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Abstract 

     In this paper we prove a common fixed point theorem in fuzzy 2- metric space 
on six self-mappings using the concept of compatible of type (K) and Property 
(E.A.).  
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1 Introduction 
 
In 1965, L.A. Zadeh [8] introduced the concept of fuzzy sets which became active 
field of research for many researchers. In 1975, Kramosil and Michalek [5] came 
in front with the concept of Fuzzy metric space based on fuzzy sets which were 
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further modified by George and Veermani [2] with the help of t-norms. Many 
authors did good work and are still doing in proving fixed point theorems in 
Fuzzy metric space. Singh and Chauhan [4] introduced the concept of 
compatibility in fuzzy metric space and proved some common fixed point 
theorems in fuzzy metric spaces. Manandhar al. [6] introduced the concept of 
compatible maps of type (k) in Fuzzy metric space and proved fixed point 
theorems. Recently, many authors [1, 7, 9, 3] have also studied the fixed point 
theory in the fuzzy 2-metric spaces.  
 

2 Preliminaries 
 
Definition 2.1: [7] A binary operation ∗ ∶ �0,1� × �0,1� × �0,1� → �0,1� is called 
a continuous t-norm if (�0,1�,∗) is an abelian topological monodies with unit 1 
such that  
� ∗ �� ∗ �� ≥ 
� ∗ �� ∗ �� whenever 
� ≥ 
�, �� ≥ ��, �� ≥ �� for all 

�, ��, ��, 
�, �� 
�� �� are in [0,1] 
 
Definition 2.2: [1] The 3-tuple ( �, �,∗) is called a fuzzy 2-metric space if X is an 
arbitrary set, ∗  is a continuous t-norm, and M is a fuzzy set in �� × �0,∞) 
satisfying the following conditions. 
 
(1) M(x, y, a, 0) = 0. 
(2) M(x, y, a, t) = 1, for all t > 0 if and only if at least two of them are equal. 
(3) M(x, y, a, t) = M (y, a, x, t) = M(a, y, x, t). (Symmetric) 
(4) M(x, y, a, r+s+t)≥M (x, y, z, r)∗M(x, z, a, s )∗M(z, y, a, t) for all x, y, z, a ∈ X 
and r, s, t > 0.  
(5) M ( x, y, a, .) : [0, ∞) → �0,1� is left continuous for all x, y, z, a ∈ X and t > 0. 
(6) lim�→� M(x, y, a, t) = 1 for all x, y, z, a ∈ X and t > 0.  
 
Definition 2.3: [9] Self- mappings S and T of a fuzzy 2- metric space (X, M, ∗) are 
said to be compatible if and only if  M (ST%&, TS%&, z, t) → 1 ∀ ( >  0 whenever 
{%&} is a sequence in X such that T%&, S%& →p for some p in X as � →  ∞.  
 
Definition 2.4: [1]  A Fuzzy 2-metric space (�, �,∗) is said to be complete if 
every Cauchy sequence in X converges in X. 
 
Definition 2.5: [7]  Let (�, �,∗ ) be a fuzzy 2-metric space. A sequence {%&} in 
fuzzy 2-metric space X is said to be convergent to a point % ∈ �, 
*+,&→∞ �(%&, %, 
, () = 1 for all 
 ∈ �, and ( > 0. 
 
Definition 2.6: [7] A sequence {%&} in fuzzy 2-metric space X is called a Cauchy 
sequence, if *+,&→∞ �-%&./, %&, 
, (0 = 1 for all 
 ∈ �, and (, 1 > 0. 
 
Definition 2.7: [7] A function M is continuous in a Fuzzy 2- metric space, if and 
only if whenever for all 
 > � and t > 0. %& → %, 2& → 2, then  
*+,&→∞ �(%&, 2&, 
, () = �(%, 2, 
, () for all 
 > � and t > 0. 
 



Common Fixed Point Theorem of Compatible…                                           127 

Definition 2.8. [6] The self maps A and S of a fuzzy metric space (�, �,∗) are 
said to be compatible of type (K) iff  *+,&→∞ �(33%&, 4%, () = 1 and 
*+,&→∞ 3%& = *+,&→∞ 4%& = % for some x in X and ( > 0.  
 
