r − 1)m + n(r − 1)2

)
.

Proof. Set V(G) = {u1, u2, . . . , un} and V(Kr) = {v1, v2, . . . , vr}. Let xi j denote the
vertex (ui, v j) of G � Kr. The degree of the vertex xi j in G � Kr is dG(ui) + dKr (v j) +
dG(ui)dKr (v j), that is dG�Kr (xi j) = rdG(ui)+ (r− 1). One can observe that for any pair
of vertices xi j, xkp ∈ V(G � Kr), dG�Kr (xi j, xip) = 1 and dG�Kr (xi j, xkp) = dG(ui, uk).

W+(G � Kr) =
1
2

∑
xi j, xkp ∈V(G�Kr)

(
dG�Kr (xi j) + dG�Kr (xkp)

)
dG�Kr (xi j, xkp)

=
1
2

( n−1∑
i= 0

r−1∑
j, p= 0
j, p

(
dG�Kr (xi j) + dG�Kr (xip)

)
dG�Kr (xi j, xip)

+

n−1∑
i, k= 0
i, k

r−1∑
j= 0

(
dG�Kr (xi j) + dG�Kr (xk j)

)
dG�Kr (xi j, xk j)

+

n−1∑
i, k= 0
i, k

r−1∑
j, p= 0
j, p

(
dG�Kr (xi j) + dG�Kr (xkp)

)
dG�Kr (xi j, xkp)

)

=
1
2
{A1 + A2 + A3}, (4.1)

where A1, A2 and A3 are the sums of the terms of the above expression, in order.

We shall obtain A1 to A3 of (4.1), separately.

A1 =

n−1∑
i=0

r−1∑
j, p= 0
j, p

(
dG�Kr (xi j) + dG�Kr (xip)

)
dG�Kr (xi j, xip)

=

n−1∑
i=0

r−1∑
j, p= 0
j, p

(
2dG(ui) + 2(r − 1) + 2(r − 1)dG(ui)

)
= 4r2(r − 1)m + 2nr(r − 1)2 (4.2)
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A2 =

r−1∑
j= 0

n−1∑
i, k= 0
i, k

(
dG�Kr (xi j) + dG�Kr (xk j)

)
dG�Kr (xi j, xk j)

=

r−1∑
j= 0

n−1∑
i, k= 0
i, k

(
dG(ui) + (r − 1)dG(ui) + dG(uk) + (r − 1)dG(uk) + 2(r − 1)

)
dG(ui, uk)

= r
r−1∑
j= 0

n−1∑
i, k= 0
i, k

(
dG(ui) + dG(uk)

)
dG(ui, uk) +

r−1∑
j= 0

n−1∑
i, k= 0
i, k

2(r − 1)dG(ui, uk)

= 2r2W+(G) + 4r(r − 1)W(G). (4.3)

A3 =

n−1∑
i, k= 0
i, k

r−1∑
j, p= 0,

j, p

(
dG�Kr (xi j) + dG�Kr (xkp)

)
dG�Kr (xi j, xkp)

= r2(r − 1)
n−1∑

i, k= 0
i, k

(
dG(ui) + dG(uk)

)
dG(ui, uk) + 2r(r − 1)2

n−1∑
i, k= 0
i, k

dG(ui, uk)

= 2r2(r − 1)W+(G) + 4r(r − 1)2W(G). (4.4)

Using (4.2), (4.3) and (4.4) in (4.1), we have

W+(G � Kr) = r
(
r2W+(G) + 2r(r − 1)W(G) + 2r(r − 1)m + n(r − 1)2

)
.

�
Using similar arguments as Theorem 4.5., one can prove the following result:

Theorem 4.6.. Let G be a connected graph with n vertices and m edges. Then
W∗(G � Kr) = r

(
r3W∗(G) + r2(r − 1)W+(G) + r(r − 1)2W(G) + 1

2r2(r − 1)2M1(G) +
1
2 (r − 1)3n + 2r(r − 1)2m

)
. �

One can see that W(Pn) = n(n2−1)
6 and W(Cn) =

 n3

8 , if n is even
n(n2−1)

8 , if n is odd.
Similarly, W+(Pn) = 1

3n(n − 1)(2n − 1), W∗(Pn) = 1
3 (n − 1)(2n2 − 4n + 3) and

W+(Cn) = W∗(Cn) = 4W(Cn).
As an application we present formulae for Schultz and modified Schultz indices

of open and closed fence graphs.
Example 4.
(i) W+(Pn � K2) = 1

3 (4n(n − 1)(5n − 1) + 30n − 24).
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(ii) W+(Cn � K2) =

5n(n2 + 2) n is even
5n(n2 + 1) n is odd.

(i) W∗(Pn � K2) = 1
3

(
2(n − 1)(25n2 − 35n + 24) + 75n − 96

)
.

(ii) W∗(Cn � K2) =

 25
2 n(n2 + 2), if n is even
25
2 n(n2 + 1), if n is odd.
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