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Abstract
In this work, we are going to define a transformation from Dirichlet’s series
called discrete Dirichlet’s transformation. We will obtain some classical results
connected Riemann’s zeta function and theoretic-arithmetic functions. Some
probabilistic interpretations are maked explicit.
Keywords: Dirichlet’s transformation, Zeta function, Mdbius transfor-
mation.

1 Introduction

It is well-known (cf. [6]) that the Riemann zeta-function ((s) is holomorphic
in the whole complex plane except for a simple pole at s = 1 with residue 1.
Riemann discovered the functional equation

(T ()m 2 = (1= ) (- e 092 (1)

where I'(s) denotes Euler’'s Gamma-function.
This equation and the identity

show some symmetries of ((s).
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From (1) it follows that ((s) vanishes at the negative even integers, the
so-called trivial zeros of ((s). It is also known that the other non-trivial zeros
lie inside the so-called critical strip 0 < Re(s) < 1, and they are non-real.

The famous, yet open Riemann hypothesis states that every non-trivial

zero of ((s) satisfies Re(s) = 1.

In this work, we are going from zeta function and a Dirichlet’s series
define one transformation called discrete Dirichlet’s transformation. We ob-
tain some classical results connected Riemann’s zeta function and theoretic-
arithmetic functions. Some applications stemed from number theory and
theoretic-arithmetic function are given and probabilistic interpretations are

maked explicit.

2 Dirichlet’s Transformation

Let f : N* — C be a theoretic-arithmetic function. Associate to this last a
Dirichlet series

Z%, s €C, (3)

n>1

whose we will denote the abscissa of convergence A(f) and the abscissa of
absolute convergence ¢(f).

Introduce then A a class of theoretic-arithmetic functions such that A\(f) <
+00. So for f € A, a Dirichlet series

Z%, seC, (4)

n>1

is convergent for Re(s) > A(f) and divergent for Re(s) < A(f). It repre-
sents a holomorphic function of a complex variable s in a half plane Re(s) >
A(f) like that A equiped with addition process, multiplication by a scalar and
a convolution product *, (A, 4, mult.by sca., %) is an algebra of theoretic-
arithmetic functions and which is a sub-algebra of Dirichlet’s algebra.

Next we introduce a class denoted € of functions of complex variable s,
defined on a half-plane Re(s) > a where a € [—oo0, +00[. € equiped with
operation +, multiplication by a scalar, ordinary product e : (&, 4, mult.by
sca., ®) is an algebra, called functions algebra.

Definition 2.1 We call discrete Dirichlet’s transformation a_mapping
A A — € which to an element f € A, associates a function f € € defined

by
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fls) o= 321 et > 2. )

n>1

A function ]/‘:6 ¢ s said Dirichlet’s transformation of f.

__ Proposition 2.2 A mapping A\ is injective if and only if f and g € A and
f=9 = f=g

Proof. It is a consequence of uniqueness theorem of a Dirichlet’s series,
see ([3], Theorem 3.3) and ([5]). O

3 Dirichlet’s Transformation as a Homomor-
phism of Algebra

Theorem 3.1 A Dirichlet’s transformation of convolution product of two
elements of A is equal to ordinary product of a Dirichlet’s transformation of
these two elements. More precisely, let f and g € A. Put h = f x g. Then we
have

a) {(h) < max {{(f), {(g)} < 400, hence h € A;

b) Bls) = F(5)i(s) for Re(s) > max {£()), £()}.

In shortcut

—_— ~

fx9=19. (6)
Proof. Formally, we have
Flonats) = (O AEh ) — 5 S, )

ms
k>1 m>1 k,m>1

Hence looking terms of same denominator, namely, in fact summing at km
constant we have .

F9)36) = 3 (3 ftgm) = X" “ G,

nS
n>1 km=n n>1
if everyone of series is convergent (absolutely convergent), namely h < +o0,
hence the theorem results. O

Theorem 3.2 Dirichlet’s transformation A\ : A — € is an homomorphism
from algebra (A, +, mult.by scal., %) into algebra (&€, +, mult.by scal., ®) :

a) fAvALg=AJA”+§;
b) af = af, a € N;
¢) fxg=14.
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lattice
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constant

Figure 1:

4 Dirichlet’s Transformation of Mobius Trans-

formation

Theorem 4.1 Let f € A and F be its Mobius transformation : F'=1x% f.
Then

F(s) = C(s)-£(s), Rels) > Maz {£(f), 1}. )
Proof. Apply Theorem 3.1, then we have
A 1
i(s) = 3" = = ls)s (1) =1
and ZC" = ?} 0

Probabilistic Interpretation
Interpret the expression (9) above in probabilistic meaning.
Suppose s real > Max {{(f), 1}, we have

namely

),

C(s) oy n®

and the mathematical expectation Eg(F') of F' is

For the remainder of interpretation see ([3]).
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5 Calculus of Dirichlet Transformations

5.1 Direct Calculus

Consider the following cases :
a) f(n) =1, then

f(s) = Znsl_l =((s—1), s>2.
n>1

c) f(n) =n" a € R, then

J?(S)ZZ ! =((s—a), s>a+1

s—a
n>1

d) f(n) = indicator function of the set of numbers of perfect squares, then

f(s) = Z(ni)s =((2s5), s> %

e) f(n) = indicator function of powers k" (k € N*), then

F(s) = Z(ni)s — C(ks), 5 > %

then
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Remark 5.1 We have
n(s) = (1—2"7°)¢(s).

a) ((s) is definite for s > 1 ;
b) a function

and

We have
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sz
a continuation of 1)

Figure 2:

6 Calculus of Dirichlet Transformations of Mul-
tiplicative Arithmetic Function
A calculus of Dirichlet transformations of multiplicative arithmetic function

will be doing in pleasant way using generalized Euler’s identity. Apply gener-
alized Euler identity to the following multiplicative function

f(n)

ns

Theorem 6.1 Let f: N* — C be a multiplicative function (no identically
zero) and s be a real number such that series of general term

%

n>1

converges, namely, \(f) < 400 and Re(s) > A(f). Then one has

f@y:§:%£2:II@-%i%2+i@3+ag. (10)

25
1 » p p

Corollary 6.2 A necessary and sufficient condition for an arithmetic func-

tion f to be multiplicative is that its Dirichlet’s transformation can be written

i the form
2

C
his)= [0+ 2+ 2 4.,
- p p

where ¢, are complex numbers.

We have the following particular cases :
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Proposition 6.3 Suppose f strongly multiplicative, namely, for all p € P,
for any o € N*, one has f(p*) = f(p). Then

n f)  f*) f(p)
fo=1la+=F+52+.) =][0+575)
» p p » p
Proposition 6.4 If f is completely multiplicative, namely, for all p € P,

for any o € N*, one has f(p*) = (f(p))*. Then

]/c\(S) _ H(l + f(p> + (f(p))Q + )

P? P’

p

Moreover, if for any p such that

then

f(S)ZH(l_li)zg(s),fors>1.

Indeed, f =1 is an arithmetic function and completely multiplicative, f(p) =
1, for any p. Hence

16) = [T =TI0~ )7 = (o), fors > 1

Example 6.6 Put f = u, where
1 if a=1

0 if a>1.

Then

[(s) = L or s
i) =10 -2 = 5 fors>1,

Indeed, f = p is a multiplicative arithmetic function. According to previous
example and a definition of j, one has

f(s) = R or s
i) =TI0- 2 = i fors > 1.
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Remark 6.7 Functions 1 and p are inverse one of the other in Dirichlet’s
algebra.

Example 6.8 Let f = |u| = p? be an indicator function of square free
numbers. Then

M = 1 :ﬁ or s
’M|(8)—H(1+ps) §(23)’f > 1.

Proof. Indeed, one has f = |u| = p? the indicator function of square free
numbers. It is a multiplicative arithmetic function and

1if a=1,
| (p*) =
0if a>1.

Then according to previous examples and a definition of f we have

7l (s) = [[0+~).

p

But

then

j s
1) = [T = 2 gor s> 1

Example 6.9 Let f = X\ be Liouville’s function, where

1 if n=1,
A(n) =
(—1)%™ 4f n>1,

with \(p) = —1. Then

/):(s) :H(l—&%) = cg((is)), for s > 1.

Proof. Indeed, let f = X\ be the Liouville’s arithmetic function. It is a
completely multiplicative arithmetic function.
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According to previous examples and a definition of A on prime numbers,

we have .
) =T
P p
But
11—t
14+¢ 1—¢
then )
- L= ¢(29)
p _
A(s>_1;[(1_#) C(S),fors>1.