Definition 2.9: [3]  Tow pairs of self mappings (A, S) and (B, T) defined on a fuzzy 
metric space (X, M, ∗) are said to share the common property (E. A) if there exist 
a sequence {%&} and {2&} in X such that 
 
 *+,&→∞ 3%& = *+,&→∞ 4%& = *+,&→∞ 52& = *+,&→∞ 62& = 7 for some 7 > �. 
 
Definition 2.10: [9]  Self- maps S and T of a fuzzy 2- metric space (�, �,∗) are 
said to be weakly compatible (or coincidentally commuting) if they commute at 
their coincidence points that is if Sp = Tp for some p ∈ X then STp = TSp. 
 
Lemma: [9] M(x, y, z, .) is non –decreasing for all x, y, z ∈ X. 
 
Lemma:[9] Let (X, M, ∗) be a fuzzy 2-metric space. If there exists k ∈ (0, 1) such  
that M(x,y,z,kt)≥M(x,y,z,t) for all x,y,z∈X with z ≠ x, z ≠ y and t > 0, then x = y. 
 

3 Main Result 
 
Theorem 3.1 : Let (X, M, ∗) be a complete Fuzzy 2-metric space and A, B, P, Q, S 
and T be a self mapping of X satisfying the following condition: 
 
(i) P(X) ⊂ BT(X) and Q(X) ⊂ SA(X)   
(ii) SA and BT are continuous. 
(iii) (P, SA) and(Q, BT) compatible of type of (K) 
(iv)�1 + aM(SAx, Px, a kt)� ∗ M(Px, Qy, a, kt) ≥ 

a�M(Px, SAx, a, kt) ∗ M(BTy, Qy, a, kt) ∗ M(BTy, Px, a, kt)� + M(BTy, SAx, a, t) 
∗ M(Px, SAx, a, ∝ t) ∗ M(Qy, BTy, a, (2−∝)t) ∗ M(Qy, SAx, a, ∝ t)

∗ M(Px, BTy, a, (2−∝)t) 
For all x, y, a ∈ X , ∝∈ (0,2), a ≥ 0 and t>0 
(v)  (P,SA) and (BT, Q) are  commute, 
 
Then A, B, P, Q, S and T have a  unique  common  fixed  point. 
 
Proof: Since P(X) ⊂ BT(X) and Q(X) ⊂ SA(X), so for any xEϵX, there exists 
x�ϵX such that PxE = BTx� and for this x� ,there exists x�ϵX such that BTx� =
SAx�. Inductively, we define a sequences{y�} in X such that 
 
y��.� = Px�� = BTx��.� and y��.� = Qx��.� = SAx��.�   for all n=1,2,3... 
 
Putting x = x�� and y = x��.� with ∝=1 Form (iv), we get 
 
�1 + aM(SAx��, Px��, a, kt)� ∗ M(Px��, Qx��.�, a, kt) 
≥ a�M(Px��, SAx��, a, kt) ∗ M(BTx��.�, Qx��.�, a, kt) ∗ M(BTx��.�, Px��, a, kt)� 
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+M(BTx��.�, SAx��, a, t) ∗ M(Px��, SAx��, a, t) ∗ M(Qx��.�, BTx��.�, a, t) 

 
∗ M(Qx��.�, SAx��, a, t) ∗ M(Px��, BTx��.�, a, t) 

 
�1 + aM(y��, y��.�, a, kt)� ∗ M(y��.�, y��.�, a, kt) 
 

≥ a�M(y��.�, y��, a, kt) ∗ M(y��.�, y��.�, a, kt) ∗ M(y��.�, y��.�, a, kt)� 
 

+M(y��.�, y��, a, t) ∗ M(y��.�, y��, a, t) ∗ M(y��.�, y��.�, a, t) 
 

∗ M(y��.�, y��, a, t) ∗ M(y��.�, y��.�, a, t) 
 
M(y��.�, y��.�, a, kt) ≥ M(y��.�, y��, a, t) ∗ M(y��.�, y��, a, t) ∗ 
 

M(y��.�, y��.�, a, t) ∗ M(y��.�, y��.�, a, t) ∗ M(y��.�, y��, a, t) 
 
M(y��.�, y��.�, a, kt) ≥ M(y��.�, y��, a, t) ∗ M(y��.�, y��.�, a, t) 
 
Similarly, we also have 
 
M(y��.�, y��.�, a, kt) ≥ M(y��.�, y��.�, a, t) ∗ M(y��.�, y��.�, a, t) 
 
In general for m = 1, 2, 3.....   
 
