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Abstract

In this work, we introduce and investigate new subclasses
Enp(®, U3 A, By, B,7) and Eyo(®,9; A, B,a, 5,7)

of analytic functions by making use of the familiar convolution structure of an-
alytic functions whose Taylor-Maclaurin coefficients from the second onwards
are all negative. In particular, we derive the coefficient inequalities and some
other interesting properties for functions belonging to these subclasses. QOur
results generalize some earlier known results.

Keywords: Analytic functions, coefficient estimates, distortion inequali-
ties, Littlewood subordination theorem, integral means.
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1 Introduction and Definitions

Let A denote the class of functions of the form
f(z) :z+2akzk, (1)
k=2

which are analytic in the open unit disk U = {z € C': |z] < 1}.
Also, let S be the subclass of A, consisting of analytic and univalent functions
in U.
We denote by
S*(a) and K(a) (0<a<])

the class of starlike functions of order « in U and the class of convex functions

of order av in U, respectively.
Further denote by E,, ,.(®,V; A, B, a, ), the class of functions f(z) € A which
are analytic in U and satisfy therein the condition

D™(f * ®)(z)
Dr(f +W)(z)

D™(f % ®)(2) 1+ Az
O A EY:E

-8 +a (z€U), (2

where * and < denotes convolution(or Hadamard product) and subordination
respectively, (f * W¥)(z) # 0, A and B are arbitrarily fixed numbers such that
—1<B<A<land -1<B<0andO0<a<l1l,<0andm >n
(m,n € Np).

The class E,,,(®,V; A, B, a, ) was introduced and studied by Srivastava et
al.[3] and the class is due to the class E,, ,(®,V; A, B, «) which was earlier
introduced by Eker and Seker [14].

Note that

D"f(z) =2+ k'apz*, (ne€ No=NuU{0}), (3)

where D™ is the usual Salagean operator (see [1]) and
d(2) :z—l—Z)\kzk, U(z) :z—l—Zukzk (4)
k=2 k=2

which are also analytic in U with Ay > 0, ux >0 and Mg > pg.

Definition 1.1. (Hadamard Product(or Convolution)) If f(z) and g(z)
are analytic in U, where g(z) is given by

g(z)=z+ Z by 2* (5)
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then, their Hadamard product(or convolution), f x g is the function

(f *9)(z _Z+Zakbk2’ (g% f)(2). (6)

The function f * g is also analytic in U.

Definition 1.2. (Subordination Principle) Let f(z) and g(z) be analytic in
the unit disk U. Then g(z) is said to be subordinate to f(z) in U and we write

9(z) < f(2), zeU,

if there exists a Schwarz function w(z), analytic in U with w(0) = 0, |w(z)| < 1
such that

9(2) = f(w(z)), zeU (7)
In particular, if the function f(z) is univalent in U, then g(z) is subordinate
o f(2) if

9(0) = f(0),  g(u) C f(w).

(See for details Duren[10])

In view of (1), (4) and definition 1.1 we note that
(f = ®)( —z+2ak/\kz (f*xW)(z —z+Zakukz (8)

such that by using Binomial expansion on (8) we have

(f20)(2) = zuzak P (fr0)(z) = zuzak
(9)
Now, let
h(z) = (f * ®)( _Zv+zak SRty—1
and
q(z) = (f * ) (2 —ZA’—l-Zak SRty=1
v > 0.

Then a function f € A is said to be in the class E,, ,(®, ¥; A, B, a, 5,7) if and
only if

D™h(z) ‘Dmh(z) L+ 4z +a (z€U), (10)

Dig(z) | Dz ‘<<1_(”14-Bz
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where < denotes subordination as earlier defined, ¢(z) # 0, A and B are
arbitrarily fixed numbers such —1 < B < A <1 and —1< B < 0 and
0<a<1,8<0 and m>n (m,n e Ny).