Remark 6.10 We have

imply |p| and X are inverse one of the other in Dirichlet’s algebra.

Example 6.11 Put f = d, where d(n) = number of divisors of n. Then

~ z i a+1 ()2
d(s)—H(l—l—ps—l—p2s+...+ o ) = (¢(s))2.

p
Proof. Let f = d be the arithmetic function number of divisors of n. It is
a multiplicative arithmetic function.
According to previous examples and a definition of d, we have

~ 2 3 a+1
dis) =TT+ =+ =+ .. ).
1;[ ps pQS pas
But )
1+ 2t 4+ 32 +42 + ... =
+ 2t + + + (1 — t)2’
then
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Example 6.12 Let f = d* be a strongly multiplicative projection of d (see

[1])

d*(n) = 2°0) number of square free divisors of n. Then

[~

~ ol ()2
=1 ="

bS]

p

Proof. Indeed, let f = d* be a strongly multiplicative projection of d.
Then f is a strongly multiplicative arithmetic function. According to previous
examples and a definition of d*, we have

~ 1 4 ¢t 1+ L1
() = [0+ ———) = [I=5)
P p? P p?
But
| pte i r
14t
hence

O

Proof. Indeed, let f = ¢ be the totient Euler’s arithmetic function. Ac-
cording to ([2]), Theorem 5.1, we have

e(p*) =p"p—1).

101+ 25t 4 2t 4 222 )

pQS

)
—
»
~—
Il
~ =
—
-
+
LS
S
+
)
SISy
=
_|_
SN—
Il
=

1
_ p—1 1 . = _ C(s—1)
—1;[(1+—ps- T )—H(lfslil)— C(S),f01rs>2.
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7 Calculus of Dirichlet Transformations of Mobius
Transformations

We have, if F'=1x f, then

We obtain the following results as propositions :

Proposition 7.1 Put f =1, then

Put

d(n) = Zl.

dln

We have d=1x%x1. Then

o~

d(s) = (¢(s))?, fors>1.

Proposition 7.2 Let f(n) =n, then

f(s):Z%:C(s—l), for s> 2 cmdF(n):Zk.

n>1 k|n

We have
a(n):Zk; o=1xf

k|n
and
a(s) =C((s)((s—1), fors>2.
Proposition 7.3 Generally, let f(n) =n®, a € R, then
J?(S) =((s—a), fors>a+1.

We have
Ja(n):Zk‘o‘; O =1x%f

k|n

and
0a(s) =C(s)((s — ), fors>max(a+1,1).

We obtain some particular cases in the following corollary :
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Corollary 7.4 a) if « =0 then oy = a;
b) ifa =1 thenoy =o0;
¢) if « = —1 then

o_1(n) = Z%,

k|n
and 7_1(s) = ((s)((s+ 1), for s > 1.

Proposition 7.5 Let f = p, where ¢ is a totient Fuler’s arithmetic func-
tion. Then

sy = 1) or s
P(s) = ) f > 2. (11)

Proof. Indeed, we have

fls) = YA

Joy L s (12)

nS

and
n= ng(l{:) (M6bius’s transformation) (13)
k|n

implies ((s — 1) = ((s)p(s), for s > 2, hence

((s—1)

, for s > 2.

O

Proposition 7.6 Let f = A be von Mangoldt’s arithmetic function intro-
duced in ([6]). Then we have

A(s) = —%, for s > 1.

Proof. Indeed, put f = A, then we have

fls) = Zn—?’ for s > 1

n>1
with A I
SoAm) gLoon o s > 1
ns ns
n>1 n>1
and

Logn = Z)\(k),

k|n
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hence I
Z O‘Zn = C(s)/A\(s), for s > 1.
n>1
But I p )
ogn o
Z e _£<ZE) = —((s), for s > 1,
n>1 n>1
hence

/A\(s) = —#, for s > 1.

O
Proposition 7.7 Let f = u, then
i(s) ! fors>1
I’L pr— _’ .
¢(s)
Proof. We have (n)
flo)=>
n>1
with )
ZW(n)l <y — =((s), for s > 1.
ns ns
n>1 n>1
But
1if n=1,
> ulk) =u(n) =
kln 0if n>1,
hence
C(s)u(s) =1, for s > 1.
OJ

We find the same results in ([6]) but in analytical way using real and
complex analysis in its proofs.
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