M(yG.�, yG.�, a, kt) ≥ M(yG.�, yG, a, t) ∗ M(yG.�, yG.�, a, t) 
 
Consequently, it follows that for m = 1, 2, 3....  and     p = 1, 2, 3...... 
 

M(yG.�, yG.�, a, kt) ≥ M(yG.�, yG, a, t) ∗ M HyG.�, yG.�, a, t
kIJ 

 

We have M(yG.�, yG.�, a, kt) ≥ M KyG.�, yG, a, L
MN 

≥ M HyG, yGO�, a, t
k�J ≥ ⋯ ≥ M Hy�, y�, a, t

k�J → ∞ 

 
As n→∞, so M(yG.�, yG, a, t) → 1 for any t>0. For each ε>0 and each t>0,  
 
we can choose mE ∈ N such that M(yG.�, yG, a, t) > 1 − ε for all m > mE for 
 m�, mE ∈ N. Then M(yG.�, yG.�, a, kt) ≥ M(yG, yG.�, a, t) 
 
Hence by lemma {y�} is a Cauchy sequence in X. Since X is complete then {y�} 
converges to some point  z ∈ X, and so that {Px��}, {BTx��.�}, {Qx��.�} and 
{SAx��.�} also converges to z. Since (P, SA) and (Q, BT) are compatible of type 
(K), we have 
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PPx�� → SAz, (SA)SAx�� → Pz, QQx��.� → BTz and (BT)BTx��.� → Qz 
 
Putting x = Px�� and y = Qx��.� with ∝=1 Form (iv), we get 
 
�1 + aM(SA(Px��), P(Px��), a, kt)� ∗ M(P(Px��), Q(Qx��.�), a, kt) 
 
≥ a�∗ M(BT(Qx��.�), Q(Qx��.�), a, kt) ∗ M(BT(Qx��.�), P(Px��), a, kt)� 
 
+M(BT(Qx��.�), SA(Px��), a, t) ∗ M(P(Px��), SA(Px��), a, t) 
 

∗ M(Q(Qx��.�), BT(Qx��.�), a, t) ∗ M(Q(Qx��.�), SA(Px��), a, t) 
 

∗ M(P(Px��), BT(Qx��.�), a, t) 
Letting n→∞, we have 
 
�1 + aM(SAz, SAz, a, kt)� ∗ M(SAz, BTz, a, kt) ≥ a�M(SAz, SAz, a, kt) 
 
∗ M(BTz, BTz, a, kt) ∗ M(BTz, SAz, a, kt)� + M(BTz, SAz, a, t) 
 

∗ M(SAz, SAz, a, t) ∗ M(BTz, BTz, a, t) ∗ M(BTz, SAz, a, t) ∗ M(SAz, BTz, a, t) 
 
M(SAz, BTz, a, kt) ≥ M(BTz, SAz, a, t) ∗ M(BTz, SAz, a, t) ∗ M(SAz, BTz, a, t) 
 
Which implies that M(SAz, BTz, a, kt) ≥ M(BTz, SAz, a, t) 
 
Therefore by lemma, we have,  SAz = BTz.                                                 (3.1) 
 
Putting x = z and y = Qx��.� with ∝=1 Form (iv), we get 
 
�1 + aM(SAz, Pz, a, kt)� ∗ M(Pz, Q(Qx��.�), a, kt) ≥ a�M(Pz, SAz, a, kt) ∗ 
 
M(BT(Qx��.�), Q(Qx��.�), a, kt) ∗ M(BT(Qx��.�), Pz, a, kt)� + 
 

M(BT(Qx��.�), SAz, a, t) ∗ M(Pz, SAz, a, t) ∗ M(Q(Qx��.�), BT(Qx��.�), a, t) 
 

∗ M(Q(Qx��.�), SAz, a, t) ∗ M(Pz, BT(Qx��.�), a, t) 
 
Letting n→∞, we have 
 
�1 + aM(BTz, Pz, a, kt)� ∗ M(Pz, BTz, a, kt) ≥ a�M(Pz, BTz, a, kt) ∗ 
 

M(BTz, BTz, a, kt) ∗ M(BTz, Pz, a, kt)� + M(BTz, BTz, a, t) 
 