In other words, f € E,,.(®,V; A, B, «a,3,7) if and only if there exists an
analytic function w(z) satisfying

w0)=0 and |w(z)]<1l (z€U)

such that
D™h(z) D™h(z) — 1+ Aw(z) a (z
Dl 'an(z) 1‘ < (1 )1+Bw<z)+ (z € U), (11)

The condition (11) is equivalent to the following inequality:

Dmh(z ﬂ 1
‘ i — 1 <1 (z€U). (12)
(A-B)1-a)- B(D”h<z> Bl ~1/-1)

Let 7 denote the subclass of A whose Taylor-Maclaurin expansion about z = 0
can be expressed in the following form:

z)=2z— Zakzk (ar, > 0). (13)

We shall denote E’m,n(<l>, U: A, B, a, 3,7) the subclass of functions in
Epn(®,V; A B, a, 8,7) that has their non-zero Taylor-Maclaurin coefficients,
from the second term onwards, all negative.

Thus we can write

Ern(® 9, A, B, a, 3,7) = Eppn(®,V; A, B a, 3,7) N T. (14)

It is easy to check that various known or new subclasses of 7 referred to above
can be represented in terms of Em,n(q), U; A, B, «a, 3,7) for suitable choices of
the function & and ¥ (and the parameters m,n, A, B, and ).

For example, we have the following relationship with known classes of func-
tions: . .

E :1,-1,0,0,1) = S*
070((1—2)271—2’ ) , @, U, ) (Q{)

and )
~ zZ+z z

EO’O((l R 2)2; 1,-1,0,0,1) = k()

which were studied by Silverman|7];

~ z
E(L()(m, 3 1, —1, a, 0, ].) = P*(Oé)7
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which was studied by Bhoosnurmath and swamy[13] and Gupta and Jain[15],

- 2+ (1 —2a)2? z
0.0( (ST ;1,—-1,0,0,1) = R(a),

which was studiedby Silverman and Silivia[6].

2 Main Results

We begin by proving the following results.

2.1 A Set of Coefficient Inequalities

Theorem 2.1. If f(z) € A satisfies the following inequality:

S {A-B)YA+B)[(v+kE—D)"M(7) = (v + & — 1)"i(¥)]

h=2 (15)
+(A=B)A = a)(v+k = 1)"ux(7) Haw(v)]
<A-B)(1-an™-(1-B)1+p)(""—1")
where
M) = m(7) 20,0 <a<L;8>0m>n (m,ne Ny))
and ag(7y), Ak (y ), wur () are the coefficients ax, \i, pu. depending on -y, then f(z) €
Em,n(q)7qjv ) 7 7577)

Proof. Let the condition (15) hold true. Then it suffice to show that

D™h(z) _ ’Dmh(z) —1 -1
Drg(z) Drg(2) <1 (z€U). (16)
(A—B)(l—a)—B(D U g2 ‘1)

Dig(z) " Drg(z)
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Thus we have that

D™h(z) — Dq(z) — B D"h(z) — Dg(2)
- |4 B1 = a)Date) = BID"H) - Do) - 5| i) - Do)

= (" =2+ D (k= 1)) = (v + k= 1) ()] ag(7) 27

= BN =" + ,i[“ k= 1"0() = (7 + k= 1)) 2|
(A= B)(1 - a)y"s + 1_a§27+k_1 oy (y)

- B - ;[(7 F R 1M0) — (14 K P )a(0) 214
Pl =) + kf;[(v = 1" = (k= ) ()]as() )

< (" =) i (64 k= 1"u0) = 0+ = 1) T

+ B~ i 6+ k= 1) = 3+ k= )| T

—(A-B)(1- Oé)vm Z\”

g

+(A=B)(1—a)) (v+k—1)"ar(y)|p(v)

||
N

+[BI(y™ = ")l + [BI D [0y + k= D™ Me(y) = (v + k= 1) ()] Jax(7)] ‘z|| ||Z’
o 3 A (b 1y ML
F1BIBG™ = 4™+ 1BIB Y [(v + k= 1" (y) — (v + k — )" ()]l (7)o !

<(A=B)A+p)(" =7") = (A= B)(1-pNn"

+Z{ 1= B)(1+B)[(v+k—1)" ()

(7+k D" ue(V)] + (A= B)(1 —a)(y +k = 1)"ux(7) Hax(v)] <0,
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which implies that

{A=B)A+B)[(v+k—=1)"N(y) = (v + k= 1)" ()]

(A=B)(1 —a)(v+k—1)"(v)Har(v)|
(A B)(1 -6+ (1 =B)1+5)(" —1")
This completes the proof of Theorem 2.1

In theorem 2.2 below, it is shown that the condition (15) is also necessary for
functions f(z) of the form (13) to be in the class E,, ,(®, V; A, B, «a, 8,7).