∗ M(Pz, BTz, a, t) ∗ M(BTz, BTz, a, t) ∗ M(BTz, BTz, a, t) ∗ M(Pz, BTz, a, t) 
 
Which implies that M(Pz, BTz, a, kt) ≥ M(Pz, BTz, a, t).  
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Therefore by lemma, we have  Pz = BTz                                                          (3.2) 
 
Putting x = z and y = z, using (3.1), (3.2) with ∝=1 Form (iv), we get 
 
�1 + aM(SAz, Pz, a, kt)� ∗ M(Pz, Qz, a, kt) ≥ a�M(Pz, SAz, a, kt) ∗ 
 

M(BTz, Qz, a, kt) ∗ M(BTz, Pz, a, kt)� + M(BTz, SAz, a, t) ∗ M(Pz, SAz, a, t) 
 

∗ M(Qz, BTz, a, t) ∗ M(Qz, SAz, a, t) ∗ M(Pz, BTz, a, t) 
 
�1 + aM(Pz, Pz, a, kt)� ∗ M(Pz, Qz, a, kt) ≥ a�M(Pz, Pz, a, kt) ∗ 
 

M(Pz, Qz, a, kt) ∗ M(Pz, Pz, a, kt)� + M(Pz, Pz, a, t) ∗ M(Pz, Pz, a, t) 
 

∗ M(Qz, Pz, a, t) ∗ M(Qz, Pz, a, t) ∗ M(Pz, Pz, a, t) 
 
Which implies that M(Pz, Qz, a, kt) ≥ M(Pz, Qz, a, t).  
 
Therefore by lemma, we have  Pz = Qz                                                             (3.3) 
 
Therefore form (3.1), (3.2) and (3.3), we have  SAz = BTz = Pz = Qz             (3.4) 
 
Now we show that Qz = z. Putting x = x�� and y = z with ∝=1 Form (iv), we get 
 
�1 + aM(SAx��, Px��, a, kt)� ∗ M(Px��, Qz, a, kt) ≥ a�M(Px��, SAx��, a, kt) 
 

∗ M(BTz, Qz, a, kt) ∗ M(BTz, Px��, a, kt)� + M(BTz, SAx��, a, t) ∗ 
 

M(Px��, SAx��, a, t) ∗ M(Qz, BTz, a, t) ∗ M(Qz, SAx��, a, t) ∗ M(Px��, BTz, a, t) 
 
Letting n→∞, we have 
  
�1 + aM(z, z, a, kt)� ∗ M(z, Qz, a, kt) 
 
≥ a�M(z, z, a, kt) ∗ M(Qz, Qz, a, kt) ∗ M(Qz, z, a, kt)� 
 

+M(Qz, z, a, t) ∗ M(z, z, a, t) ∗ M(Qz, Qz, a, t) ∗ M(Qz, z, a, t) ∗ M(z, Qz, a, t) 
 
Which implies that M(z, Qz, a, kt) ≥ M(z, Qz, a, t). 
  
Therefore by lemma, we have  z = Qz.  
 
 Hence by (3.4), we have  SAz = BTz = Pz = Qz = z                                         (3.5) 
 
Now to prove Az = z, putting x = Az, y = z with ∝ = 1 in (iv), we obtain 
�1 + aM(SA(Az), P(Az), a, kt)� ∗ M(P(Az), Qz, a, kt) 
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≥ a�M(P(Az), SA(Az), a, kt) ∗ M(BTz, Qz, a, kt) ∗ M(BTz, P(Az), a, kt)� 
 

+M(BTz, SA(Az), a, t) ∗ M(P(Az), SA(Az), a, t) ∗ M(Qz, BTz, a, t) 
 

∗ M(Qz, SA(Az), a, t) ∗ M(P(Az), BTz, a, t) 
 
�1 + aM(Az, Az, a, kt)� ∗ M(Az, z, a, kt) 
 
≥ a�M(Az, Az, a, kt) ∗ M(z, z, a, kt) ∗ M(z, Az, a, kt)� 
 

+M(z, Az, a, t) ∗ M(Az, Az, a, t) ∗ M(z, z, a, t) ∗ M(z, Az, a, t) ∗ M(Az, z, a, t) 
 
Which implies that M(Az, z, a, kt) ≥ M(Az, z, a, t). 
  
Therefore by lemma, we have  z = Az. Since SAz = z which implies that Sz = z. 
Again,  Now to prove Tz = z, putting x = z, y = Tz with ∝ = 1 in (iv), we obtain 
�1 + aM(SAz, Pz, a, kt)� ∗ M(Pz, Q(Tz), a, kt) 
 

≥ a�M(Pz, SAz, a, kt) ∗ M(BT(Tz), Q(Tz), a, kt) ∗ M(BT(Tz), Pz, a, kt)� 
 

+M(BT(Tz), SAz, a, t) ∗ M(Pz, SAz, a, t) ∗ M(Q(Tz), BT(Tz), a, t) ∗ 
 

M(Q(Tz), SAz, a, t) ∗ M(Pz, BT(Tz), a, t) 
 
�1 + aM(z, z, a, kt)� ∗ M(z, Tz, a, kt) 
 
≥ a�M(z, z, a, kt) ∗ M(Tz, Tz, a, kt) ∗ M(Tz, z, a, kt)� 
 

+M(Tz, z, a, t) ∗ M(z, z, a, t) ∗ M(Tz, Tz, a, t) ∗ M(Tz, z, a, t) ∗ M(z, Tz, a, t) 
 
Which implies that M(z, Tz, a, kt) ≥ M(Tz, z, a, t).  
 
Therefore by lemma, we have  z = Tz. Since BTz = z which implies that Bz = z. 
 
Thus combining all the above result, we have Az = Bz = Pz = z = Qz = Sz = Tz, 
 
Hence z is common fixed point of A, B, P, Q, S and T. 
 
Uniqueness: let u be an another common fixed point of A, B, P, Q, S and T. 
putting x = z, y = u with ∝ = 1 in (iv), we obtain 
 
�1 + aM(SAz, Pz, a, kt)� ∗ M(Pz, Qu, a, kt) ≥ a�M(Pz, SAz, a, kt) ∗ 
 

M(BTu, Qu, a, kt) ∗ M(BTu, Pz, a, kt)� + M(BTu, SAz, a, t) ∗ 
 

M(Pz, SAz, a, t) ∗ M(Qu, BTu, a, t) ∗ M(Qu, SAz, a, t) ∗ M(Pz, BTu, a, t) 
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�1 + aM(z, z, a, kt)� ∗ M(z, u, a, kt) 
 
≥ a�M(z, z, a, kt) ∗ M(u, u, a, kt) ∗ M(u, z, a, kt)� 
 

+M(u, z, a, t) ∗ M(z, z, a, t) ∗ M(u, u, a, t) ∗ M(u, z, a, t) ∗ M(z, u, a, t) 
 
Which implies that M(z, u, a, kt) ≥ M(u, z, a, t).  
 
Therefore by lemma, we have  z = u.  
 
Hence z is unique common fixed point of A, B, P, Q, S and T. 
 
Corollary: Let (X, M, ∗) be a complete Fuzzy 2-metric space and A, B, P and Q 
be a self mapping of X satisfying the following condition: 
 
(i) P(X) ⊂ B(X) and Q(X) ⊂ A(X)   
(ii) A and B are continuous 
(iii) (P, A) and(Q, B) compatible of type of (K) 
(iv)�1 + aM(Ax, Px, a, kt)� ∗ M(Px, Qy, a, kt) ≥ 

a�M(Px, Ax, a, kt) ∗ M(By, Qy, a, kt) ∗ M(By, Px, a, kt)� + M(By, Ax, a, t) ∗ 
M(Px, Ax, a, ∝ t) ∗ M(Qy, By, a, (2−∝)t) ∗ M(Qy, Ax, a, ∝ t) 

∗ M(Px, By, a, (2−∝)t) 
For all x, y ϵ X , ∝ ϵ (0,2), a ≥ 0 and t>0 
(v)  (P, A) and (B, Q) are commute, 
Then A, B, P and Q have a  unique  common  fixed  point. 
 
Example: Let X = [4, 20] with the metric d defined by d(x, y) = |x − y| define 

M(x, y, t) = 
L

Y(Z,[) for all x, y ∈ X, t>0 clearly (X, M, *) is a complete fuzzy metric 

space define A, B, P, Q, S and T : X→Y as follows Px = 2 if x≤6, Px = 6 if x>6, 
Qx = 4 if x≤6 and Qx = 6 if x>10 and Sax, BTx = x for all x ∈ X. The A, B, P, Q, 
S and T satisfy all the conditions of the above theorem and have a unique 
common fixed point x = 4.   
 