IAN + TTMg

Theorem 2.2. Let f(z) € 7, then f(2) € Epn(®,¥: A, B a, 8,7) if and
only if

D AA=B)A+B)[(y+ k=)™ M(y) = (v + k= 1)"(7)]

+ (A= B)1—a)(y+k—1)"u(7)Hax()]
SA=-B)1—apy" - (1-B)1+5)""—=7")

(17)

where
M) = (1) >0;0<a<1;8>0m>n (m,ne Ny))

and ag(y), Ak (7), ue(y) are the coefficients ax, Ak, i depending on 7.

PrOOf. Since E,rnqn(@?ql;A? B7 &7 /87’}/) C Em7n(®7ql;A7 B7 &7 /877)7
we only need to prove the only if part of Theorem 2.2. For functions f(z) € 7,
we can write

’ (D™h(z)/D"q(2)) — (BID™h(2)/D"q(z) —1]) = 1 ‘
(A= B)(1 — ) = B{(D™h(2)/D"q(2)) — BI(D™h(z)/D"q(z) — 1]) = 1]

_ ‘ D™h(z) — D"q(z) — Be”|D™h(z) — D"q(2))

(A= B)(1 —a)Dq(z) — B[D™h(z) — D"q(z) — fe’?|D™h(z) — D"q(2)]

m

(Y™ —=")2"
(v + B = 1) A(y) = (v + k= 1) ()] ag ()27
+8e?| (4™ — ™)z
+ Y ol(y +E =D M(y) = (v + k= D)™ (y)]ag(y) 27+
(A-B)(1-a)2y"+ (A= B)(1—a) Y 2(7+k’ 1) g, ()] aw (y )»Z”*’H
+BY 2 [(v+ k= 1D)"™Ae(y) — (v + k= 1) ()]ag(7) 27T
+BBe Y (v + k=) Ne(y) — (v 4k — 1) (7)) ar ()27

< 1.
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Since Re(z) < |z| <1 (z € U,) we thus find that
(Y™ =2+ 35[0+ k= 1) N(y) = (v + k= D)™ u(y)]ar(y)27+E !
+Be’|(y" — ")
+ ol E = D)™ N(y) = (v + k= 1)) aw(y) 2"

Re{ (A=B)(1-a)2y"+(A-B)(1—a) 32 2(7+k 1" g ()] aw(y )Z”*’“‘1

)
B (v k=)™ A() — (v +E = 1) (73

| ()27t
+BB| Y[+ B = 1) Ne(y) = (v + B = 1) ()] ar (v

Jak
law(7)27
< 1.

If we now choose z to be real and let z — 17, we have

S {A-B)YA+B)[(v+kE— D" (1) — (v + & — 1))
(18)

which is equivalent to equation (17).

Remark 2.3. Taking different choices for the function ®(z) and V(z) as
stated in section 1 when v = 1, Theorem 2.2 leads us to the necessary and
sufficient conditions for a function f to be in each of the following classes:

S*(a), K(a), P'(a) and R[a).

Remark 2.4. If we set v = 1 in Theorem 2.1 and 2.2 above, we obtain
the result given in [9].

Remark 2.5. If we set m = n = 3 =0 and ~ = 1 in Theorem
2.1 and 2.2 above, we obtain the results given in [9)].
Moreover, form >n (m,n € Ny), =0 and -~ =1, our results will
coincide with those presented in [14].

2.2 Distortion Theories Involving Fractional Calculus

In this section, we shall prove several distortion theorems for functions belong-
ing to the general class Em,n(q), U: A, B, «a, 3,7). Each of these theorems would
involve certain operators of fractional calculus (i.e, fractional integrals and frac-
tional derivatives), which are defined as follows(see for details,[12, 11, 2, 5, 4]):

Definition 2.6. The fractional integral of order § is defined, for a function
f, by

s L[
DI = 15 | it 0>0) (19)

|
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where f is an analytic function in a simply-connected region of the complex
z-plane containing the origin, and the multiplicity of (z — €)™ is removed by
requiring log(z — £) to be real when z — & > 0.

Definition 2.7. The fractional derivative of order d is defined, for a func-
tion f, by

5 1 d [ f(©)
DE) - fmgs | T <<l o

where [ is constrained, and the multiplicity of (z — &) is removed as in defi-
nition 2.6

Definition 2.8. Under the hypothesis of the definition 2.7, the fractional
derivative of order n+ 0 is defined, for a function f, by

dn

DI f(z) = @{Dﬁf@)} (0<d<1, neN.

By the virtue of Definitions 3,4, and 5, we have

L(k+1) bt

D—(5 k:
S (A

(ke N;§d>0)

and
[L(k+1) kb

I'k—d+ 1)
~ Theorem 2.9. Let f(z) defined by equation (13) be in the class
Epn(®,V; A B o, 3,7). Then,

Dok = (ke N;0<d<1).

’Z‘l—s—é

~T(2+0)

D21 2

[1— 2AA— B)(1—a)y™ — (1— BY(1+ B)(" — ")
2+ {1 =B)A1+8)[(v +1)"Ae(v) = (v + 1) pr(7)]
A= BY(1 - a)(y + 1) ()}
(6>0;, zeU)
and
|Z|1+5
T2 719

EIEIE

[1+ AA— B)(1 - a)y" — (1- B)(1 1 H)(7" — 1)
@1 o{(0 - B+ A0+ M) — (7 + (7))
HA=B)1 - )y + ()P
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(6>0;, zelU).
Fach of these results is sharp.
Proof. Let
_ Dk +1DI(2+9)
_ Epey) _ . k
F() =T+ 0)2 D) =2 = 3 oy o a(a)?

k=2
00

=z— Z Q(k)ag(v)2"
k=2
I'(k+1)I'(2+9)
ke N {1}).
I'(k+1+9) (ke N ALY
since Q(k) is a decreasing function of k, we can write
2
2+46

Furthermore, in view of Theorem 2.2, we have

where Q(k) =

0< Q(k) < Q2) = (21)

{(1 C B+ B+ )™he() — (7 + 1) aa(7)]

(A= B)1-a)y+ 1)%@)} S a(r)

<D Q=B+ D +k=1)"N(y) = (v + k= 1)" ()]

+(A=DB)(1—a)(y+k—1)"u(y)ar(y)
<(A-B)(1-a)(y)" =1 =B)1+B)("™—7"),

which evidently yields

— B)(L+ B)[(v + 1)™Aa(7) — v + 1) ua(7)]
A= B)(1 —a)(y+1)"ua(v)

Therefore, by using equation (21)and (22) we can see that

> k(1) < ((114—3)(1_04)7”1_ (L=B)1+B("=7") (59
k=2

[F()| 2 |2] = 122)] - |2 ) ax()

2A-B)(1—an™ -1 -B)(1+8)("™ =" e
2+ {1 —=B)A+8)[(v+1)™Xa(7) = (v + 1) p2(7)]
+(A = B)(1 —a)(y+1)"ua(7)}

> |z] =
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and

[F()] < Jol +122)] - 127 Y an(y)

2A-B)1—an™ - (1-B)A+8)""—7") 122
2+ 0){1=B)1+8)[(v+1)™Xa(7) = (v + 1)"p2(7)]
+A=B)(1 —a)(y+1)"ua(7)}

which prove Theorem 2.9
Finally, since the equalities are attained for the function f(z) defined by

< lzf +

ZH—(S

T(2+0)

D f(2) =

(1_ 204=B)(1 —apy™ = (1= B)(1+ )" —1") z)
2+ {1 =B)(1+A)l(v+ 1)"™Aa(v) = (v + 1)"p2(7)]
+HA=B)(1 = a)(v+1)"pa(7)}

or equivalently, by

f(2) =z AT Bz = U= B)A+H(™ =7") -
(L=B)1+B)[(v+1)" () — (v + 1)"p2()] 7
(A= B)(L —a)(y+1)"ua2(7)
Our proof of Theorem 2.9 is completed.