Theorem 3.2: Let (X, M, ∗) be a Fuzzy 2-metric space and A, B, P, Q, S and T be 
a self mapping of X satisfying the following condition: 
 
(i) P(X) ⊂ BT(X) and Q(X) ⊂ SA(X)   
(ii) (P, SA) and(Q, BT) weakly compatible. 
(iii)�1 + aM(SAx, Px, a, kt)� ∗ M(Px, Qy, a, kt) ≥ 

a�M(Px, SAx, a, kt) ∗ M(BTy, Qy, a, kt) ∗ M(BTy, Px, a, kt)� 
+M(BTy, SAx, a, t) ∗ M(Px, SAx, a, ∝ t) ∗ M(Qy, BTy, a, (2−∝)t) ∗ 

M(Qy, SAx, a, ∝ t) ∗ M(Px, BTy, a, (2−∝)t) 
 
For all x, y ϵ X , ∝ ϵ (0,2), a ≥ 0 and t>0 
 
(iv) The pair (P, SA) and (BT, Q) are commute. 
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(v) The pair (P, SA) and (BT, Q) satisfy E.A. Property. 
(vi) One of SA(X) or BT(X) is closed subset of X  
 
Then A, B, P, Q, S and T have a unique common  fixed  point. 
 
Proof: We assume that the pair (Q, BT) satisfy the E.A. property. Then there 
exists a sequence {x�} in X such thalim�→� Qx� = lim�→� BTx� = zt. for some 
z ∈ X. Since Q(X) ⊂ SA(X), there exists a sequence {y�} in X such that Qx� =
SAy�. Hence lim�→� SAy� = z. Also P(X) ⊂ BT(X), there exists a sequence {y�\ } 
in X such that Py�\ = BTx�. Hence lim�→�Py�\ = z. Suppose that SA(X) is a 
closed subset of X. Then z = SAu for some u ∈ X. Subsequently, we have 
lim�→� Qx� = lim�→� BTx� = lim�→�Py�\ = lim�→� SAy� = z = SAu. For some 
u ∈ X. Now, To prove that Pu = SAu. From (3) putting  x = u and y = x� with ∝ = 
1. 
 
 �1 + aM(SAu, Pu, a, kt)� ∗ M(Pu, Qx�, a, kt) ≥ 

a�M(Pu, SAu, a, kt) ∗ M(BTx�, Qx�, a, kt) ∗ M(BTx�, Pu, a, kt)�
+ M(BTx�, SAu, a, t) ∗ M(Pu, SAu, a, t) ∗ M(Qx�, BTx�, a, t)
∗ M(Qx�, SAu, a, t) ∗ M(Pu, BTx�, a, t) 

 
Letting n→∞, we have 
  
�1 + aM(z, Pu, a, kt)� ∗ M(Pu, z, a, kt)

≥ a�M(Pu, z, a, kt) ∗ M(z, z, a, kt) ∗ M(z, Pu, a, kt)� 
+M(z, z, a, t) ∗ M(Pu, z, a, t) ∗ M(z, z, a, t) ∗ M(z, z, a, t) ∗ M(Pu, z, a, t) 

 
Which implies that M(Pu, z, a, kt) ≥ M(Pu, z, a, t).  
 
Therefore by lemma, we have  Pu = z and  hence Pu = SAu = z. 
 
Since P(X) ⊂ BT(X), there exists a point v∈X such that Pu = z = BTv.  
 
Now , we claim that BTv = Qv. From (3) putting x = u and y = v with ∝ = 1, 
  
we have 
 
�1 + aM(SAu, Pu, a, kt)� ∗ M(Pu, Qv, a, kt) ≥ 

a�M(Pu, SAu, a, kt) ∗ M(BTv, Qv, a, kt) ∗ M(BTv, Pu, a, kt)� + M(BTv, SAu, a, t) 
∗ M(Pu, SAu, a, t) ∗ M(Qv, BTv, a, t) ∗ M(Qv, SAu, a, t) ∗ M(Pu, BTv, a, t) 

 
�1 + aM(z, z, a, kt)� ∗ M(z, Qv, a, kt)