Corollary 2.10. Under the hypothesis of Theorem 2.9, D7° f(z) is included
i a disk with its center at the origin and radius r1 given by

oo 1 <1_ 2(A—B)(1 —a)y" — (1= B)(1 + B)(y" —7") )
TR\ @O B A+ D0 - (0 + D e(] )
(A= B)(L —a)(y+ 1)"u2(7)}
Theorem 2.11. Let the function f(z) defined by equation (13) be in the
class Epn(®,V; A, B, 3,7). Then,

1-6

D) 2 p

o 24=Bl-ap"=(U=-BI+H0"—9") _
2+ {1 =B)A+P)[(v + 1)) = )" 1k (7)]
HA=B)(L —a)(y + 1) (7))
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(0<d<0; zel)

and

(14 24D o - (DA ) )

2+6{(1=B)(1+H)l(v+ D" l(y) = (v + 1) ()]
+HA=B)(1 —a)(y + 1)"u()})
(0<5<0; zel).
FEach of these results is sharp.
Proof. Let
5o _ [k (k)2 —-9) ko - k
G(z) =D(2—8) D0 f(2) = 2— 22 o k - 1 — kak(’y)z =z ;A(k)kak(y)z
INUAINCE)
where A(k) = % (k={2,3,---}).
Since A(k) is a decreasing function of k, we can write
1
0<A(k) <A(2) = T (23)

Furthermore, in view of Theorem 2.2, we have

(A= B)1-a)(y+ 1) }Zkak

Z By +E =)™ M(y) = (v + = 1)" ()]

+ ( B)(1 —a)(y+k—1)" () far(y)
< (A B)(1—a)(y)" = (1 =B)(1+8)0"—7"),

which evidently yields

| A
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Therefore, by using equation (23) and (24) we can see that

G()| = |2 + [A@)] - [ Y kan(y)

k=2

2A-B)1—an™-(1-B)1+8)("" -7") 22
2+){(1 = B) 1+ By +1)™Xa(y) = (v + 1)"p2(y)]
+(A = B)(1—a)(y+1)"ua(v)}

> |z] -

and

G| < J2+ A@)] - 2 Y kax()

2A-B)(1—an™ -1 -B)(1+8)("" ="
2+){(1=B)A+ )y +1)™Xa(v) = (v + 1)"p2(7)]
+(A=B)(1 —a)(y+1)"ua(7)}

which together yields the inequalities asserted by Theorem 2.11. Equalities
are attained for the function f(z) defined by

<z + |2

21—5

<1 B 20A-B)1—a)y" =1 -=B)1+8)("" —7") Z)
2=0){(1=B)1+B)(vy+1)"Aa(y) = (v + 1)"pa(v)]
+(A = B)(1 —a)(y+1)"ua(7)}

Corollary 2.12. Under the hypothesis of Theorem 2.11, D° f(z) is included
i a disk with its center at the origin and radius ro given by

o =

1 L 2A-B)(1l—a)y" = (1= B)(1+5)(y" =1")
I'(2-9) 2+{A=B) A+ By +1)™Xa(y) = (v +1)"u2()] |
+(A=B)(1 —a)(y+1)" " pa(y)}

2.3 Extreme Points for the Functions in Class

Em,n(q)a \II; Aa Bv a, 67 7)
Theorem 2.13. Let f1(z) = z and
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(k={2.3.})
Then, f(z) € Em,n(CD, Ui A, B, a, 3,7) if and only if it can be expressed in the

form
F2) =Y mefe(2)
k=1

where g, >0 and Y o mp = 1.
Proof. Suppose that

—Z—in (A=B)(L—an™~ (1= B)(1+ 50" =) 4
FA-B) A+ B[+ )™a() — (v + D]
+A=B)(1—a)(y+k—1)"u2(v)

Then, from Theorem 2.2, we have

D AQ=B)A+ By +k=1)"M(r) = (v + k= 1)"pui(y)]

(A B)1— )k — 1))

(A-B)(1 - a)m (1-=B)(A+8)0H™ =" .
1-B)A+A[(v+ ™) — v+ 1)"m()] )™
+A=B)1 —a)(y+k—1)"uz(y)
=[(A=B)(1—a)y" = (1=B)1+ )" =)D m

=[(A=B)A-a)y™ = (1=B)1+5)H™—7")(1—m)
<(A-B)A—an™-(1-=B)1+50H"—9")
Thus in view of Theorem 2.2, we find that
f(2) € Enpn(®,V; A, B, o, B,7).
Conversely, let us suppose that
Epn(®, %5 A, B, a, B,7).