≥ a�M(z, z, a, kt) ∗ M(z, Qv, a, kt) ∗ M(z, z, a, kt)� 
+M(z, z, a, t) ∗ M(z, z, a, t) ∗ M(Qv, z, a, t) ∗ M(Qv, z, a, t) ∗ M(z, z, a, t) 

 
Which implies that M(z, Qv, a, kt) ≥ M(Qv, z, a, t). 
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Therefore by lemma, we have  z = Qv. Hence we have BTv = Qv. Thus Pu = SAu  
= BTv = Qv = z. Since the pairs (P, SA) and (Q, BT) are weakly compatible 
points, respectively, we obtain Pz = P(SAu) = SA(Pu) = SAz and Qz = Q(BTv) = 
BT(Qv) = BTz. Now To prove that Pz = z. from (3) putting x = z and y = v  with 
∝ = 1, we have 
 
�1 + aM(SAz, Pz, a, kt)� ∗ M(Pz, Qv, a, kt) ≥ 

a�M(Pz, SAz, a, kt) ∗ M(BTv, Qv, a, kt) ∗ M(BTv, Pz, a, kt)� + M(BTv, SAz, a, t) 
∗ M(Pu, SAz, a, t) ∗ M(Qv, BTv, a, t) ∗ M(Qv, SAz, a, t) ∗ M(Pz, BTv, a, t) 

 
�1 + aM(Pz, Pz, a, kt)� ∗ M(Pz, z, a, kt)

≥ a�M(Pz, Pz, a, kt) ∗ M(z, z, a, kt) ∗ M(z, Pz, a, kt)� 
+M(z, Pz, a, t) ∗ M(Pz, Pz, a, t) ∗ M(z, z, a, t) ∗ M(z, Pz, a, t) ∗ M(Pz, z, a, t) 

 
Which implies that M(Pz, z, a, kt) ≥ M(Pz, z, a, t).  
 
Therefore by lemma, we have  z = Pz. Since Pz = SAz  which implies that SAz = 
z.  
 
Now to prove Qz = z, from (3) putting  x = z and y = z  with ∝ = 1, we have 
 
�1 + aM(SAz, Pz, a, kt)� ∗ M(Pz, Qz, a, kt) ≥ 

a�M(Pz, SAz, a, kt) ∗ M(BTz, Qz, a, kt) ∗ M(BTz, Pz, a, kt)� + M(BTz, SAz, a, t) 
∗ M(Pz, SAz, a, t) ∗ M(Qz, BTz, a, t) ∗ M(Qz, SAz, a, t) ∗ M(Pz, BTz, a, t) 

 
�1 + aM(z, z, a, kt)� ∗ M(z, Qz, a, kt)

≥ a�M(z, z, a, kt) ∗ M(Qz, Qz, a, kt) ∗ M(Qz, z, a, kt)� 
+M(Qz, z, a, t) ∗ M(z, z, a, t) ∗ M(Qz, Qz, a, t) ∗ M(Qz, z, a, t) ∗ M(z, Qz, a, t) 

 
Which implies that M(z, Qz, a, kt) ≥ M(z, Qz, a, t). Therefore by lemma, we have  
z = Qz. Since Qz = BTz.  which implies that  BTz = z. 
  
Now to prove Az = z, from (3) putting  x = Az and y = z  with ∝ = 1, we have 
 
�1 + aM(SA(Az), P(Az), a, kt)� ∗ M(P(Az), Qz, a, kt) ≥ 

a�M(P(Az), SA(Az), a, kt) ∗ M(BTz, Qz, a, kt) ∗ M(BTz, P(Az), a, kt)� 
+M(BTz, SA(Az), a, t) ∗ M(P(Az), SA(Az), a, t) ∗ M(Qz, BTz, a, t) 

∗ M(Qz, SA(Az), a, t) ∗ M(P(Az), BTz, a, t) 
 
�1 + aM(Az, Az, a, kt)� ∗ M(Az, z, a, kt)

≥ a�M(Az, Az, a, kt) ∗ M(z, z, a, kt) ∗ M(z, Az, a, kt)� 
+M(z, Az, a, t) ∗ M(Az, Az, a, t) ∗ M(z, z, a, t) ∗ M(z, Az, a, t) ∗ M(Az, z, a, t) 

 
Which implies that M(Az, z, a, kt) ≥ M(Az, z, a, t).  
 