Then, since

w) ST E T A+ F =m0

(A-B)(l-—any"-01-B)0+8)0""—-7")
— k
+(A-B)(1—-a)(y+k—
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(k:{273""})a

we may set

(1=B) A+ By +k—=1)"N\(y) = (v +F = 1)"ur(7)]
Ne = +HA=B)(1 —a)(y +k—1)"u(v) ax(7)
(A=B)1—-a)y™—(1-B)(1+8)(H™—~")

(k:{2,3,-'~}),

and gy =1— "7, .
Thus, clearly, we have

2)=z2= Y mfu(2)
h=2

This completes the proof of Theorem 2.13

Corollary 2.14. The extreme points of the functions Emﬁn(q), U:A B, a, 3,7)
are given by

fi(z) =2

and

fu(2) = 2 — (A-B)(1-aly™ = (1=-B)1+5)("™-7") N
(1=B) 1+ B)(v+k =1 \(7) = (v +k — 1) 1 ()]
+(A=B)(1 —a)(y+k—1)"u(y

(k= {2,3,-).

2.4 Integral Means Inequalities for the Function Class
Em,n(q)a \117 A7 B7 a, Ba 7)

In the year 1925, Littlewood [8] proved the following:

Lemma 2.15. If the function f(z) and g( ) are analytic in U with g(z) <
f(z), (z€U), then forp>0 and z =re? (0 <r < 1), we have

[T s [Coera

We now make use of Lemma 2.15 to prove Theorem 2.16 below:
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Theorem 2.16. Let f(z) € Em,n(QD,\I/;A,B,a,B,'y). Suppose also that
fr(2) is defined by equation (25). If 3 an analytic function w(z) given by
(

1=B)A+p)[(v+k—=1" \(y) = (v + k= 1)"u(y)]
[w(z)]k—l _ +<A — B)(l — a)(7 +k— 1)nﬂk<7) a (,w
(A=B)(1—aly" = (1-B) 1+ 80" =" *

x Y ax(v)2

then fOT 5 = Ti@ and 0<r<l1,
)

27 ) 21 )
/ Fr)Pdo < / i )Pdo (p > 0).
0 0

Proof. We need to show that

/ 1—’2%(7)

/2” - (A-B)(1-ahy™=01-=B)A+3("" =" -1 pde
0 (1=B) A+ By +k—1)"M\(7) — (7+k—1) 1 ()] '
+(A=B)1 —a)(y+k—1)"u(v)

By applying Lemma 2.15 above, it would suffice to show that

p
A de <

L= a(y)

(A-B)(1-—any"-010-B)A+8)O"—7") k-1

<1- 1-=B)A+B)[(v+k—1)"M(y) = (v+ k= 1)"ur(y)]
+(A=B)(1—a)(y+k—1)"ux(y)
(zeU)
By setting

1— Z a(7)

—1— (A_B>(1_O‘)’y _(1 B>(1+B)( n) [w(z)]k”
(1=B)A+H)[(v+k—1)"N(y) - (7+k‘—1) 1 (7)) ’
+(A=B)L—a)(y+k—1)" ()
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we find that

[w(2)]
1-=-B)A+B)[(v+k=1)"Xe(v) = (v + k= 1)"u(7)] o

= +(A-B)A-a)(y+k—-1)"m(7) > a(y)
(A=B)1—-aly"—(1-B)([1+5)0N""—1") k=2

which readily yields w(0) = 0.
Furthermore by using equation (17), we obtain

|[w ()]
1-B)(1+)(v+k—=1)"X(v) = (v + k= 1)"u(7)]
< +HA-B)1-a)(y +k—=1)"u(v) > ap(y)F
(A=B)(1—-ahy™—(1-B)(1+8)("™—7") k=2

1-B) 1+ )(v+k—1" () — (v + k= 1)"u(v)] o
< +HA-B)A —a)(y+k—1)"u(v) > a(y)2H!
(A=B)(1-ay™ - 1-B)(1+8)(H™-") k=2
<zt <1

This completes the proof of Theorem 2.16
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