Therefore by lemma, we have  Az = z. Since SAz = z  which implies that  Sz = z.  
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Now to prove Tz = z, from (3) putting  x = z and y = Tz  with ∝ = 1, we have 
 
�1 + aM(SAz, Pz, a, kt)� ∗ M(Pz, Q(Tz), a, kt) ≥ 

a�M(Pz, SAz, a, kt) ∗ M(BT(Tz), Q(Tz), a, kt) ∗ M(BT(Tz), Pz, a, kt)� 
+M(BT(Tz), SAz, a, t) ∗ M(Pz, SAz, a, t) ∗ M(Q(Tz), BT(Tz), a, t) 

∗ M(Q(Tz), SAz, a, t) ∗ M(Pz, BT(Tz), a, t) 
 
�1 + aM(z, z, a, kt)� ∗ M(z, Tz, a, kt)

≥ a�M(z, z, a, kt) ∗ M(Tz, Tz, a, kt) ∗ M(Tz, z, a, kt)� 
+M(Tz, z, a, t) ∗ M(z, z, a, t) ∗ M(z, Tz, a, t) ∗ M(Tz, z, a, t) ∗ M(z, Tz, a, t) 

 
Which implies that M(z, Tz, a, kt) ≥ M(z, Tz, a, t).  
 
Therefore by lemma, we have  z = Tz. Since z = BTz  which implies that  Bz = z.  
 
Thus combining  all the above result, we have Az = Bz = Pz = z = Qz = Sz = Tz 
 
Hence z is common fixed point of A, B, P, Q, S and T. 
 
Uniqueness: Let u be an another common fixed point of A, B, P, Q, S and T. 
 
Putting x = z, y = u with ∝ = 1 in (iv), we obtain 
 
�1 + aM(SAz, Pz, a, kt)� ∗ M(Pz, Qu, a, kt) ≥ a�M(Pz, SAz, a, kt) ∗ 

M(BTu, Qu, a, kt) ∗ M(BTu, Pz, a, kt)� + M(BTu, SAz, a, t) ∗ 
M(Pz, SAz, a, t) ∗ M(Qu, BTu, a, t) ∗ M(Qu, SAz, a, t) ∗ M(Pz, BTu, a, t) 

 
�1 + aM(z, z, a, kt)� ∗ M(z, u, a, kt)

≥ a�M(z, z, a, kt) ∗ M(u, u, a, kt) ∗ M(u, z, a, kt)� 
+M(u, z, a, t) ∗ M(z, z, a, t) ∗ M(u, u, a, t) ∗ M(u, z, a, t) ∗ M(z, u, a, t) 

 
Which implies that M(z, u, a, kt) ≥ M(u, z, a, t).  
 
Therefore by lemma, we have  z = u.  
 
Hence z is unique common fixed point of A, B, P, Q, S and T. 
 
Corollary: Let (X, M, ∗) be a Fuzzy 2-metric space and P, Q, S and T be a self 
mapping of X satisfying the following condition: 
 
(i) P(X) ⊂ T(X) and Q(X) ⊂ S(X)   
(ii) (P, S) and(Q, T) weakly compatible. 
(iii)  �1 + aM(Sx, Px, a, kt)� ∗ M(Px, Qy, a, kt) ≥ a�M(Px, Sx, a, kt) ∗ 
M(Ty, Qy, a, kt) ∗ M(Ty, Px, a, kt)� + M(Ty, Sx, a, t) ∗ M(Px, Sx, a, ∝ t)

∗ M(Qy, Ty, a, (2−∝)t) ∗ M(Qy, Sx, a, ∝ t) ∗ M(Px, Ty, a, (2−∝)t) 
For all x, y ϵ X , ∝ ϵ (0,2), a ≥ 0 and t>0 
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(iv) The pair (P, S) and (T, Q) are commute. 
(v) The pair (P, S) and (T, Q) satisfy E.A. Property. 
(vi) One of S(X) or T(X) is closed subset of X  
 
Then P, Q, S and T have a unique common fixed  point. 
 

4 Conclusion 
 
In this paper, we have presented common fixed point theorem for six self 
mappings in Fuzzy 2-metric spaces through concept of compatible of type (K) and 
Property (E.A.).  
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